
Author's personal copy

Reconstruction of time-dependent concentration gradients around a KDP
crystal growing from its aqueous solution

Atul Srivastava �,1, Dhruv Singh, K. Muralidhar

Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India

a r t i c l e i n f o

Article history:

Received 23 April 2008

Received in revised form

20 November 2008

Accepted 1 December 2008

Communicated by J. de Yoreo
Available online 7 December 2008

PACS:

47.55.P�

81.10.Dn

77.84.Fa

42.79.Mt

81.70.Tx

Keywords:

A1. Convection

A1. Mass transfer

A1. Optical tomography

A1. Time-dependent fluid flows

A2. Growth from solutions

B1. KDP

a b s t r a c t

Reconstruction of the steady three-dimensional concentration field from path-integrated two-

dimensional data has been studied by the authors earlier. The extension of this approach to reconstruct

three-dimensional unsteady concentration gradient field around a KDP crystal growing from its aqueous

solution is examined in the present work. The experiments reported in the present work have been

carried out in the mixed convection regime where inertial as well as buoyancy effects are significant.

The crystal size is large enough to induce a time-dependent movement of convection currents in the

growth chamber. Laser schlieren is used as the measurement technique for mapping the concentration

gradients around the crystal. Projection data is in the form of a time sequence of schlieren images over

an angular span of 0–3601. Images are recorded by rotating the growing crystal while the growth

chamber is kept fixed. The time sequence recorded for one projection is uncorrelated to the next,

creating an asynchronous data set. The technique proposed herein is an application of proper

orthogonal decomposition to the image sequence. The method decouples the spatial and temporal

components of the measured time-dependent data. The spatial modes, in turn, are ordered across all

projections, thus facilitating three-dimensional reconstruction over the entire physical domain. The

algorithm proposed integrates principles of tomography with proper orthogonal decomposition. It has

been validated with simulated as well as experimental data. The results show that the first few modes

contain much of the information of the time-dependent growth process. The differences in the nature of

temporal fluctuations of the concentration gradient field in regions close to the growing crystal against

those in the bulk are clearly revealed. The concentration gradient field is found to be purely unsteady

near the crystal–solution interface, whereas the level of temporal fluctuations decreases as one moves

towards the bulk of the solution. The reconstructed POD modes reveal an overall axisymmetry of the

concentration gradients field in the growth chamber while a slight loss of symmetry was revealed in the

vicinity of the growing crystal.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Good quality crystals of various sizes find applications in many
technologically important areas ranging from lasers to biomedical
applications. Forming a crystal from a supersaturated aqueous
solution is a popular growth technique. The process is accom-
panied by a three-dimensional time-varying concentration gra-
dient field in the vicinity of the crystal. In the presence of gravity,
the gradients in the density of the solution are responsible for the
evolution of buoyancy-driven convection currents. These are
oscillatory and, in general, time-dependent and drastically modify
the concentration field and its gradients along the crystal–

solution interface. The growth rates and defect structures of
the growing crystal (such as step bunches and solution inclusions)
are functions of the coupled mechanisms of time-dependent fluid
flows and mass transport in the growth chamber. These mechan-
isms are often detrimental to the quality of the growing crystal.
Hence, mapping of the three-dimensional concentration field and
its gradients in the vicinity of the growing crystal are required to
establish appropriate conditions for growing large defect-free
crystals [1–3]. Growth from an aqueous solution is particularly
amenable to optical visualization, since the solution is transpar-
ent. It is possible to generate images of the convective field by
exploiting changes in the refractive index that accompany changes
in the density of the medium. Optical techniques are ideal for
mapping the properties of the solution during a crystal growth
experiment because they are non-intrusive and inertia-free [4–7].

