Chapter 1: Basics of Vibrationsfor Simple Mechanical Systems

I ntroduction:

The fundamentals of Sound and Vibrations are part of the broader field
of mechanics, with strong connections to classical mechanics, solid
mechanics and fluid dynamics. Dynamics is the branch of physics
concerned with the motion of bodies under the action of forces.
Vibrations or oscillations can be regarded as a subset of dynamics in
which a system subjected to restoring forces swings back and forth
about an equilibrium position, where a system is defined as an
assemblage of parts acting together as a whole. The restoring forces

are due to elasticity, or dueto gravity.

The subject of Sound and Vibrations encompasses the generation of
sound and vibrations, the distribution and damping of vibrations, how
sound propagatesin afree field, and how it interacts with a closed space, as
well as its effect on man and measurement equipment. Technicd
goplications span an even wider field, from gpplied mathematics and
mechanics, to dectricd instrumentation and andog and digitd signd
processing theory, to machinery and building design. Mogt human
activities involve vibration in one form or other. For example, we hear
because our eardrums vibrate and see because light waves undergo
vibration. Breathing is associated with the vibration of lungs and walking
involves (periodic) oscillatory motion of legs and hands. Human spesk due
to the oscillatory motion of larynges (tongue).

In most of the engineering applications, vibration is sgnifying to and
fro motion, which is undesrable. Gdileo discovered the reationship
between the length of a pendulum and its frequency and observed the
resonance of two bodies that were connected by some energy transfer



medium and tuned to the same naturd frequency. Vibration may resultsin
the failure of machines or their criticad components. The effect of vibration
depends on the magnitude in terms of displacement, veocity or
accelerations, exciting frequency and the total duration of the vibration. In
this chapter, the vibration of a single-degree-of-freedom (SDOF), Two
degree of freedom system with and without damping and introductory
multi-degree of freedom system will be discussed in this section.

1. LINEARSYSTEMS

Often in Vibrations and Acoustics, the calculation of the effect of a
certain physical quantity termed as the input signal on another physical
quantity, called the output signal; (Figure 1-1). An example is that of
calculating vibration velocity v(t), which is obtained in a structure
when it is excited by a given force F(t). That problem can be solved by
making use of the theory of linear time- invariant systems.
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Fig. 0-1 A linear time-invariant system describes the relationship
between an input signal and an output signal. For example, the input
signal could be a velocity v(t), and the output signal a force F(t), or
the input signal an acoustic pressure p(t) and the output signal an
acoustic particle velocity u’(t). [Sound and vibration book by KTH[1]]

From a purely mathematical standpoint, a linear system is defined as
one in which the relationship between the input and output signals can
be described by a linear differential equation. If the coefficients are,



moreover, independent of time, i.e., constant, then the system is also

timeinvariant. A linear system has several important features.

Example 0-1[1]

The figure below, from the introduction, shows an example in which
the forces that excite an automobile are inputs to a number of linear
systems, the outputs from which are vibration velocities at various
points in the structure. The vibration velocities are then, in turn, inputs
to a number of linear systems, the outputs from which are sound
pressures at various points in the passenger compartment. By adding
up the contributions from all of the significant excitation forces, the
total sound pressures at points of interest in the passenger
compartment can be found. The engine is fixed to the chassis via
vibration isolators. If the force F; that influences the chassis can be cut
in half, then, for alinear system, all vibration velocities v; — vy caused
by the force F1 are also halved. In turn, the sound pressures p; — pn,
which are brought about by the velocities v, — vy, are halved aswell. In
this chapter, linear oscillations in mechanical systems are considered,
i.e., oscillations in systems for which there is a linear relation between
an exciting force and the resulting motion, as described by
displacements, velocities, and accelerations. Linearity is normally
applicable whenever the kinematic quantities can be regarded as small
variations about an average value, implying that the relation between
the input signal and the output signal can be described by linear

differential equations with constant coefficients.
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(Picture: Volvo Technology Report, nr 1 1988) [1]

1.1 SINGLE DEGREE OF FREEDOM SYSTEMS

In basic mechanics, one studies single degree-of-freedom systems
thoroughly. One might wonder why so much attention should be given
to such a ssimple problem. The single degree-of-freedom system is so
interesting to study because it gives us information on how a system’s
characteristics are influenced by different quantities. Moreover, one
can model more complex systems, provided that they have isolated

resonances, as sums of simple single degree-of-freedom systems.

