
After Lecture 6 
 
Q1. Choose the correct answer 
  
 (i) A hydraulic turbine rotates at N rpm operating under a net head H and having a 

 discharge Q while developing an output power P. The specific speed is expressed 
 as 

 (a) 
( )5 41 2

N P
gHρ

 

 (b) 
( )3 4

N Q
gH

 

 (c) 
( )3 41 2

N P
gHρ

 

 (d) 
( )5 41 2

N Q
gHρ

 

[Ans.(a)] 
 (ii) Two hydraulic turbines are similar and homologous when there are geometrically 
 similar and have 

(a) the same specific speed 
(b) the same rotational speed 
(c) the same Froude number 
(d) the same Thoma’s number 

[Ans.(a)] 
 
Q2. 
A radial flow hydraulic turbine is required to be designed to produce 20 MW under a 
head of 16 m at a speed of 90 rpm. A geometrically similar model with an output of 30 
kW and a head of 4 m is to be tested under dynamically similar conditions. At what speed 
must the model be run? What is the required impeller diameter ratio between the model 
and the prototype and what is the volume flow rate through the model if its efficiency can 
be assumed to be 90%.? 
Solution 
Equating the power coefficients (π term containing the power P) for the model and 
prototype, we can write 

   1 2
3 5 3 5

1 1 1 2 2 2

P P
N D N D

=
ρ ρ

 

(where subscript 1 refers to the prototype and subscript 2 to the model). 
Considering the fluids to be incompressible, and same for both the prototype and model, 
we have 

   ( ) ( )
3 51 5

2 1 2 1 1 2D D P P N N=  

    ( ) ( )
3 51 5

1 20.03 20 N N=  

 1 



or    ( )
3 5

2 1 1 20.272D D N N=     (1) 
Equating the head coefficients (π term containing the head H) 

   
( ) ( )

1 2
2 2

1 1 2 2

gH gH
N D N D

=  

Then 
   ( ) ( )1 2

2 1 2 1 1 2D D H H N N=  

or   ( ) ( )1 2
2 1 1 24 16D D N N=      (2) 

Therefore, equating the diameter ratios from Eqs (1) and (2), we have 

   ( ) ( ) ( )
3 5 1 2

1 2 1 20.272 4 16N N N N=  

or   ( )
2 5

2 1 1.84N N =  

Hence   ( ) ( )5 2 5 2
2 1 1.84 90 1.84 413.32 rpmN N= = × =  

From Eq.(1) 

   ( )
3 5

2 1 0.272 90 413.32 0.11D D = =  

Model efficiency Power output
Water power input

=  

Hence,   
330 100.9

QgHρ
×

=  

or   
3

3
3

30 10 0.85 m /s
0.9 10 9.81 4

Q ×
= =

× × ×
 

Therefore, model volume flow rate = 0.85 m3/s 
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After Lecture 8 
 
Q1. Choose the correct answer 
  
(i) Governing of turbines means 

 (a) the discharge is kept constant under all conditions 
 (b) the speed is kept constant under all conditions(loads) 
 (c) allow the turbine to run at ‘ runaway’ speed 
 (d) the power developed is kept constant under all conditions 

[Ans.(b)] 
 

 
Q2. 
A Pelton wheel works at the foot of a dam because of which the head available at the 
nozzle is 400 m. the nozzle diameter is 160 mm and the coefficient of velocity is 0.98. the 
diameter of the wheel bucket circle is 1.75 m and the buckets deflect the jet by 150°. The 
wheel-to-jet speed ratio is 0.46. Neglecting friction, calculate (i) the power developed by 
the turbine, (ii) its speed and (iii) hydraulic efficiency. 
Solution 
Inlet jet velocity is 
   1 2 0.98 2 9.81 400 86.82 m/svV C gH= = × × × =  

Flow rate  2
14

Q d Vπ
=  

   ( )2 30.16 86.82 1.74 m /s
4
π

= × × =  

Wheel speed is 0.46 86.62 39.94 m/sU = × =  
Therefore, the rotational speed 

   60 60 39.94 435.9 rpm
1.75

UN
D

×
= = =

π π×
 

Velocity of jet relative to wheel at inlet 
   1 1 86.82 39.94 46.88 m/srV V U= − = − =  
In absence of friction 
   2 1 46.88 46.88 m/sr rV V= = =  
( 2rV  is the velocity of jet relative to wheel at outlet). 
Tangential component of inlet jet velocity 
   1 1 86.82 m/swV V= =  
From outlet velocity triangle as shown, 

2 2 2 2cosw rV V U= −β  
46.88cos30 39.94= °−  
0.66 m/s=  

Power developed ( )310 1.74 86.82 0.66 39.94 W= × × + ×  
   6.08 MW=  

150°  

2V  
2rV  

U  
2wV  

 1 



Hydraulic efficiency 
6

3
6.08 10 0.8905 or 89.05%

10 1.74 9.81 400
×

= =
× × ×

 

    
 

  
Q3. 
A powerhouse is equipped with Pelton type impulse turbines. Each turbine delivers a 
power of 14 MW when working under a head of 900 m and running at 600 rpm. Find the 
diameter of the jet and mean diameter of the wheel. Assume that the overall effiiciency is 
89%, velocity coefficient of the jet 0.98, and speed ratio 0.46. 
Solution 
Power supplied by the water to the turbine 

   
6

614 10 15.73 10  W
0.89
×

= = ×  

Flow rate  
6

3
3
15.73 10 1.78 m /s

10 9.81 900
Q ×
= =

× ×
 

Inlet jet velocity is 
   1 2 0.98 2 9.81 900 130.22 m/svV C gH= = × × × =  
If d is the diameter of water jet, then 

   21.78  130.22
4

dπ
= ×  

or   
1 24 1.78  0.132 m 132 mm

130.22
d × = = = π× 

 

Blade speed is  0.46 130.22 59.90 m/sU = × =  
Hence mean diameter of the wheel 

   60 60 59.90 1.91 m
600

UD
N

×
= = =
π π×
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After Lecture 12 
 
Q1. Choose the correct answer 
  
 (i) The use of draft tube in a reaction turbine helps to 

(a) provide safety to turbine 
(b) increase the flow rate 
(c) transport water to downstream without eddies 
(d) reconvert residual kinetic energy to pressure energy 

[Ans.(d)] 
(ii) A turbomachine becomes more susceptible to cavitation if 

(a) velocity attains a high value 
(b) temperature rises above a critical value 
(c) pressure falls velow the vapour pressure 
(d) Thomas cavitation parameter exceeds a certain limit 

[Ans.(c)] 
(iii) Which place in hydraulic turbine is most susceptible for cavitation 

(a) inlet of draft tube 
(b) draft tube exit 
(c) blade inlet 
(d) guide blade 

[Ans.(a)] 
 
 
Q2. 
Show that when runner blade angle at inlet of a Francis turbine is 90° and the velocity of 

flow is constant, the hydraulic efficiency is given by 2

2
2 tan+ α

, where α is the vane 

angle. 
Solution 
Work equivalent head 

   
2 2 2 2 2 2

1 2 2 1 1 2

2 2 2
r rV V V V U UW

g g g
− − −

= + +  

From the inlet and outlet velocity triangles, 
   1 1secV U= α  

   2 2 1 2tan tanfV V U U= = α = β    ( )2 2since, f fV V=  
Using these relations into the expression of W , we have 

   2 2 2 2 2 2 2 2 2 2
1 1 2 1 1 2

1 sec tan sec tan
2

W U U U U U U
g

α α β α = − + − + −   

   2 2 2 2 2 2 2 2
1 2 2 1 1 2

1 tan tan
2

U U U U U U
g

β α = + + − + −   

   
2

2 1
1

1 2
2

UU
g g

= × =  

 1 



 
 
    
 
 
 Inlet velocity triangle    Outlet velocity triangle 
 
Available head Work head Energy rejected from turbineH = +  

   
2 2

1 2

2
U V
g g

= +  

   ( )2 2
1 2

1 2
2

U V
g

= +  

   ( )2 2 2
1 1

1 2 tan
2

U U
g

α= +  

   ( )
2

21 2 tan
2
U

g
α= +  

Therefore, hydraulic efficiency 

   Work equivalent head
Available headhη =  

   
( )

2
1

22 2
1

2
2 tan2 tan 2

U g
U g αα

= =
++

 