In a crystal growth experiment, the projection data for various
view angles can be recorded either by turning the crystal growth
chamber or the source–detector combination. In these configurations,
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a finite time elapses while moving from one view angle to the
other and hence the projection data recorded is asynchronous in
time if the temporal changes in the concentration gradients field
are faster than the speed at which the projection data is recorded
from different view angles. When the field of interest varies with
respect to time, the projection data from all view angles should be
correlated for principles of tomography to apply. Accordingly, one
needs to record information simultaneously from all the view
angles. However, this method of simultaneously recording the
projection data requires multiple source–detector combinations.
The technique of proper orthogonal decomposition (POD) applied
to the projection sequence offers a simpler alternative to handle
asynchronous projection data and is the subject of the present
study.

Importance of the reconstruction of three-dimensional tem-
perature and/or concentration field and its gradients in a crystal
growth process has been emphasized in the literature by various
researchers over the last few decades. However, the literature on
the application of tomographic algorithms for the determination
of the three-dimensional concentration field from optical images
shows that predominantly the steady state alone has been
considered. In an earlier work, Bedarida et al. [8] proposed
multidirectional holographic interferometric tomography techni-
que to reconstruct the three-dimensional concentration field on
horizontal planes above a sodium chlorate crystal growing from
its aqueous solution. Notcovich et al. [9] investigated the three-
dimensional temperature field around heavy ice growing from
supercooled heavy water using interferometric tomography.
Srivastava et al. [10] determined the three-dimensional steady
concentration field around a KDP crystal growing from its aqueous
solution using the laser schlieren technique. Masayuki et al. [11]
employed a Mach–Zehnder interferometer for the measurement
of two-dimensional concentration gradients around a KDP crystal
growing from its aqueous solution. In the context of imaging an
unsteady concentration field, Yokoyama et al. [12] presented a
method to visualize the time-dependent concentration field
around a growing crystal in solution. However, the subject of
three-dimensional analysis of a time-dependent concentration
field around a growing crystal has not been addressed yet. The
present work is concerned with the application of the POD
technique jointly with convolution back projection (CBP) for the
spatial reconstruction of time-varying concentration gradient
fields around a KDP crystal growing from its aqueous solution.
The specific goals of the present study are (a) introduction and
application of POD-based inversion scheme for the reconstruction
of time-dependent concentration gradient field in a crystal growth
process, (b) validation of the proposed scheme against numerical
and experimental data and (c) reconstruction of concentration
gradient field at select horizontal planes above the growing
crystal. Reconstructions have been performed both near the
crystal–solution interface as well as in the regions away from
the growing crystal to examine the temporal fluctuations in the
concentration gradient field. These, in turn, affect the rate of
solute transport from the solution to the growing crystal surfaces
and hence the growth rates of various crystal faces.

2. Proposed reconstruction scheme

The central idea behind the proposed scheme is the following:
by definition, the optical projections of a given flow field in the
schlieren arrangement are the line integrals of the concentration
gradient field along the viewing direction. In POD, the gradient
field is decomposed into a product of two functions that
individually depend on space and time. The path integrals are
only defined in space. Hence, the time-dependent function must

remain unaltered even though projections are recorded at
different time instants. The aim of completely decoupling the
temporal and spatial components of the field of interest is thus
accomplished using proper orthogonal decomposition. The inte-
gration of proper orthogonal decomposition with CBP presents a
novel approach to reconstruct the unsteady field of interest from
its asynchronous projection data.

2.1. Proper orthogonal decomposition

The proper orthogonal decomposition method provides a
methodology for extracting the proper orthogonal modes from
experimental or simulated data. These proper orthogonal modes
contain information about the dominant features of the process
under study and carry the greatest energy on an average. The
modes are used to construct a set of basis functions (for a
continuous system) or basis vectors (in the case of discrete
systems). The basis functions or basis vectors form the reduced
order model of the physical phenomenon under investigation.
Though well established in image processing and pattern
recognition [13,14], its application towards the investigation of
time-dependent transport phenomena associated with a crystal
growth process is completely new. The technique has been widely
applied to unsteady computational fluid dynamics formulations
[15,16]. In the context of crystal growth, POD has been applied as
an optimal control problem for fluid flows in a horizontal
chemical vapor deposition reactor [17].

