
Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Introduction:

The fundamentals of Sound and Vibrations are part of the broader field

of mechanics, with strong connections to classical mechanics, solid

mechanics and fluid dynamics. Dynamics is the branch of physics

concerned with the motion of bodies under the action of forces.

Vibrations or oscillations can be regarded as a subset of dynamics in

which a system subjected to restoring forces swings back and forth

about an equilibrium position, where a system is defined as an

assemblage of parts acting together as a whole. The restoring forces

are due to elasticity, or due to gravity.

The subject of Sound and Vibrations encompasses the generation of

sound and vibrations, the distribution and damping of vibrations, how

sound propagates in a free field, and how it interacts with a closed space, as

well as its effect on man and measurement equipment. Technical

applications span an even wider field, from applied mathematics and

mechanics, to electrical instrumentation and analog and digital signal

processing theory, to machinery and building design. Most human

activities involve vibration in one form or other. For example, we hear

because our eardrums vibrate and see because light waves undergo

vibration. Breathing is associated with the vibration of lungs and walking

involves (periodic) oscillatory motion of legs and hands. Human speak due

to the oscillatory motion of larynges (tongue).

In most of the engineering applications, vibration is signifying to and

fro motion, which is undesirable. Galileo discovered the relationship

between the length of a pendulum and its frequency and observed the

resonance of two bodies that were connected by some energy transfer



medium and tuned to the same natural frequency. Vibration may results in

the failure of machines or their critical components. The effect of vibration

depends on the magnitude in terms of displacement, velocity or

accelerations, exciting frequency and the total duration of the vibration. In

this chapter, the vibration of a single-degree-of-freedom (SDOF), Two

degree of freedom system with and without damping and introductory

multi-degree of freedom system will be discussed in this section.

1. LINEAR SYSTEMS

Often in Vibrations and Acoustics, the calculation of the effect of a

certain physical quantity termed as the input signal on another physical

quantity, called the output signal; (Figure 1-1). An example is that of

calculating vibration velocity v(t), which is obtained in a structure

when it is excited by a given force F(t). That problem can be solved by

making use of the theory of linear time- invariant systems.

Linear
time-invariant

system

Input Signal Output Signal

F’(t),v’(t)F(t),v(t)
p’(t),u’(t)p(t),u(t)

Fig. 0-1 A linear time-invariant system describes the relationship

between an input signal and an output signal. For example, the input

signal could be a velocity v(t), and the output signal a force F(t), or

the  input signal an acoustic pressure p(t) and the output signal an

acoustic particle velocity u’(t). [Sound and vibration book by KTH[1]]

From a purely mathematical standpoint, a linear system is defined as

one in which the relationship between the input and output signals can

be described by a linear differential equation. If the coefficients are,



moreover, independent of time, i.e., constant, then the system is also

time invariant. A linear system has several important features.

Example 0-1 [1]

The figure below, from the introduction, shows an example in which

the forces that excite an automobile are inputs to a number of linear

systems, the outputs from which are vibration velocities at various

points in the structure. The vibration velocities are then, in turn, inputs

to a number of linear systems, the outputs from which are sound

pressures at various points in the passenger compartment. By adding

up the contributions from all of the significant excitation forces, the

total sound pressures at points of interest in the passenger

compartment can be found. The engine is fixed to the chassis via

vibration isolators. If the force F1 that influences the chassis can be cut

in half, then, for a linear system, all vibration velocities v1 – vN caused

by the force F1 are also halved. In turn, the sound pressures p1 – pN,

which are brought about by the velocities v1 – vN, are halved as well. In

this chapter, linear oscillations in mechanical systems are considered,

i.e., oscillations in systems for which there is a linear relation between

an exciting force and the resulting motion, as described by

displacements, velocities, and accelerations. Linearity is normally

applicable whenever the kinematic quantities can be regarded as small

variations about an average value, implying that the relation between

the input signal and the output signal can be described by linear

differential equations with constant coefficients.
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(Picture: Volvo Technology Report, nr 1 1988) [1]

1.1 SINGLE DEGREE OF FREEDOM SYSTEMS

In basic mechanics, one studies single degree-of-freedom systems

thoroughly. One might wonder why so much attention should be given

to such a simple problem. The single degree-of-freedom system is so

interesting to study because it gives us information on how a system’s

characteristics are influenced by different quantities. Moreover, one

can model more complex systems, provided that they have isolated

resonances, as sums of simple single degree-of-freedom systems.

1.2 Spring Mass System

Most of the system exhibit simple harmonic motion or oscillation.