Q3. 
A Francis turbine has a wheel diameter of 1.2 m at the entrance and 0.6 m at the exit.the 
blade angle at the entrance is 90° and the guide vane angle is 15°. The water at the exit 
leaves the blades without any tangential velocity. The available head is 30 m and the 
radial component of flow velocity is constant. What would be the speed of the wheel in 
rpm and blade angle at the exit? Ignore friction. 
Solution 

   1 1

2 2

1.2 2
0.6

U D
U D

= = =  

From the inlet and outlet velocity triangles, 
   1 1 tan15fV U= °  and 
   2 2 2tanfV U β=  
 
 
 
 
 
 
 
   
  Inlet velocity triangle    Outlet velocity triangle 

2U  

2 2fV V=  
2rV  

β  

1U  

1fV  
1V  

α  90°  

2U  

2 2fV V=  
2rV  

2β  

1U  

1 1r fV V=  
1V  

15°  
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Since the flow velocity is constant 
   1 2 2tan15 tanU U β° =  

or   1
2

2
tan tan15 2 tan15 0.536U

U
β = ° = ° =  

Hence   ( )1
2 tan 0.536 28.2β −= = °  

Available head to the turbine 

   
2

1 1

2
V pH

g gρ
= +  

Since the discharge pressure is atmospheric, the inlet pressure head 1p gρ  ( above 
atmospheric pressure head) can be written as 

   
2 2 2 2

1 2 1 1 2

2 2
r rp V V U U

g g gρ
− +

= +  

( friction in the runner is neglected). 
Therefore, 
    

   
2 2 2 2 2

1 2 1 1 2

2 2 2
r rV V V U UH

g g g
− +

= + +  

From the inlet and outlet velocity triangles, 

   1 2
1 2

2 2.07
cos15 cos15

U UV U= = =
° °

 

   1 1 2 2tan15 2 tan15 0.536rV U U U= ° = ° =  

   2
2 21.132

cos 28.2r
UV U= =

°
 

inserting the values of 1V , 1rV , 2rV  and 1U  in terms of 2U  in the expression of H, we have 

   ( ) ( ) ( )
2

2 2 2230 2.07 1.13 0.536 3
2
UH

g
 = = + − +   

   
2
28.27

2
U
g

=  

or   2
2 9.81 30 8.44 m/s

8.27
U × ×

= =  

Hence,   60 8.44 268.65 rpm
0.6

D ×
= =

π×
 

Q4. 
A Kaplan turbine develops 10 MW under a head of 4.3 m. taking a speed ratio of 1.8, 
flow ratio of 0.5, boss diameter 0.35 times the outer diameter and overall efficiency of 
90%, find the diameter and speed of the runner.  
Solution 

Power available Power delivered
overall efficiency

=  

Therefore, 

 3 



   
6

3 10 1010 9.81 4.3
0.9

Q ×
× × × =  

or   3263.4 m /sQ =  
The axial velocity 0.5 2 9.81 4.3 4.59 m/saV = × × × =  
Let the outer diameter of the runner be od . 
Then, 

   ( ){ }22 0.35
4 o o aQ d d Vπ

= − ×  

or   
( ){ }2

4 263.4 9.12 m
1 0.35 4.59

od ×
= =

π − ×
 

Blade speed at outer diameter 
   1.8 2 9.81 4.3 16.53 m/sU = × × × =  

Hence   60 16.53 34.6 rpm
9.12

N ×
== =

π×
 

Q5. 
The following data refer to an elbow type draft tube: 
Area of circular inlet = 25 m2 
Area of rectangular outlet = 116 m2 
Velocity of water at inlet to draft tube = 10 m/s 
The frictional head loss in the draft tube equals to 10% of the inlet velocity head. 
Elevation of inlet plane above tail race level = 0.6 m 
Determine (i) vacuum or negative head at the inlet, and (ii) power thrown away in tail 
race.  
Solution 
Velocity of water at outlet from draft tube 

   10 25 2.15 m/s
116
×

= =  

Let 1p  be the pressure at inlet to the draft tube. Applying energy equation between the 
inlet and outlet of the draft tube, we have 

( )22 2
1 2.1510 100.6 0 0 0.1

2 9.81 2 9.81 2 9.81
p
gρ
+ + = + + + ×

× × ×
 

or   ( )2 2
1 2.15 100.9 0.6

2 9.81 2 9.81
p
gρ
= − × −

× ×
 

or   1 4.95 mp
gρ
= −  

(ii) Power thrown away in tail race 

   
2

3 2.1510 10 25  W
2

= × × ×  

   578 kW=  
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 After Lecture 18 
 
Q1. Choose the correct answer 
(i) A hydraulic pump rotates at N rpm operating under a net head H and having a 
 discharge Q . The specific speed is expressed as 

 (a) 
( )5 41 2

N P
gHρ

 

 (b) 
( )3 4

N Q
gH

 

 (c) 
( )3 41 2

N P
gHρ

 

 (d) 
( )5 41 2

N Q
gHρ

 

[Ans.(b)] 
(ii) The relation between mechanical ( mη ), manometric ( manoη ) and overall efficiency 

( oη ) is 

 (a mano
o

m

ηη
η

=  

 (b) o m manoη η η= ×  
 (c) o mano mη η η= ×  

 (d) m
o

mano

ηη
η

=  

[Ans.(b)] 
 (iii) The comparison between pumps operating in series and in parallel is 
 (a) pumps operating in series boost the head, whereas pumps operating in parallel 

boost the discharge 
 (b) pumps operating in series boost the discharge, whereas pumps operating in 

parallel boost the head 
 (c) in both cases there would be a boost in head only 
 (d) in both cases there would be a boost in discharge only 

 [Ans.(a)] 
(iv) For a centrifugal pump the net positive suction head (NPSH) is defined as, 
 (a) NPSH= (velocity head + pressure head) at suction. 
 (b) NPSH= (velocity head + pressure head) at discharge 
 (c) NPSH= (velocity head + pressure head - vapour pressure of the liquid) at 
 suction. 
 (d) NPSH= (velocity head + pressure head - vapour pressure of the liquid) at 
 discharge. 

[Ans.(c)] 
  

 1 



(v) Which of the following pumps is preferred for flood control and irrigation 
 applications? 
 (a) Centrifugal pump    
 (b) Axial flow pump 
 (c) Mixed flow pump    
 (d) Reciprocating pump 

[Ans.(b)] 
Q2. 
A centrifugal pump handles liquid whose kinematic viscosity is three times that of water. 
The dimensionless specific speed of the pump is 0.183 rev and it has to discharge 2 m3/s 
of liquid against a total head of 15 m. Determine the speed, test head and flow rate for a 
one-quarter scale model investigation of the full size pump if the model uses water. 
Solution 
Since the viscosity of the liquid in the model and prototype vary significantly, equality of 
Reynolds number must apply for dynamic similarity. Let subscripts 1 and 2 refer to 
prototype and model respectively. 
Equating Reynolds number, 
   2 2

1 1 1 2 2 2N D N Dν ν=  

or   ( )2
2 1 4 3 5.333N N = =  

Equating the flow coefficients 

   1 2
3 3

1 1 2 2

Q Q
N D N D

=  

or   
3

2 2 2

1 1 1

Q N D
Q N D

 
=  

 
 

   ( )35.333 4 0.0833= =  
Equating head coefficients 

   
( ) ( )

1 2
2 2

1 1 2 2

H H
N D N D

=  

or   
2 2

2 2 2

1 1 1

H N D
H N D

   
=    
   

 

   ( )22

1

5.333 4 1.776H
H

= =  

Dimensionless specific speed of the pump can be written as 

   
( )

1 1
3 4sp

N Q
K

gH
=  

or   
( )3 4

1
1 1 2

1

spK gH
N

Q
=  

   ( )3 4

1 2

0.183 9.81 15
5.47 rev/s

2
×

= =  

 2 



Therefore, model speed 2 5.47 5.33 29.15 rev/sN = × =  
Model flow rate  3

2 0.0833 2 0.166 m /sQ = × =  
Model head   2 15 1.776 26.64 mH = × =  
 
Q3. 
The basic design of a centrifugal pump has a dimensionless specific speed of 0.075 rev. 
the blades are forward facing on the impeller and the outlet angle is 120° to the tangent, 
with an impeller passage width at the outlet being equal to one-tenth of the diameter. The 
pump is to be used to raise water through a vertical distance of 35 m at a flow rate of 0.04 
m3/s. The suction and delivery pipes are each of 150 mm diameter and have a combined 
length of 40 m with a friction factor of 0.005. Other losses at the pipe entry, exit, bends, 
etc. are three times the velocity head in the pipes. If the blades occupy 6% of the 
circumferential area and the hydraulic efficiency (neglecting slip) uis 76%, what will be 
the diameter of the pump impeller? 
Solution 