The basic POD procedure can be summarized briefly as follows:
an ensemble of images collected over a period of time can be
represented by the symbol c(x,t) and approximated as a finite
sum in the variables separated form

c ¼ cðx; tÞ �
XN

k¼1

akðtÞmknkðxÞ �
XN

k¼1

ukðtÞnkðxÞ (1)

The approximation becomes exact as N approaches infinity. In Eq.
(1), the symbol t is the time index when the image is recorded and
x is the pixel location in 1 or 2 dimensions. The image definition
for the present study is in terms of a set of intensity values at
various pixel locations recorded at a time instant t. However, the
representation of c in terms of the basis functions is not unique.
Several choices of vk(x) are possible and for each choice the
sequence of time-dependent functions uk(t) is unique. Proper
orthogonal decomposition is concerned with finding the best
possible choice of the functions vk(x) for a collection of images
c(x,t). The basis functions are taken to be orthonormal so that the
determination of the coefficient function uk(t) for a given k will
depend only on vk(x) and not on the other v’s. Orthonormality
requires

Z
x
nkðxÞnlðxÞdx ¼ f1 if k ¼ l and 0 otherwise (2)

The time-dependent part can then be obtained as:

ukðtÞ ¼

Z
x
cðx; tÞnkðxÞdx

The determination of the coefficient function uk(t) for a given k

depends only on vk(x) and not on the other v’s. The orthonormal
property of Eq. (2) is useful while selecting functions vk(x) only in
the limit of N approaching infinity. If N is finite but reasonably
large, we choose the basis functions vk(x) in such a way that the
approximation for each N is the best possible in a least squares
sense [13]. In the present work, POD modes have been determined
using routines available in MATLAB. Ordered, orthonormal
functions vk(x) are the proper orthogonal modes or the basis
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functions of c(x,t). With these functions computed, Eq. (1) is the
proper orthogonal decomposition of c(x,t).

2.2. Convolution back projection

Reconstruction of a three-dimensional field from two-dimen-
sional projections has been accomplished in the present work
using the convolution back projection algorithm (CBP). The
algorithm works with the one dimensional projection data of
each plane of the three-dimensional field. The use of CBP in the
present work has been preferred because of its significant
advantages such as non-iterative character, availability of analy-
tical results on convergence and established error estimates
[18,19]. Here, the reconstructed function f(r,f), is evaluated by
the integration formula [20,21]:

f ðr;fÞ ¼
Z p

0

Z D=2

�D=2
pððs0 � sÞ; yÞqðsÞdsdy (3)

where

qðsÞ ¼

Z Rc

�Rc

jRjWðRÞ expði2pRsÞdR

Here, p(s;y) is the projection data and s is the perpendicular
distance of the data ray from the center of the object. In addition,
y denotes the source–detector line with respect to a fixed axis
(and hence the view angle), D is the diameter of the growth
chamber, and s0 is the s-value of the data ray passing through the
point (r,f). The symbol R is the Fourier frequency, q(s) is the
convolving function of Eq. (3), and W(R), is the filter function. The
filter function vanishes outside the interval [�Rc,+Rc] and is an
even function of R. Here, Rc is the Fourier cut-off frequency and is
taken to be 1

2Ds, Ds being the ray spacing. The reconstruction
obtained is specific to the choice of the filter function [19–21]. A
Hamming filter h54 has been used in the present study. The
experience of the authors with CBP in the context of schlieren
imaging can be seen in Ref. [10].