1.2 Spring Mass System

Most of the system exhibit smple harmonic motion or oscillation.
These systems are said to have dastic restoring forces. Such systems can be
modeled, in some stuaions, by a spring-mass schematic, as illustrated in
Figure 1.2. This condtitutes the most basic vibration mode of a machine



structure and can be used successfully to describe a surprisng number of
devices, machines, and dructures. This system provides a smple
mathematical modd that seems to be more sophigticated than the problem
requires. This system is very useful to conceptudize the vibration problem
in different machine components. The single degree of freedom system is
indicating as:
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Fig.1.2 (a) Spring-mass schematic (b) free body diagram, (c) free body
diagram in static condition
If x = x(t) denotes the displacement (m) of the mass m (kg) from its

equilibrium position as a function of timet (s), the equation of motion for
this system becomes,

mX +k(x+x,)—mg=0 11
where k =the tiffness of the spring (N/m),
X¢ = Static deflection
m = the spring under gravity load,
g = the accd eration due to gravity (m/s2),
X = acceleration of the system
Applying gatic condition as shown in Fig. 1.2 (c) the equation of




motion of the system yields
mX +kx =0 (1.2

This equation of motion of a single-degree-of-freedom system and isa
linear, second-order, ordinary differentid equation with congtant
coefficients. A smple experiment for determining the spring stiffness by
adding known amounts of mass to a spring and measuring the resulting
dtatic deflection x isshown in Fig. 1.3. Theresults of this static experiment
can be plotted as force (mass times acceleration) V/s x, the dope yieding
the vaue of spring stiffness k for the linear portion of the plot asillustrated
inFigure14.

Fig. 1.3 Measurement of the spring stiffness
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Fig. 1.4 Determunauon o uie spring suiiness




Once m and k are determined from gatic experiments, Equation (1.2)
can be solved to yidd the time history of the pogition of the massm, given
the initia pogtion and velocity of the mass. The form of the solution of
previous equation is found from subgtitution of an assumed periodic motion

as,

x(t) = Asin(w,t + ) (1.3)

Where, w, = /k/m isthe natura frequency (rad/s).
Here, A=the amplitude
®= phase shift,

A and & ae condants of integration determined by the initid
conditions.

If Xoisthe specified initid displacement from equilibrium of massm,
and vp is its specified initid veocity, smple subgtitution alows the
constants A and @ to be obtained. The unique displacement may be
expressed as,

wZxa + v}

X
x(t) = T—sin[mnt + tan™? (wso 0)] (1.4)

Or,

Up
x(t) = —sinw, t + xy cos wyt
Wn

Equation 1.2 can a0 be solved using a pure mathematical gpproach as
described follows.
Substituting x(t) = C e
mAZer + ket = 0 (1.5)

HereC # 0and eM = 0,



Hence m\> +k =0
Or
1/2
A=4j (a) = twyj
where, j isan imaginary number = v/—1
Hence the generdized solution yields as,

x(t) = C,e“nlt 4 C e onlt (1.6)

where C; and C, are arbitrary complex conjugate constants of

integration.

The vaue of the congtants C ; and C, can be determined by applying
theinitial conditions of the system. Note that the equation 1.2 is valid only

aslong as springislinear.

1.3 Spring M ass Damper system

Most systems will not oscillate indefinitedly when disturbed, as
indicated by the solution in Equation (1.4). Typicaly, the periodic motion
damped out after sometime. The easiest way to modd this mathematicaly
is to introduce a new term, named as damping force term, into Equation
1.2).

Incorporating the damping term in equation (1.2) yield as

mX +cx+kx =0 (17)

Physically, the addition of a dashpot or damper results in the dissipation
of energy, as illustrated in Figure 1.5 the mass, damper and spring



arrangement is as.
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Fig. 1.5 (8) Schematic of the spring-mass-damper system, (b) free
body diagram of the systemin part (a), (c) free body diagram dueto atic

condition

If the dashpot exerts a disspative force proportiond to velocity on the
mass m, the eguation (1.7) describes the eguation of the motion.
Unfortunately, the constant of proportiondity, ¢, cannot be measured by
gtatic methods as m and k are measured in spring mass system.

The congtant of proportionaity c is known as damping coefficient and
its unit in MKS is Nm. A generd mathematical approach can be used to
solve the equation 1.7 as described below.

Subdtituting, x(t) = a e’ in equation 1.7, get,

a(mA®e* + cheM + keM) =0 (1.8)

here a# 0and eM =0

hence, m\ +cA+k=0



. C k
A +a7\+a=0 (1.9)

The solution of equation 1.8 yidds asfollows

c 1 [c? k

The quantity under the radica is cdled the discriminant. The value of
the discriminant decides that whether the roots are red or complex.
Damping ratio: It is relaively convenient to define a non-dimensional
quantity named as damping ratio. The damping ratio is generdly given by
symbol Zeeta(z) and mathematically defined as

Substituting the value of k ,m and cintermsof z and w,,, the equation
(1.7) yidds as,

X +2Z 0px+ 02x =0 (1.10)
And equation (1.9) vields as

Mo =—-ZW, + 0, }Qz—l =Zfw,+wj (L1

where, w isthe damped naturd frequency for (0< £ <1) the damped
natura frequency isdefinedas w = w, 1 — Z°

Clearly, the value of the damping ratio,(z), determines the nature of the
solution of Equation (1.6).

“Fundamentals of Sound and Vibrations” by KTH Sweden [1], this book is used
under IITR-KTH MOU for course devel opment.