Velocity in the pipes 
( )2

0.04 4 2.26 m/s
0.15

v ×
= =
π×

 

Total losses in the pipe 

   ( )22
2

1

2.264 3 4 0.005 40 3 2.17 m
2 2 0.15 2 9.81

fl vh v
gd g

× × = + = + =  × 
 

Therefore, total head required to be developed = 35+2.17 = 37.17 m 
The speed of the pump is determined from the consideration of specific speed as 

   ( )
( )

1 2

3 4

0.04
0.075

9.81 37.17
N

=
×

 

or   ( )
( )

3 4

1 2

0.075 9.81 37.17
31.29 rev/s

0.04
N

×
= =  

Let the impeller diameter be D. 
Flow area perpendicular to the impeller outlet periphery 
   20.075 10 0.94 0.295D D D= π × × =  
The inlet and outlet velocity triangles are drawn below: 
 
 
 
 
 
 
 
 
 
   Inlet                      Outlet 
 

1U  

1V  
1rV  

2U  
2wV  

2fV  
2V  2rV  

120°  

 3 



   2 2 2 2

0.04 0.135  m/s
0.295 0.295 0f

QV
D D D

= = =  

   2 31.29 98.3  m/sU DN D Dπ π= = × × =  

Hydraulic efficiency 
2 2

h
w

gH
V U

η =  

or   
2

9.81 37.170.76
98.3 wD V

×
=

×
 

which gives  2
4.88  m/swV

D
=  

From the outlet velocity triangle, 

   
[ ]

2
2

2 2

0.135tan 60
4.88 98.3

f

w

V
V U D D D

° = =
− −

 

or    3 0.0496 0.0008D D= −  
which gives   0.214 mD =    
 
Q4. 
Show that the pressure rise in the impeller of a centrifugal pump with backward curved 
vane can be expressed as 

   2 2 2 22 1
1 2 2 2

1 cosec
2 f f

p p V U V
g g g

β
ρ ρ

 − = + −   

where the subscripts 1 and 2 represents the inlet and outlet conditions of the impeller 
respectively, β  is the blade angle, U  is the tangential velocity of the impeller and fV is 
the flow velocity. Neglect the frictional and other losses in the impeller. 
Solution 
Applying energy equation between inlet and outlet of the impeller, we have 

   
2 2

2 21 1 2 2
1 22 2

wV Up V p Vz z
g g g g gρ ρ
+ + = + + −  

or,   
2 2

2 22 1 1 2

2 2
wV Up p V V

g g g g gρ ρ
− = − +   ( 1 2z z= ) (1) 

The inlet and outlet velocity triangles are shown in the figure below. 
 
 
 
 
 
 
 
 
  Inlet                      Outlet 
 
From the inlet velocity triangle, we have 
   1 1fV V=  

2α  

2U  

2wV  

2fV  
2V  

2β  

2rV  1β  

1U  

1V  
1rV  

 4 



From the outlet velocity triangle, we have 
   2 2 2 2cotw fV U V β= −  

Now,   2 2 2
2 2 2w fV V V= +  

   ( )2 2
2 2 2 2cotf fU V Vβ= − +  

   2 2 2 2
2 2 2 2 2 2 22 cot cotf f fU U V V Vβ β= − + +  

   2 2 2
2 2 2 2 2 22 cot cosecf fU U V Vβ β= − +  

Substituting the values of 1V , 2V  and 2wV   in Eq. (1), we have 

  
( )2 2 2 2

2 2 2 21 2 2 2 2 2 22 1
cot2 cot cosec

2 2
ff f f U V UV U U V Vp p

g g g g g
ββ β

ρ ρ

−− +
− = − +  

  2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2

1 2 cot cosec 2 2 cot
2 f f f fV U U V V U U V

g
β β β = − + − + −   

or   2 2 2 22 1
1 2 2 2

1 cosec
2 f f

p p V U V
g g g

β
ρ ρ

 − = + −      

 
Q5. 
The impeller of a centrifugal pump is 0.5 m in diameter and rotates at 1200 rpm. Blades 
are curved back to an angle of 30° to the tangent at outlet tip. If the measured velocity of 
flow at the outlet is 5 m/s, find the work input per kg of water per second. Find the 
theoretical maximum lift to which the water can be raised if the pump is provided with 
whirlpool chamber which reduces the velocity of water by 50%. 
Solution 
The peripheral speed at impeller at outlet 

   2
2

0.5 1200 31.4 m/s
60 60
D NU π π × ×

= = =  

Work input per unit weight of water  

   ( )2 2 31.4 5cot 30 31.4
72.78 m

9.81
wV U
g

− ° ×
= =   

    
 
 
 
 
 
 
Under ideal condition (without loss), the total head developed by the pump = 72.78 m 
From the outlet velocity triangle as shown in the figure, velocity of water at impeller 
outlet 

   ( )22 2 2
2 2 2 31.4 5cot 30 5 23.28 m/sw fV V V= + = − ° + =  

After the whirlpool chamber, the velocity of water at delivery 0.5 23.28 m/s= ×  
Therefore, the pressure head at impeller outlet 

2U  

2wV  

2fV  

2V  

30°  

2rV  

 5 



   ( )20.5 23.28
72.78 65.87 m/s

2 9.81
×

= − =
×

 

Hence, the theoretical maximum lift = 65.87 m 
Q6. 
The impeller of a centrifugal pump is 0.3 m in diameter and runs at 1450 rpm. The 
pressure gauges on suction and delivery sides show the difference of 25 m. the blades are 
curved back to an angle of 30°. The velocity of flow through impeller, being constant, 
equals to 2.5 m/s, find the manometric efficiency of the pump. If the frictional losses in 
impeller amounts to 2 m, find the fraction of total energy which is converted into pressure 
energy by impeller. Also find the pressure rise in pump casing.  
Solution 
The peripheral speed at impeller at outlet 

   2
2

0.3 1450 22.78 m/s
60 60
D NU π π × ×

= = =  

From the outlet velocity triangle as shown in the figure,  
 2 2 2 2cotw fV U V β= −  
   22.78 2.5cot 30 18.45 m/s= − ° =  
Input power per unit weight of water  

   2 2 18.45 22.78 42.84 m
9.81

wV U
g

×
= = =   

Head developed by the pump = 25 m 
(difference in the kinetic heads in suction and delivery pipe is neglected) 
Hence, the manometric efficiency 

   
2 2

25 58.35%
42.84

m
m

w

H
V U

g

η = = =  

From the outlet velocity triangle 
   ( ) ( )2 22 2 2 2 2

2 2 2 2.5 18.45 346.65 m /sf wV V V= + = + =  

The velocity head at impeller outlet  
2

2 346.65 =17.65 m
2 2 9.81
V

g
=

×
 

Therefore, the increase in pressure head in the impeller 
   42.84 2 17.67= − −  
   23.17 m which is 23.17 100 42.84 54.1%= × =  of the total energy. 
Pressure rise in the pump casing 25 23.17 1.83 m= − =  
 
Q7. 
During a laboratory test on a pump, appreciable cavitation began when the pressure plus 
the velocity head at inlet was reduced to 3.62 m while the change in total head across the 
pump was 36.5 m and the discharge was 48 litres/s. Barometric pressure was 750 mm of 
Hg and the vapour pressure of water 1.8 kPa. What is the value of critical cavitation 
parameter σc? If the pump is to give the same total head and discharge in a location 
where the normal atmospheric pressure is 622 mm of Hg and the vapour pressure of 

2U  

2wV  

2fV  

2V  

30°  

2rV  

 6 



water is 830 Pa, by how much must the height of the pump above the supply level be 
reduced? 
Solution 
For cavitation to begin 