2.3. Combined POD–CBP algorithm

The approach integrating tomography and proper orthogonal
decomposition technique for the three-dimensional reconstruction
of the unsteady concentration gradient field is described in the
present section. The projection data in the form of time-dependent
schlieren images has been recorded for a given position of the
laser-camera axis with respect to the test apparatus. The growth
chamber has been kept fixed and the projection data for various
view angles have been extracted from the sequence of schlieren
images of the convective field around the rotating crystal. A time
series of images in real time over a period of around 24 s was
experimentally recorded. Since the crystal was rotated at a rate of
15 rpm, the projection data at six separate time instants could be
extracted from the recorded time sequence for a given view angle
in the range of 0–3601. Moreover, since the light intensity scales
linearly with the concentration gradient, numerical calculations
can be performed directly with light intensity. The final results are
presented in dimensionless form. Reconstructions are performed
at horizontal planes above the crystal; hence the modes of the
time sequence of light intensity values along a row of the schlieren
image constitute the data set for tomography.

The experimental data is now processed as per the following
algorithm:

1. Start with the image data for a given view angle.
2. Select a horizontal plane above the growing crystal from the

schlieren image where the reconstruction is to be performed.

3. For the selected plane, form the POD data matrix. For a given
time instant, express the intensity values as the column of the
matrix. Similarly intensity data for other time instants form
the remaining columns.

4. Subtract out the average of every column; modal analysis is
performed for the mean-removed data.

5. For the rectangular matrix thus obtained, determine the POD
basis vectors and the corresponding time components.

6. Repeat steps 1–5 for all view angles. Modes of each projection
(between 01 and 1801) have now been obtained by considering
all the time instants.

7. Use a tomography algorithm (CBP, in the present study) to convert
the modes of projection data into the 2-D modes of concentration
gradient over selected horizontal plane above the crystal.

8. Repeat step 7 for as many modes as are significant.
9. Determine the reconstructed time-dependent concentration

gradient field by multiplying the 2-D spatial modes by the
respective time components available at step 5.

It is to be mentioned here that in the present work the proposed
reconstruction scheme has been employed for the determination of
the three-dimensional distribution of concentration gradients
rather than the concentration itself. This is important because
during solution growth, the growth rates of various faces of the
crystal are intricately linked with the spatial and temporal
distributions of these gradients in the growth chamber. However,
the POD-based technique can be easily extended for the determina-
tion of the three-dimensional concentration field itself. Here,
instead of starting with the time sequence of light intensity values
in a schlieren image directly (Step 1 of the algorithm), one first
calculates the integrated (ray-averaged) concentration field for a
given view angle. Similarly, the concentration fields for all the view
angles are calculated independently from the recorded schlieren
images. The steps involved in determining the ray-averaged
concentration field from the schlieren images have been demon-
strated earlier by the authors elsewhere [10,22,23]. A detailed
procedure for analyzing schlieren images can also be found in the
literature [4]. The ray-averaged concentration field thus obtained for
each view angle and for a given time instant now replaces the
original intensity values in a schlieren image as the input to the
algorithm described above. One follows the remaining steps of the
algorithm to determine the instantaneous three-dimensional con-
centration field in the growth chamber.

It is important to mention here that the reconstruction scheme
proposed here is not restricted to image the growth of crystals
from their aqueous solution. It can efficiently be employed to
investigate the three-dimensional temperature and concentration
fields in other crystal growth processes as well, e.g. melt growth.
One such area of interest is the understanding of three-dimen-
sional temperature distribution during the formation of chon-
drules (silicate spheres, a few mm in diameter). The temperature
distribution inside silicate melts severely affects the process of
crystallization. Since the process of crystallization is very rapid
[24], the changes in the temperature field inside the silicate
spheres are strongly time-dependent. The reconstruction scheme
proposed in the present work avoids the requirement of multiple
source–detector combinations and high speed cameras for such
applications in order to capture the transients of the temperature
field and presents an efficient method for the reconstruction of
three-dimensional temperature distribution.

