

HEAT TRANSFER

DR.PRADIP DUTTA

Department of Mechanical Engineering

Indian Institute of Science

Bangalore

What is Heat Transfer?

"Energy in transit due to temperature difference."

Thermodynamics tells us:

- How much heat is transferred (δQ)
- How much work is done (δW)
- Final state of the system

Heat transfer tells us:

- How (with what modes) δQ is transferred
- At what rate δQ is transferred
- Temperature distribution inside the body

Heat transfer complementary Therr

Thermodynamics

MODES:

- ✓ Conduction
 - needs matter
 - molecular phenomenon (diffusion process)
 - without bulk motion of matter
- ✓ Convection
 - heat carried away by bulk motion of fluid
 - needs fluid matter
- ✓ Radiation
 - does not needs matter
 - transmission of energy by electromagnetic waves

APPLICATIONS OF HEAT TRANSFER

- ✓ Energy production and conversion
 - steam power plant, solar energy conversion etc.
- ✓ Refrigeration and air-conditioning
- ✓ Domestic applications
 - ovens, stoves, toaster
- ✓ Cooling of electronic equipment
- ✓ Manufacturing / materials processing
 - welding, casting, soldering, laser machining
- ✓ Automobiles / aircraft design
- ✓ Nature (weather, climate etc)

CONDUCTION

(Needs medium, Temperature gradient)

RATE:

q(W) or (J/s) (heat flow per unit time)

Conduction (contd...)

Rate equations (1D conduction):

Differential Form

q = -k A dT/dx, W

k = Thermal Conductivity, W/mK

 $A = Cross-sectional Area, m^2$

T = Temperature, K or °C

x = Heat flow path, m

☐ Difference Form

$$q = k A (T_1 - T_2) / (x_1 - x_2)$$

Heat flux: $q'' = q / A = - kdT/dx (W/m^2)$

(negative sign denotes heat transfer in the direction of decreasing temperature)

Conduction (contd...)

☐ Example:

The wall of an industrial furnace is constructed from 0.2 m thick fireclay brick having a thermal conductivity of 2.0 W/mK. Measurements made during steady state operation reveal temperatures of 1500 and 1250 K at the inner and outer surfaces, respectively. What is the rate of heat loss through a wall which is 0.5 m by 4 m on a side?

CONVECTION

Energy transferred by diffusion + bulk motion of fluid

Rate equation (convection)

T_s

Heat transfer rate $q = hA(T_s-T_{\infty})$ W Heat flux $q'' = h(T_s-T_{\infty})$ W / m^2

h=heat transfer co-efficient (W /m²K)

(not a property) depends on geometry, nature of flow, thermodynamics properties etc.

Convection (contd...)

Free or natural convection (induced by buoyancy forces)

Convection

Forced convection (induced by external means)

May occur with phase change (boiling, condensation)

Convection (contd...)

Typical values of h (W/m²K)

Free convection

gases: 2 - 25

liquid: 50 - 100

Forced convection

gases: 25 - 250

liquid: 50 - 20,000

Boiling/Condensation

2500 -100,000

RADIATION

RATE:

q(W) or (J/s) Heat flow per unit time.

Flux: $q''(W/m^2)$

Rate equations (Radiation)

RADIATION:

Heat Transfer by electro-magnetic waves or photons(no medium required.)

Emissive power of a surface (energy released per unit area):

$$E=εσTs4 (W/ m2)$$

ε= emissivity (property).....

σ=Stefan-Boltzmann constant

Rate equations (Contd....)

Radiation exchange between a large surface and surrounding

$$Q_{rad}^{"} = \varepsilon \sigma (T_s^4 - T_{sur}^4) W/m^2$$

Radiation (contd...)

□ Example:

An uninsulated steam pipe passes through a room in which the air and walls are at 25°C. The outside diameter of pipe is 80 mm, and its surface temperature and emissivity are 180°C and 0.85, respectively. If the free convection coefficient from the surface to the air is 6 W/m²K, what is the rate of heat loss from the surface per unit length of pipe?