   
2

1 1 3.62 (given)
2

p V
g gρ
+ =  

where subscript 1 refers to inlet condition to the impeller. 
In this situation,  1 1.8 kPap =   

Hence,   
3

1
3

1.8 10 0.183 m
10 9.81

p
gρ

×
= =

×
 

Therefore,  
2

1 3.62 0.183 3.08 m
2
V

g
= − =  

Thus,   
2

1 3.03 0.084
2 36.5
V
gH

= =  

Let 1z  be the initial height of the pump above the supply level. Then, applying 
Bernoulli’s equation between the supply level and impeller inlet, we have 
   10.75 13.6 3.26 fz h× = + +  
where fh  is the frictional head loss. 
or   1 6.94 mfz h+ =  
In the second case, the total head H and the dimensionless cavitation parameter 

cσ remains the same. Hence the velocity head at impeller inlet remains the same as 3.08 
m. 
Therefore, applying Bernoulli’s equation between the supply level and the impeller inlet, 
we have 

   ( )23

8300.622 13.6 3.08
10 9.81 fz h× = + + +

×
 

( the head loss due to friction is considered to be the same for the same pump with the 
same discharge). 
This gives  2 5.29 mfz h+ =  
Hence   1 2 6.94 5.29 1.65 mz z− = − =  
Therefore the height of the pump above the supply level has to be reduced by 1.65 m.  
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After Lecture 20 
 
Q1. Choose the correct answer 
(i) In a single acting reciprocating pump without air vessel, the average velocity in the 

suction pipe is given by (A  and sa   are the cross-sectional area of the piston and the 
suction pipe respectively, ω  is the angular velocity of the crank and r is the radius of 
the crank) 

  (a) 
s

A r
a
ω  

  (b) 
s

A r
a
πω  

  (c) 
s

A r
a

ω
π

 

  (d) 
s

A
a r

π
ω

 

[Ans.(c)] 
 (ii)  In a reciprocating pump without air vessels, the acceleration head in the 

 suction/delivery pipe is maximum when the crank angle is 
  (a) 0°  
  (b) 90°  
  (c) 120°  
  (d) 180°  

[Ans.(a)] 
 (iii) In a reciprocating pump without air vessels, the friction head in the 

 suction/delivery pipe is maximum when the crank angle is 
  (a) 0°  
  (b) 90°  
  (c) 120°  
  (d) 180°  

[Ans.(b)] 
 (iv) Indicator diagram shows for one complete revolution of crank the 

(a) variation of kinetic head in the cylinder 
(b) variation of pressure head in the cylinder 
(c) variation of kinetic and pressure  head in the cylinder 
(d) none of the above 

[Ans.(b)] 
 
(v) Air vessel in a reciprocating pump is used 

(a) to obtain a continuous supply of water at uniform rate 
(b) to reduce suction head 
(c) to increase the delivery head 
(d) to increase pump efficiency 

[Ans.(a)] 
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Q2. 
A reciprocating pump has a suction head of 6 m and delivery head of 15 m. It has a bore 
of 150 mm and stroke of 250 mm and piston makes 60 double strokes in a minute. 
Calculate the force required to move the piston during (i) suction stroke, and (ii) during 
the delivery stroke. Find also the power to drive the pump.  
Solution 
(i) 
Suction pressure 3 36 10 9.81 N/m= × ×   
The force required to move the piston during suction stroke 

   ( )2
3 0.15

6 10 9.81  N  1040 N 1.04 kN
4

π= × × × × = =  

(ii) Delivery pressure 3 36 10 9.81 N/m= × ×   
The force required to move the piston during suction stroke 

   ( )2
3 0.15

15 10 9.81  N  2600 N 2.6 kN
4

π= × × × × = =  

The rate of discharge ( )2
30.15 1200.25   0.0088 m /s 

4 60
π= × × × =  

The power required to drive the pump 
   ( )30.0088 10 15 6 9.81 W 1.81kW= × × + × =  
Q3. 
An air vessel fitted on the delivery side to a single-acting  reciprocating pump, with 
plunger diameter of 30 cm and crank radius of 25 cm. The length and diameter of the 
delivery pipe are 40 m and 10 cm respectively. If the pump runs at  50 rpm, find the 
power saved in overcoming the friction by fitting the air vessel. Assume atmospheric 
pressure head as 10.3 m of water and Darcy’s friction factor as 0.03. 
Solution 
Angular speed is given by 

   2 2 50 5.236 rad/s
60 60

Nπ πω ×
= = =  

Without air vessel 
The maximum loss of head due to friction in delivery pipe is computed as 

   
2

,max 2
d

fd
d d

fl Ah r
d g a

 
= ω ×  

  

where  dd is the diameter of delivery pipe, da is the area of delivery pipe, f is the 
Darcy’s friction factor, dl is the length of delivery pipe, A  is the area of piston, ω  is the 
angular velocity of the crank and r is the radius of the crank.  
Substituting the respective values, we have 

   
( )

( )

2
2

,max
2

0.30.03 40 4 5.236 0.25 85 m
0.1 2 9.81 0.1

4

fdh

π 
 ×

= × × = π× ×  
 
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Power required in overcoming the friction is found to be 

   ,max ,max
2 2
3 60 3without fd fd

gALNP gQ h hρ
= ρ × = ×              

60
ALNQ =  

  

   1000 9.81 0.0707 0.5 50 2 85 16375 W
60 3

× × × ×
= × × =  

With air vessel 
The loss of head due to friction in delivery pipe by fitting an air vessel is computed as 

   
22

2 2
d av d

fd
d d d

fl v fl A rh
d g d g a

 ω
= = × × × × π 

 

   
( )

( )

2
2

2

0.30.03 40 5.236 0.254 8.613 m
0.1 2 9.81 0.1

4

π 
 × ×

= × × = π× × π 
 

 

Power required in overcoming the friction is found to be 

   
60with fd fd

gALNP gQ h hρ
= ρ × = ×               

   1000 9.81 0.0707 0.5 50 8.613 2489 W
60

× × × ×
= × =  

The power saved in overcoming the friction by fitting the air vessel is 
   16375 2489 13886W 13.886kWwithout withP P− = − = =  
 
 
 
 
 
 
 
 
 
 
 
 

 3 



After Lecture 25 
 
Q1. 
Determine the pressure ratio developed and the specific work input to drive a centrifugal 
air compressor of an impeller diameter of 0.5 m and running at 7000 rpm. Assume zero 
whirl at the entry and 1 290 KtT = . The slip factor and power input factor to be unity, the 
process of compression is isentropic and for air pc 1005 J/kgK, 1.4γ = . 
Solution 
The impeller tip speed 

   2
0.5 7000 183.26 m/s

60
U π × ×

= =  

The pressure ratio can be written as 

   
2 1

2 2

1 1

1
p t

p U
p c T

γ
γ− 

= + 
  

 

   ( )
1.4

2 1.4 1183.26
1 1.46

1005 290

− 
= + = 

×  
 

The specific work input is  
   ( )22 3

2 183.26 33.58 10  J/kg 33.58 kJ/kgU= = = × =  
Q2. 
Air at a temperature of 27°C flows into a centrifugal compressor at 20000 rpm. The 
following data are given: 
Slip factor     0.80    
Power input factor    1 
Isentropic efficiency    80% 
Outer diameter of blade tip   0.5 m 
Assuming the absolute velocities of air entering and leaving the compressor are same, 
find (i) static temperature rise of air passing through the compressor, and (ii) the static 
pressure ratio. pc of air is 1005 J/kgK. 
Solution 
Velocity of the blade tip 

   2
0.5 20000 523.6 m/s

60
U π × ×

= =  

Stagnation temperature rise 

   
2
2

2 1t t
p

UT T
c

ψσ
− =  

   ( )20.80 1 523.6
218.23 C

1005
× ×

= = °  

Since the absolute velocities at the inlet and the outlet of the stage are the same, the rise 
in stagnation temperature equals to that in static temperature. 
The static pressure ratio can be written as 

 1 



    

    

    

Q3. 
The conditions of air at the entry of an axial flow compressor stage are  
and . The air angles are , , . 
The mean diameter and peripheral speed are 0.5 m and 150 m/s respectively. Mass flow 
rate through the stage is 30 kg/s; the work done factor is 0.95 and mechanical efficiency 
is 90%. Assuming an isentropic stage efficiency of 85%, determine (i) blade height at 
entry (ii) stage pressure ratio, and (iii) the power required to drive the stage. For air, 

,  
Solution 
The density of air at the entry is found to be       

   

The velocity triangles of a stage of an axial flow compressor are shown in the figure 
below. 
 