3. Validation of POD against experimental data

The present section discusses the experimental validation of
reduced order reconstruction using the proper orthogonal
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decomposition technique. The physical problem considered is
buoyancy-driven convection in a fluid medium that is confined in
a horizontal differentially heated rectangular cavity. The experi-
mental set up is schematically shown in Fig. 1(a). The working
fluid is air. The horizontal surfaces of the cavity provide a
temperature difference for initiating convection in the fluid, the
vertical sides of the cavity being thermally insulated. The
temperature difference across the cavity is 10 1C. Projection data
in the form of two-dimensional images have been recorded using
a Mach–Zehnder interferometer [3,4]. A continuous time
sequence of images was recorded in the form of a movie at
video rates (25 frames per second). An ensemble of 10 consecutive
images constituted the basic data set for POD analysis. The images
of this ensemble were converted to a two-dimensional matrix,

each column containing intensity data of a snap shot, the number
of images being equal to the number of columns. The POD modes
are those of this rectangular matrix.

Fig. 1(b) shows the POD modes of the interferograms for a
particular ensemble of images recorded. One of the instantaneous
original images from the time sequence has also been shown in the
figure. The variation of energy of each of the modes with respect to
the eigen index is shown in Fig. 1(c). It is seen that the 100% of the
energy scale is reached in around eight modes. Thus, modes of
higher order (48) can be dropped from further consideration.

Fig. 2 shows a comparison of the reconstructed interferogram
with eight POD modes with the corresponding instantaneous
original images of the ensemble. The difference between intensity
values of the reconstructed and the original images for each pixel
(error/pixel) is displayed in the form of an image in the third
column. It is seen that the approximations match quite closely
with the original images. The maximum deviation is of the order
of 10�15 and can be attributed to the error involved in truncating
beyond the 8th POD mode.

4. Validation of POD and tomographic reconstruction with
respect to analytical data

The reconstruction algorithm of Section 2.3 has been validated
against a numerically simulated time-dependent field. This field is
an axially symmetric Gaussian distribution of light intensity
varying sinusoidally in time and is expressed as:

Cðx; y; tÞ ¼ Rð0:5þ0:25 sinð2pt=TÞÞ
0 � ðx2 þ y2Þ

ð0:5þ0:25 sinð2pðt=TÞÞ=2Þ (4)
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Fig. 1. (a) Schematic drawing of rectangular cavity setup, (b) POD basis vectors of

an interferometric image sequence of convective field in a differentially heated

rectangular cavity. One of the original images from the ensemble and the average

image has also been shown and (c) variation of energies with respect to Eigen

indices.
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Fig. 2. Comparison of the reconstructed interferometric images (column 2) with

the original images (column 1) of the ensemble. Deviations of the intensity values

between original and the reconstructed images have also been shown in the form

of error images (column 3).
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Here, R0 is the radius of the physical domain while x and y are the
coordinates of any point in the plane as measured from the center.
The time period of the cycle is denoted as T.

Starting with the analytical form of the dependent variable
given by Eq. (4), projection data as line integrals are calculated by
numerical integration along the viewing direction. Since the field
is axisymmetric, data sets of all projections are identical.

The zeroth order POD mode is just the time-average of the
function C evaluated over the time period. Higher order POD
modes, are displayed as two-dimensional images in Fig. 3(a). The
variation of the energy content of each mode with respect to
eigenvalue index is shown in Fig. 3(b). For the present example
Eq. (4), it is seen that the first POD mode already contains most of
the energy while other modes have a negligible contribution. The
field given by Eq. (4) is reconstructed using the algorithm of
Section 2.3. The accuracy of reconstruction is estimated in terms
of the percentage RMS error between the reconstructed and the
exact, namely Eq. (4), for each time instant. Fig. 3(c) shows the
variation of the RMS error with respect to time for 18 and 90

projections. Errors are a maximum of 26% for 18 projections, while
they reduce to 2.5% for 90 projections. In a steady state context,
errors are slightly smaller, as discussed in Ref. [10].