These systems are said to have elastic restoring forces. Such systems can be

modeled, in some situations, by a spring-mass schematic, as illustrated in

Figure 1.2. This constitutes the most basic vibration model of a machine
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structure and can be used successfully to describe a surprising number of

devices, machines, and structures. This system provides a simple

mathematical model that seems to be more sophisticated than the problem

requires. This system is very useful to conceptualize the vibration problem

in different machine components. The single degree of freedom system is

indicating as :

(a) (b) (c)

Fig.1.2 (a) Spring-mass schematic (b)  free body diagram, (c) free body

diagram in static condition

If x = x(t) denotes the displacement (m) of the mass m (kg) from its

equilibrium position as a function of time t (s), the equation of motion for

this system becomes,

mẍ + k(x + x ) − mg = 0 (1.1)

where k =the stiffness of the spring (N/m),x = static deflection

m = the spring under gravity load,

g = the acceleration due to gravity (m/s2),ẍ = acceleration of the system

Applying static condition as shown in Fig. 1.2 (c) the equation of
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motion of the system yields mẍ + kx = 0 (1.2)

This equation of motion of a single-degree-of-freedom system and is a

linear, second-order, ordinary differential equation with constant

coefficients. A simple experiment for determining the spring stiffness by

adding known amounts of mass to a spring and measuring the resulting

static deflection x is shown in Fig. 1.3. The results of this static experiment

can be plotted as force (mass times acceleration) v/s x , the slope yielding

the value of spring stiffness k for the linear portion of the plot as illustrated

in Figure 1.4.

Fig. 1.3 Measurement of the spring stiffness

Fig. 1.4 Determination of the spring stiffness
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Once m and k are determined from static experiments, Equation (1.2)

can be solved to yield the time history of the position of the mass m, given

the initial position and velocity of the mass. The form of the solution of

previous equation is found from substitution of an assumed periodic motion

as,

x(t) = A sin(ω t + ϕ) (1.3)
Where,ω = k/m is the natural frequency (rad/s).

Here, A= the amplitudeΦ= phase shift,

A and Φ are constants of integration determined by the initial

conditions.

If   x0 is the specified initial displacement from equilibrium of mass m,

and v0 is its specified initial velocity, simple substitution allows the

constants A and Φ to be obtained. The unique displacement may be

expressed as,

x(t) = ω x + υω sin[ω t + tan ω xυ ] (1.4)
Or, ( ) = sin + cos

Equation 1.2 can also be solved using a pure mathematical approach as

described follows.

Substituting x(t) = C emλ e + ke = 0 (1.5)

Here C ≠ 0 and eλ ≠ 0 ,



Hence mλ + k = 0
Or = ± ⁄ = ±
where, j is an imaginary number= √−1
Hence the generalized solution yields as,

x(t) = C eω + C e ω (1.6)

where C and C are arbitrary complex conjugate constants of

integration.

The value of the constants C and C can be determined by applying

the initial conditions of the system. Note that the equation 1.2 is valid only

as long as spring is linear.

1.3 Spring Mass Damper system

Most systems will not oscillate indefinitely when disturbed, as

indicated by the solution in Equation (1.4). Typically, the periodic motion

damped out after some time. The easiest way to model this mathematically

is to introduce a new term, named as damping force term, into Equation

(1.2).

Incorporating the damping term in equation (1.2) yield as,

mẍ + cx +̇ kx = 0 (1.7)

Physically, the addition of a dashpot or damper results in the dissipation

of energy, as illustrated in Figure 1.5 the mass, damper and spring



arrangement is as:

(a) (b)
(c)

Fig. 1.5 (a) Schematic of the spring–mass–damper system, (b) free

body diagram of the system in part (a), (c) free body diagram due to static

condition

If the dashpot exerts a dissipative force proportional to velocity on the

mass m, the equation (1.7) describes the equation of the motion.

Unfortunately, the constant of proportionality, c, cannot be measured by

static methods as m and k are measured in spring mass system.

The constant of proportionality c is known as damping coefficient and

its unit in MKS is Ns/m. A general mathematical approach can be used to

solve the equation 1.7 as described below.

Substituting, x(t) = a eλ in equation 1.7, get,

a(mλ eλ + cλeλ + keλ ) = 0 (1.8)

here a ≠ 0 and eλ ≠ 0
hence, mλ + cλ+ k = 0
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λ + cmλ + km = 0 (1.9)
The solution of equation 1.8 yields as follows

λ , = − c2m ± 12 cm − 4 km
The quantity under the radical is called the discriminant. The value of

the discriminant decides that whether the roots are real or complex.

Damping ratio: It is relatively convenient to define a non-dimensional

quantity named as damping ratio. The damping ratio is generally given by

symbol  Zeeta () and mathematically defined as;

 = c2√km
Substituting the value of k ,m and c in terms of  andω , the equation

(1.7) yields as,

ẍ + 2 ω ẋ + ω x = 0 (1.10)

And equation (1.9) yields as

λ , = − ω ± ω  − 1 = −ξ ω ± ω j (1.11)

where,ω is the damped natural frequency  for (0<  <1)  the damped

natural frequency is defined as ω = ω 1 − 

Clearly, the value of the damping ratio,(), determines the nature of the

solution of Equation (1.6).

“Fundamentals of Sound and Vibrations” by KTH Sweden [1], this book is used
under IITR-KTH MOU for course development.