 

 
From the inlet velocity triangle, we get 
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   1 1tan tan
f

U
V

α β= +  

Hence,   150 109.06 m/s
tan8 tan 51fV = =

°+ °
  

Mass flow rate of air is 
   ( )1 1fm V dhρ π=  
or   130 109.06 1.16 0.5hπ= × × ×  
or   1 0.15 mh =  
 
(ii)Static temperature rise of the stage can be written as 

   ( )1 2tan tanf
st

p

UV
T

c
λ

∆ = β − β  

   ( )0.95 150 190.06 tan 51 tan10 16.37 C
1005

× ×
= °− ° = °  

The pressure ratio can be written as 

   ( ) 1
2 1

1

1 c
s

T T
R

T

γ
γ−η − 

= + 
 

 

   
1.4

1.4 10.85 16.371 1.17
300

−× = + = 
 

 

(iii) Power required to drive the stage is  

   p st

m m

mc TmwP
∆

= =
η η





 

   330 1005 16.37 548.39 10  W 548.39 kW
0.9

× ×
= = × =  
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After Lecture 37 
 
Q1. Choose the correct answer 
(i) Select the expressions that do not give the speed of a sound wave  relative to the 

medium of propagation which is an ideal gas( p vc cγ = ) 

  (a) RTγ  

  (b) pγρ  

  (c) p∂ ∂ρ  

  (d) pγ ρ  
[Ans.(b) and (c)] 

 (ii)   Shock waves are highly localized irreversibilities in the flow. While passing 
through a normal shock wave, the flow changes from 

  (a) a supersonic to a subsonic state 
  (b) a subsonic to a supersonic state 
  (c) a subsonic state to a sonic state 
  (d) a supersonic to a hypersonic state 

[Ans.(a)] 
 (iii) The flow upstream of a shock is always 
  (a) supersonic 
  (b) subsonic  
  (c) sonic 
  (d) none of these 

[Ans.(a)] 
Q2. 
A man on the ground observes that an airplane flying horizontally at an altitude of 4000 
m has traveled 10 km from the overhead position before the sound of the airplane is first 
heard. Estimate the speed of the airplane. The temperature in the atmosphere is given by 

288.16 0.0065T H= − (for 0 11019 mH≤ ≤ , the altitude H  is measured from the seal 
level). 
Solution 
The speed of sound is determined at the temperature at mean altitude to describe the 
Mach wave. 
  
 
 
 
 
 
 
 
 
 
 
 10 km 

4000 m  

Aircraft  

Observer 

Mach wave 

 1 



 
At the mean altitude of 2000 m, the temperature is 
   288.16 0.0065 2000 275.16 KT = − × =  
Hence, the mean speed of sound is given by 
   1.4 287 275.16 332.5 m/sa RTγ= = × × =  
If α is the Mach angle based on the mean speed of found, then 

   4000tan 0.4
10000

α = =  

However, since sin 1 Mα = , it follows that 2tan 1 1Mα = −  

Thus   ( )21 0.4 1 2.69M = + =  
Hence, velocity of aircraft is 2.69 332.5 894.4 m/s= × =  
Q3. 
A pitot-static tube is placed in a subsonic airflow. The static pressure and temperature in 
the flow are 100 kPa and 27 C°  respectively. The difference between the pitot and static 
pressures is measured and found to be 30 kPa. Find the air velocity (i) assuming an 
incompressible flow, (ii) assuming compressible flow. 
Solution 
The density in the flow is given by 

   
3

3100 10 1.161 kg/m
287 300

p
RT

ρ ×
= = =

×
  

(i)  If incompressible flow is assumed, the velocity is given by 

   
3

0 30 102 2 321.5 m/s
1.161

p pV
ρ
− ×

= = =  

(ii) When compressibility effect is considered, the velocity is found by noting that 

   0 30
100

p p
p
−

=  

Hence,   0 1.3p
p
=  

However,   
120 11

2
p M
p

γ
γγ −− = +  

 

Thus, for 0 1.3p p = , the above relation gives 

   2 1 3.52 1.3 1
0.4

M  = × −   

which gives 0.624M =  
The velocity is therefore given by 
   0.624 1.4 287 300 216.6 m/sV Ma= = × × =  
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Q4. 
Air is expanded from a large reservoir in which the pressure and temperature are 600 kPa 
and 40 C°  respectively through a convergent-divergent nozzle. The design back-pressure 
is 100 kPa. Find 
(i) The ratio of the nozzle exit area to the nozzle throat area 
(ii) The discharge velocity from the nozzle under design considerations 
(iii) At what back-pressure will there be a normal shock at the exit plane of the nozzle? 
Solution 
Here, 0 600 kPap =  and 0 40 CT = °  and the design back-pressure is 100 kPabp = .  
(i) When operating at the design conditions e bp p= , thus 

   100 0.1667
600

e

o

p
p

= =  

For 0.1667e op p = , we get from isentropic flow table  
   1.83eM =  
and 

   
*

0.6792
e

A
A

=  

Hence, the ratio of the nozzle exit area to the nozzle throat area is 

   *

1 1.472
0.6792

e

e

A
A

= =  

(ii) At 1.83eM = , we have from isentropic flow table  

   0 1.2922
e

a
a

=  

Hence,   
0

0.7739ea
a

=  

∴    0 0 1.4 286.8 313 345 m/sa RTγ= = × × =  
Therefore,  

   0
0

1.83 0.7739 354.5 502.1 m/se e
e

e

V aV a
a a

= = × × =  

The nozzle discharge velocity under design conditions is 502.1 m/s. 
 
(iii) When there is a normal shock wave on the exit plane of the nozzle the design 
conditions will exist upstream of the shock. Hence, using 1 1.83M = , normal shock wave 
tables give 

   2

1

3.74p
p

=  

Hence, 
   2 3.74 100 374 kPap = × =  
Therefore, there will be a normal shock wave on the exit plane of the nozzle when 

2 374 kPabp p= =  
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Q5. 
A shock wave across which the pressure ratio is 1.15 moves down a duct into still air at a 
pressure of 50 kPa and a temperature of 30°C. Find the temperature and velocity of the 
air behind the shock wave. If instead of being at rest, the air ahead of the shock wave is 
moving toward the wave at a velocity of 100 m/s, what is the velocity of the air behind 
the shock wave? 
Solution 
The flow situation being considered is shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
(a) Case with still air      (b) Case with undisturbed air moving 
        towards the wave 
 
For the case of normal shock wave moving into still air (Fig. (a)), we have 
   2 1 1.15p p = , 1 50 kPap = , 1 30 CT = °  
For 2 1 1.15p p = , we have from normal shock tables  
   1 1.062M = , 2 0.943M = , 2 1 1.041T T =  
Therefore, 
  ( )2 1.041 273 30 315.4 K 42.4 CT = × + = = °  and 2 1.15 50 57.5 kPap = × =  

Since   1 1sM U a=  and ( )2 2sM U V a= −  
We get 
   1 1 2 2V M a M a= −  

   1.062 1.4 287 303 0.943 1.4 287 315.4 35.1 m/s= × × × − × × × =  
 
For the case where the air ahead of the shock is moving towards the wave (Fig.(b)). We 
get for 2 1 1.15p p =  from normal shock table 
   1 1.062M = , 2 0.943M = , 2 1 1.041T T =  
So,    ( )2 1.041 273 30 315.4 K 42.4 CT = × + = = °  

p2=1.15p1 

Shock 
wave 

Shock 
wave 

V2 

T2 

US 

p1, T1 

US +V1 

p1, T1 
p2=1.15p1 

T2 

US-V2 

V1 = 100 m/s 

Flow relative 
to air 

Flow relative 
to shock 

Shock 
wave 

Shock 
wave 

V2 

p2=1.15p1 
T2 

US 

p1, T1 

US 

p1, T1 
p2=1.15p1 

T2 

US-V2 

Flow relative 
to air 

Flow relative 
to shock 
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However, since the flow relative to the wave is being considered, it follows that 
   ( )1 1 1sM U V a= +  and ( )2 2 2sM U V a= −  
It follows 
   ( )2 2 2 1 1 1 2 2sV U M a M a V M a= − × = × − − ×  