5. Reconstruction of the unsteady concentration gradient
field in crystal growth

The present section describes the application of the combined
POD–CBP algorithm for the reconstruction of the unsteady
concentration gradient field above a KDP crystal growing from
its aqueous solution. The growth experiment has been performed
in the mixed convection regime. The crystal size is large enough to
induce a time-dependent movement of the convection currents in
the apparatus. An additional motion in the form of crystal rotation
at 15 RPM is also imparted. The growth process is initiated by
introducing a spontaneously crystallized KDP seed into its super-
saturated solution. Slow cooling of the solution results in the
deposition of excess salt from the solution to the crystal faces. The
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reduction in the solutal concentration around the crystal leads to
the appearance of concentration gradients in its vicinity. These
gradients are responsible for the movement of the fluid particles
in the growth chamber. The onset of fluid motion is determined by
the relative magnitudes of the driving buoyancy force and the
resistive viscous force. When the crystal size is small, the fluid
movement around the growing crystal is symmetric. Since the
solution is cooled at a very slow rate, the growth process is steady.
With an increase in crystal size, the driving potential responsible
for the fluid motion in the growth chamber increases in
magnitude and the convection currents tend to become vigorous
and time-dependent.2 To understand the resulting distribution of
the salt around the crystal, it is important to analyze the time-
dependent three-dimensional distribution of concentration gra-
dients field in the growth chamber.

5.1. Apparatus and Instrumentation

The crystal growth experiments have been performed in a glass
chamber schematically shown in Fig. 4(a). It comprises a beaker
that holds the KDP solution and has a diameter of 16.5 and 23 cm
height. The temperature of the KDP solution in the inner beaker is
controlled by thermostated water circulated in the outer chamber.
The outer chamber is octagonal in plan and is made of Plexiglas. It
ensures a large enough volume for the circulating thermostated
water to keep the KDP solution at the required temperature level
over a period of time. The temperature of the circulating water in
the outer chamber is controlled by four symmetrically located
heating elements whose electrical input is regulated by a
programmable temperature controller (Eurotherm). A k-type
thermocouple wire fixed to the outer surface of the growth
chamber (inner beaker) provides the feedback to the
controller. Uniformity of temperature within the solution is
ascertained by recording temperatures at various locations
using 26-gauge k-type thermocouples. For visualization of the
concentration gradient field by the schlieren technique, circular
optical windows (BK-7, 40 mm diameter, 5 mm thickness, l/4) are
fixed on the glass beaker at its opposite ends.

A Z-type monochrome schlieren technique (Fig. 4(b)) is
employed for the visualization of the concentration gradients
field in the growth chamber [25]. From the gradient field and
knowledge of concentration far away from the crystal, solute
concentration can be determined everywhere in the field of view.
The schlieren system has concave mirrors, flat mirrors, knife-edge
and a laser. The growth cell under study is placed between the
two concave mirrors as shown in the figure. The concave mirrors
used in the present work are of 1.30 m focal length each and
200 mm diameter. The knife-edge is placed at the focal length of
the second concave mirror. It is positioned to cut off a part of the
light focused on it so that, in the absence of any optical
disturbance, the illumination on the screen is uniformly reduced.
The knife-edge is oriented perpendicular to the direction in which
the density gradients in the aqueous solution are to be recorded.
In addition, the field of view includes the undisturbed solution
away from the crystal, where the solutal concentration is a known
quantity. In the present study, the gradients are expected to be
predominantly in the vertical direction parallel to the gravity
vector and the knife-edge has been kept horizontal. The schlieren

image is a line integral of the local concentration gradient field in
the viewing direction [4]. Hence, it constitutes the projection data
from which the local gradients are to be determined. Since the
crystal is imparted rotation, a time sequence of schlieren images
recorded rapidly yields both the time series of images for a given
projection angle and projection data for a large number of view
angles within 01 and 1801. A typical time sequence of schlieren
images for a complete cycle (between 01 and 1801, in an interval
of 451) is shown in Fig. 5.