  ( )1.062 1.4 287 303 100 0.943 1.4 287 315.4 64.9 m/s= × × × − − × × × = −  
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After Lecture 40 
 
Q1. Choose the correct answer 
(i) A supersonic flow while passing through an oblique shock wave 
  (a) will always be subsonic 

  (b) will always be supersonic 
  (c) may be subsonic or supersonic depending upon the shock wave angle 
  (d) none of the above 

[Ans. (c)] 
Q2. 
Air flowing at Mach 2 with a pressure of 80 kPa and a temperature of 30°C passes over 
an wedge with an included angle of 8° that is aligned with the flow.  The flow is turned 
by both the upper and lower surfaces of the wedge through an angle of 4°, leading to the 
generation of oblique shock wave. Find the pressure acting on the surface of the wedge. 
Solution 
The flow situation being considered is shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here ( ) the turning angle of flow 4δ = °  and the Mach number upstream of the shock 
wave is 1 2.0M = .  
For 1 2.0M =  and 4δ = ° , we get from oblique wave chart 
    33.4β = °  
   1 1M M sin 2 sin 33.4 1.10N β= = × ° =  
Normal shock tables give for an upstream Mach number of 1.10 ( 1MN ) 

   2

1

1.245p
p

=  

Hence, the pressure acting on the surface of the wedge 2 1.245 80 99.6 kPap = × =  
 
 
Q3. 

4° 

4° 

β 

M1 = 2 

p1 = 80 kPa 

T1 = 30°C 
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Air flows at Mach 1.8 with a pressure of 90 kPa and a temperature of  15°C down a wide 
channel. The upper wall of this channel turns through an angle of 5° away from the flow 
leading to the generation of an expansion wave. Find the pressure, Mach number, and 
temperature behind this expansion wave. 
Solution 
The flow situation being considered is shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
For 1 1.8M =  isentropic flow tables give 

   1 20.73θ = ° , 01

1

5.746p
p

= , 01

1

1.648T
T

=  

Downstream of the expansion wave 
   2 1 5 20.73 5 25.73θ θ= + ° = °+ ° = °  
For 2 25.73θ = ° , isentropic flow tables give 

   2M 1.98= , 02

2

7.585p
p

= , 02

2

1.784T
T

=  

Since, the flow through the expansion wave is isentropic, 02 01p p=  and 02 01T T=  

Hence,   01 2
2 1

1 02

1.648 288 266 K 7 C
1.784

T TT T
T T

= = × = = − °  

   01 2
2 1

1 02

5.746 90 68.2 kPa
7.585

p pp p
p p

= = × =  

5° 

M1 =1.8 
p1 = 90 kPa 
T1 = 15°C 

M2  
T2  

p2  
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Introduction to Fluid Machinery and Compressible Flow, Time-3 hours, Full 
Marks-100 

Q1. 
 (a) In a vertical shaft inward-flow reaction turbine, the sum of the pressure and kinetic              
head at the entrance to the spiral casing is 120 m and the vertical distance between this 
section and the tail race level is 3 m. The peripheral velocity of the runner at the entry is 
30 m/s, the radial velocity of water is constant at 9 m/s and discharge from the runner is 
without swirl. The estimated hydraulic losses are (i) between turbine entrance and exit 
from the guide vanes 4.8 m, (ii) in the runner 8.8 m, (iii) in the draft tube 0.79 m, and (iv) 
kinetic head rejected to the tail race 0.46 m. calculate the guide vane angle and the runner 
blade angle at the inlet and the pressure heads at the entry to and the exit from the runner.  
 
(b) A Francis turbine discharges radially at the outlet and the velocity of flow through the 
runner is constant. Show that the hydraulic efficiency can be expressed as 

   
2

1

1 1

1
0.5 tan1

1 tan tan

hη =
 α

+  − α β 

 

where 1α  and 1β  are respectively the guide vane angle and runner blade angle at inlet.  
If the vanes are radial at inlet, then show that  

   2
1

2
2 tanhη =
+ α

 

(c) Air at a stagnation temperature of 27°C enters the impeller of a centrifugal 
compressor in the axial direction. The rotor which has 15 radial vanes, rotates at 20000 
rpm. The stagnation pressure ratio between the diffuser outlet and the impeller inlet is 4 
and the isentropic efficiency is 85%. Determine (i) the impeller tip radius and (ii) power 
input to the compressor when the mass flow rate is 2 kg/s. Assume a power input factor 
of 1.05 and a slip factor 1 2 nσ = − , where n is the number of vanes. For air, 1.4γ = , 

287 J/kg KR = .  
 

[9+9+7=25 Marks] 
Q2.  
(a)For a rotodynamic hydraulic machine, the parameters head (H), discharge (Q), and 
power (P) depend on the following: rotor diameter (D), rpm(N), fluid density(ρ), fluid 
viscosity(µ), and acceleration due to gravity(g). Considering these functional 
dependences, obtain the important dimensionless parameters depicting the respective 
dependences of H, Q, and P on the other parameters, using Buckingham pi theorem. 
Also, obtain the expression for the specific speed (dimensionless) of a centrifugal pump 
and a hydraulic turbine as a combination of some of those dimensionless parameters. 
 
 (b) Following data are obtained during the testing of a centrifugal pump at constant 
speed: 
Parameter Inlet section (suction) Outlet section (delivery) 
Gage pressure in kPa 95.2 412 
Elevation above datum in m 1.25 2.75 

1 
 



Average speed in m/s 2.35 3.62 
The measured flow rate is 11.5 m3/hr and the measured input torque to the impeller is 
3.68 N.m. Mechanical efficiency of the pump is 85%. Determine: 
(i) The hydraulic power input to the fluid. 
(ii) Hydraulic efficiency 
(iii) Electrical power input. 
(c) A centrifugal pump is required to work against a head of 20 m while rotating at the 
speed of 700 rpm. If the blades are curved back to an angle of 30° to the tangent at outlet 
tip and velocity of flow through impeller is 2 m/s, calculate the impeller diameter when 
(i) all the kinetic energy at impeller outlet is wasted and (ii) when 50% of this energy is 
converted into pressure energy in pump casing.  

[10+7+8=25 Marks] 
Q3. 
A convergent-divergent nozzle is designed to expand air from a reservoir in which the 
pressure is 800 kPa and the temperature is 40 C°  to give a Mach number of 2.7. The 
throat area of the nozzle is 20.08 m . Find: 
(a) The exit area of the nozzle. 
(b) The flow rate through the nozzle under design conditions. 
(c) The design back pressure  
(d) The lowest back pressure for which there is only subsonic flow in the nozzle. 
(e) The back pressure at which a normal shock wave occurs on the exit plane of the 
nozzle 
(f) The back-pressure below which there are no shock waves in the nozzle 
(g) The range of back-pressures over which there are oblique shock waves in the exhaust 
from the nozzle 
(h) The range of back-pressures over which there are expansions waves in the exhaust 
from the nozzle. 

[3+3+3+5+5+2+2+2=25 Marks] 
Q4. 
(a)When a body is placed in a stream which at infinite distance upstream is in uniform 
flow with free-stream conditions V∞ , p∞ , M∞ , etc., the local pressures in the 
neighborhood of the body are usually reported in terms of the dimensionless pressure 
coefficient, pC : 

  
21

2

p
p pC

Vρ
∞

∞

−
≡   

Show that the value of the pressure coefficient corresponding to the appearance of the 
critical velocity is given by 

   

( ) 2 1

*

2

2 1
1

1

2

p

M

C
M

γ
γγ

γ
γ

−
∞

∞

 + −
− + =      

where γ  is the ratio of specific heats. Consider the fluid to be an ideal gas. 
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(b)An oblique shock wave occurs in an air flow in which the Mach number upstream 
of the shock is 2.6. The shock wave turns the flow through10° . The shock wave 
impinges on a free boundary along which the pressure is constant and equal to that 
existing upstream of the shock wave. The shock is reflected from this boundary as an 
expansion wave. Find the Mach number downstream of this expansion wave. The 
shock wave angle for 2.6M =  and 10δ = °  is 30° .     
    
(c)A simple wing may be modeled as a 0.25 m wide flat plate set at an angle of 3° to an 
air flow at Mach 2.5, the pressure in this flow being 60 kPa. Assuming that the flow over 
the wing is two-dimensional, estimate the lift force per meter span due to the wave 
formation on the wing.  
             [7+8+10 = 25 marks] 
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Solution 
1. 
(a) 
Total head at entry = 120+3 =123 m 
Total loss of head = 4.8+8.8+0.79+0.46 = 14.85 m 
Work equivalent head 

   1 1 123 14.85 108.15 mwV U
g

= − =  

Therefore  1
108.15 9.81 35.36 m/s

30wV ×
= =  

From inlet velocity triangle, 

   1
9tan

35.36
α =  

which gives  1 14.28α = °  

   
( )1

9tan
35.36 30

β =
−

 

which gives  1 59.22β = °  
 
 
 
 
 
 
 
 
 
 
  Inlet velocity triangle    Outlet velocity triangle 
 
From the inlet velocity triangle, we have 
   2 2 2

1 1 1w fV V V= +  

   ( )22 2 2 2
1 35.36 9 1331.33 m /sV = + =  

Therefore, pressure head at entry 

   1331.33120 4.8 47.34 m
2 9.81

= − − =
×

 

From outlet velocity triangle 
   2 2 1 9 m/sf fV V V= = =  
(since the flow velocity is constant) 

2U  

2 2fV V=  
2rV  

β  1wV  
1U  

1 9 m/sfV =  
1V  

1rV  
1β  1α  

4 
 



Let 2p  be the pressure (above atmospheric) at exit from the runner. Applying energy 
equation between the inlet and outlet of the draft tube, we have 

   
2

2 9 3 0 0.46 0.79
2 9.81

p
gρ
+ + = + +

×
 

which gives  2 5.88 mp
gρ
= −  

(b) The inlet and outlet velocity triangles are shown in the figure below. 
  
 
 
 
 
 

    
 
 
Inlet velocity triangle     Outlet velocity triangle                         

 
From the inlet velocity triangle, we have 

   1
1

1

tan f

w

V
V

α =  

or   1 1 1tanf wV V= α  
Again, from the inlet velocity triangle, we have 

   1
1

1 1

tan f

w

V
V U

β =
−

 

or   ( )1 1 1 1 1tan tanw wV U V− β = α  

or   1
1 1

1

tan1
tanwU V

 α
= − β 

 

When water flows through the vanes, we get 

   
2

2
1 1

1
2

f
w

V
H V U

g g
− =  

or   
2

1
1 1

1
2

f
w

V
H V U

g g
= +   [ 2 1f fV V= ]    

Hydraulic efficiency of a turbine is defined as the power developed by the rotor to the 
power supplied at the inlet and is given by 

   1 1w
h

V U
gH

η =  

   1 1
2

1
1 1

1
2

w

f
w

V U
V

g V U
g g

=
 

+ 
 

 

1wV  

1U  

1fV  
1V  

1rV  
1β  1α  

2U  

2 2fV V=  2rV  

2β  
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1
1 1

1
2 2

1 11
1 1

1

tan1
tan

tantan1
tan 2

w w

w
w w

V V

VV V

 α
− β =

  αα
− + β 

 

or   
2

1

1 1

1
0.5 tan1

1 tan tan

hη =
 α

+  − α β 

      

When the vanes are radial at inlet, 1 90β = °  
Hydraulic efficiency is then 

   
2

1

1

1
0.5 tan1

1 tan tan 90

hη =
 α

+  − α ° 

 

          2
1

1
1 0.5 tan

=
+ α

 

or            2
1

2
2 tanhη =
+ α

       

(c) (i)The overall stagnation pressure ratio can be written as 

   ( ) 1
3 13

1 1

1 c t tt

t t

T Tp
p T

γ
γ−η − 

= + 
 

 

or   

1
3

1

3 1 1

1t

t

t t t
c

p
p

T T T

γ
γ−

 
  −     − =

η
 

Further, the stagnation temperature rise across the impeller can be wriiten as  

   
2
2

2 1t t
p

UT T
c

ψσ
− =  

From the above two equations and noting that 3 2t tT T= , we have 

   

1
3

1
1

2
2

1t
p t

t

c

pc T
p

U

γ
γ−

 
  −     =
η σψ

 

Here,    3 1 4t tp p = , 1 300 KtT =  

   1.4 287 1005 J/kgK
1 1.4 1p

Rc γ ×
= = =
γ − −

 

Slip factor  21 0.867
15

σ = − =  

Power input factor 1.05ψ =  
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Therefore,  
( )

1.4
1.4 1

2
2

1005 300 4 1

0.85 0.867 1.05
U

−
 × −  =

× ×
 

or   2 435 m/sU =  
Thus the impeller tip radius 

   2
435 60 0.21 m/s

2 20000
r

π
×

= =
×

 

(ii) Power input to the air 
   ( )2 32 1.05 0.867 435 344.52 10  W 344.52 kW= × × × = × =  
 
2. 
(a) 
The problem is described by 7 variables as 
   ( ), , , , , , 0F P N D Q gHρ µ =  
These variables are expressed by 3 fundamental dimensions M, L, and T. Therefore, the 
number of  π terms  7 3 4= − =  
Using D, ρ and N as repeating variables, π terms can be written as 
   1 1 1

1
a b cD N Qπ = ρ       (1) 

   2 2 2
2

a b cD N gHπ = ρ       (2) 
3 3 3

3
a b cD N Pπ = ρ       (3) 

4 4 4
4

a b cD Nπ = ρ µ       (4) 
Substituting the variables of Eqs (1-4) in terms of their fundamental dimensions M, L, 
and T, we get 

( ) ( ) ( )1 110 0 0 3 1 3 1M L T L ML T L T
b ca − − −=    (5) 

( ) ( ) ( )2 220 0 0 3 1 2 2M L T L ML T L T
b ca − − −=    (6) 

( ) ( ) ( )3 330 0 0 3 1 2 3M L T L ML T ML T
b ca − − −=    (7) 

( ) ( ) ( )4 440 0 0 3 1 1 1M L T L ML T ML T
b ca − − − −=    (8)  

Equating the exponents of M, L and T from Eq.(5), we have 
   1 0b =  
   1 3 0a + =  
 `  1 1 0c− − =  
which give   1 3a = − , 1 0b = , 1 1c = −  
Substituting these values into Eq. (1), we have 

   1 3

Q
ND

π =  

Similarly, from Eq. (6), we get 
   2 0b =  
   2 23 2 0a b− + =  
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 `  2 2 0c− − =  
which give   2 2a = − , 2 0b = , 2 2c = −  
Substituting these values into Eq. (2), we have 

   2 2 2

gH
N D

π =  

Equating the exponents of M, L and T from Eq.(7), we have 
   3 1 0b + =  
   3 33 2 0a b− + =  
 `  3 3 0c− − =  
which give   3 5a = − , 3 1b = − , 3 3c = −  
Substituting these values into Eq. (3), we have 

   3 3 5

P
N D

π =
ρ

 

Similarly, from Eq. (8), we get 
   4 1 0b + =  
   4 43 1 0a b− − =  
 `  4 1 0c− − =  
which give   4 2a = − , 4 1b = − , 4 1c = −  
Substituting these values into Eq. (4), we have 

   4 2ND
µ

π =
ρ

 

Therefore, the problem can be expressed in terms of independent dimensionless 
parameters as 

   3 2 2 3 5 2, , , 0Q gH Pf
ND N D N D ND

 µ
= ρ ρ 

 

Dimensionless specific speed for the hydraulic turbine is obtained by eliminating D and 
relates it with H and P as 

   
( )

1 2
3

5 45 4 1 2
2

ST
N Q

K
gH

π
= =
π ρ

   

Dimensionless specific speed for the centrifugal pump is obtained by eliminating D and 
relates it with H and Q as 

   
( )

1 2
1

3 43 4
2

SP
N Q

K
gH

π
= =
π

   

(b) 
Head developed by the pump = Head at delivery – head at suction 

   
2 2

s  2 2
d d s s

d
p V p Vz z
g g g gρ ρ

   
= + + − + +   
   
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3 2 3 2

3 3

412 10 3.62 95.2 10 2.352.75 1.25
10 9.81 2 9.81 10 9.81 2 9.81
   × ×

= + + − + +   × × × ×   
 

   34.18 m=  
(i) Hydraulic power input to the fluid QgHρ=  

   3 311.510 9.81 34.18 1.07 10  W 1.07 kW
3600

= × × × = × =  

(ii) Mechanical power input to the fluid Tω=  

   32 35003.68 1.35 10  W 1.35 kW
60

π ×
= × = × =  

Hydraulic efficiency 1.07 79.26%
1.35h

QgH
T

ρη
ω

= = =  

(iii) Electrical power input Mechanical power input to the fluid 1.35 1.59 kW
0.85mechη

= = =  

 
 
(c)  
From the outlet velocity triangle 
   2 2 2 2cotw fV U V β= −  
   2 22cot 30 3.46U U= − ° = −  
Energy given to the fluid per unit weight 

   ( )2 22 2 3.46w U UV U
g g

−
= =  

(i) Under the situation when the entire kinetic energy at impeller outlet is wasted 

   ( ) 2
2 2 23.46

20
2

U U V
g g

−
= −  

From the outlet velocity triangle 
   ( )22 2 2

2 2 2 24 3.46f wV V V U= + = + −  
Therefore, 

   ( ) ( )2
2 2 23.46 4 3.46

20
2

U U U
g g

− + −
= −  

or   2
2 18.97 2 9.81 20U − = × ×  

which gives  2 20.21 m/sU =   
Impeller diameter is 

   2
2

60 60 20.21 0.55 m
700

UD
Nπ π

×
= = =

×
 

(ii) When 50% of the kinetic energy at impeller outlet is converted into pressure energy 
in pump casing, we can write 

   ( ) ( )2
2 2 23.46 4 3.46120

2 2
U U U

g g

 − + − = −  
  

 

2U  
2wV  

2fV  
2V  

30°  

2rV  
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or   2
2 23 6.92 800.77 0U U− − =  

The feasible solution is 2 17.53 m/sU =  

Hence,   2
60 17.53 0.48 m

700
D

π
×

= =
×

 

 
 
3.(a) 
For 2.7M = , isentropic flow tables give 

   * 3.183A
A

=   

Hence,   23.183 0.08 0.255 meA = × =  
(b) The flow rate through the nozzle under design conditions can be written as 
   * * *m V Aρ=  

However  
3

30
0

0

800 10 8.91 kg/m
287 313

p
RT

ρ ×
= = =

×
 

Isentropic flow tables give for 1M =  

   
*

0

0.63394ρ
ρ

= ,  
*

0

0.83055T
T

=  

Therefore, 
   * 0.83055 313 260 KT = × =  
Further, 
   * * * 1.4 287 260 323.2 m/sV a RTγ= = = × × =  
and  
   * 30.63394 8.91 5.65 kg/mρ = × =  
Hence, 
   * * * 5.65 323.2 0.08 146 kg/sm V Aρ= = × × =  
(c) Isentropic flow tables give for 2.7M =  

   0 23.283p
p
=  

Hence,   design 800 23.283 34.36 kPap = =  

(d) For * 3.183A A = , we get from the subsonic regime of the isentropic flow tables  
   0 1.025p p =   
This gives 

   800 780.5 kPa
1.025

p = =  

Therefore the lowest back pressure upto which the flow will be entirely subsonic is 780.5 
kPa. 
 (e) In case of a shock wave on the exit plane of the nozzle, the Mach number ahead of 
the shock is 2.7 and the pressure is 34.36 kPa. For Mach number 2.7, normal shock tables 
give 
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design

8.33832bp
p

=  

Hence, the back-pressure at which there is a shock wave on the nozzle exit plane is 
   8.33832 34.36 286.5 kPabp = × =  
(f) When the back-pressure has dropped below 286.5 kPa, the shock wave moves out of 
the nozzle and hence, there are no shock waves in the nozzle. 
(g) There are oblique shock waves in the exhaust when 
   34.36 kPa 286.5 kPabp< <  
(h) Expansion waves will occur when designbp p< , i.e., when 34.36 kPabp <  
 
 
4.(a) 

It is given that  
21

2

p
p pC

Vρ
∞

∞

−
=  

We know that  ( ) 1
20 1

1
2

p M
p

γ
γγ −

∞
∞

− 
= + 
 

 

   ( ) 1
0
*

1
1

2
p
p

γ
γγ −− 

= + 
 

 

Therefore,  

( )

( )

1
2

*

1

1
1

2

1
1

2

M
p
p

γ
γ

γ
γ

γ

γ

−

∞

∞ −

− 
+ 

 =
− 

+ 
 

 

or   
( )

[ ]

2 1*

1

2 1

1

Mp
p

γ
γ

γ
γ

γ

γ

−
∞

∞ −

 + − =
+

 

or   
( )

[ ]

2 1*

1

2 1
1

1

Mp p
p

γ
γ

γ
γ

γ

γ

−
∞∞

∞ −

 + −−  = −
+

 

or   

( ) 2 1

*

2 2

2 1
1

11 1 1
2 2

M
p p

V V
p

γ
γγ

γ

ρ ρ

−
∞

∞

∞ ∞
∞

 + −
 +−  = −  
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or   

( ) 2 1

*

2
2

2 1
1

11
2

p

M

C
V

a

γ
γγ

γ
γ

−
∞

∞
∞

 + −
 + = −    2p aγ

ρ
 

= 
 
  

or   

( ) 2 1

*

2

2 1
1

1

2

p

M

C
M

γ
γγ

γ
γ

−
∞

∞

 + −
− + =         

 
 (b)It is given 
   1M 2.6=  , 10δ = ° , 1 30β = °  
The flow situation being considered is shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
   1 1 1M M sin 2.6 sin 30 1.3N β= = × ° =  
From normal shock table for 1M 1.3= , we have 

   2M 0.765N = ,  2

1

1.805p
p

= , 2

1

1.13T
T

=  

Again,   ( )2 2 1M M sinN β δ= −  

Thus,   
( )

2
2

MM 2.295
sin 30 10

N= =
°− °

 

From isentropic flow table, for 2M 2.295= , 
   2 34.03θ = °  
Expansion wave will deflect the air by 10°  and make the pressure 3 1p p= . 
Thus,   3 34.03 10 44.03θ = °+ ° = °   
From isentropic flow table, for 3 44.03θ = °  
    3M 2.72=   
  

M1 = 2.6 

p1 =100 kPa 

1 

2 
3 

10° 

Shock 
wave 

Expansion 
wave 
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(c)  
 
The flow situation being considered is shown in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An expansion wave forms on the upper surface at the leading edge, while an oblique 
shock wave forms on the lower surface at the leading edge. Both the waves turn the flow 
parallel to the plate. Waves formed at the trailing edge of the plate have been neglected. 
 
Let us designate the state of air after expansion wave at the upper surface as 2 and that 
after oblique shock at the lower surface as 3 as shown in the figure.  
Let us consider the expansion wave at the upper surface, 
For 1M 2.5= , from isentropic flow tables, we get 

   01

1

17.09p
p

= , 1 39.13θ = °   

Since the flow is turned through 3° by the expansion wave, we get 
   2 39.13 3 42.13θ = °+ ° = °  
Using 2 42.13θ = ° , isentropic tables give 

   2M 2.63= , 02

2

20.92p
p

=  

Since the flow through the expansion wave is isentropic i. e., 02 01p p= , we have 

   012
2 1

02 1

17.09 60 49.02 kPa
20.92

ppp p
p p

= = × =  

Hence, the pressure acting on the upper surface of the plate is 49.02 kPa. 
 
Let us consider the oblique shock wave at the lower surface.  

M1 = 2.5 

p1 = 60 kPa 

 3° 

0.25 m 

p2 

p3  

1 

3 

2 
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For 1M 2.5=  and 3δ = ° , we get from oblique shock wave charts    
   26β = °  
Then, 
    1 1M M sin 2.5 sin 26 1.096N β= = × ° =  
For a value of Mach number 1.096, we get from normal shock tables 

   3

1

1.23p
p

=  

Therefore, 

   3
3 1

1

1.23 60 74 kPapp p
p

= = × =  

Hence, the pressure acting on the lower surface of the plate is 74 kPa.  
Therefore the lift force per meter span        
                       ( ) ( )3 2 cos3 74 49 0.25 cos3 6.23 kN/ m spanp p A= − ° = − × × ° =   
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