For optical measurements, a continuous wave helium–neon
laser (Spectra Physics, 35 mW) has been employed as the laser
source. A monochrome CCD camera (Sony) of spatial resolution of
768�574 pixels was used to record the convective field in the
form of two-dimensional images. The camera was interfaced with
a personal computer (HCL, 256 MB RAM, 866 MHz) through an
8-bit frame grabber card. Light intensity levels were digitized over
the range 0 (dark)–255 (bright). Image acquisition was at video
rates namely 25 frames/s. The temporal information of the
concentration gradient field has been recorded in the experiments

ARTICLE IN PRESS

Fig. 4. Schematic diagram of Four-view crystal growth chamber (a) and Z-type

laser schlieren set up (b). (1) Growing crystal, (2) growth chamber, (3) outer

chamber, (4) heating element, (5) thermocouple, (6) optical window and (7)

covering lid.

2 The relative strengths of buoyancy and viscous forces can be defined in terms

of a non-dimensional parameter, the Rayleigh number, expressed as Ra=((gb(DC)d3)/

na), where d is the crystal diameter, g is the acceleration due to gravity, b is the

volumetric coefficient of expansion, n is kinematic viscosity, a is the thermal

diffusivity of the fluid and DC is the degree of supersaturation of the solution at a

given time instant. For the experiments reported in the present work, the Rayleigh

number based on the crystal diameter was calculated to be in excess of 106.
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by collecting time series of schlieren images in real time over a
period of around 24 s. Since the growing crystal is imparted
rotation at a rate of 15 rpm (one rotation in 4 s), schlieren images
at six different time instants could be experimentally recorded for
a given projection angle (between 0 and 1801). Furthermore, since
the rate of crystal rotation is kept constant, the temporal
information at intermediate time instants has been generated by
interpolating the consecutively recorded intensity values (equally
spaced with an interval of 4 s). A time series with 20 entries for a
given view angle is thus available for the POD analysis. The
experimental apparatus and laser instrumentation utilized for
the present work are similar to those reported by the authors
earlier [10]. The analysis of schlieren images is discussed in
various Refs. [3,4,10,22,23,25].

6. Results

The reconstruction results using the proposed inversion
scheme for determining the time-dependent concentration gra-

dient field over planes above the growing crystal have been
presented in this section. A set of schlieren images as a function of
time and view angles employed in the analysis is shown in Fig. 5.
Results have been presented in the form of two-dimensional
modal images of the time-dependent concentration gradient field
obtained using the integrated approach of proper orthogonal
decomposition and CBP. The symmetry of the gradient field in
the growth chamber has been discussed in qualitative terms on
the basis of the two-dimensional modal images. Further, the
approach has been extended to demonstrate the reconstruction of
the time-dependent concentration gradient field in quantitative
terms by using the time components available after POD analysis
(Section 2.3).

Image formation in a schlieren system is due to the deflection
of the light beam in a variable refractive index field toward the
region of higher refractive index. In the context of crystal growth
experiments reported in the present study, the deposition of
solute onto the crystal faces leads to the formation of solutal
concentration gradients in the growth chamber. The intensity
contrast, as observed in the schlieren images shown in Fig. 5, is
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related to a change in the solute concentration around the
growing crystal. It creates a jump in the refractive index and
deflects the light beam into the region of relatively large
concentration gradients. As defined by the bright intensity regions
in the images, the combined effect of buoyancy and rotational
forces govern the overall orientation and movement of the
convection currents around the crystal. The effective movement
of the fluid particles is along a helical path as seen in the schlieren
images in Fig. 5.

It is to be noted here that the images recorded by the schlieren
apparatus yield the line-integrated values of concentration

gradients. The relationship between light intensity and the solutal
gradient is linear. Hence, the resultant intensity distribution in the
images yields a qualitative measure of the strength of concentra-
tion gradients prevailing in the growth chamber. Normalized
gray scale values of light intensity (in the range of 0–255) of the
recorded schlieren images have been utilized for generating
concentration gradient field data at selected horizontal planes
above the growing crystal. A time series of over 20 images was used
in the analysis, though it was sufficient to employ less than 20 POD
modes. Reconstruction has been performed with a total of 90
projections.
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6.1. Reconstruction of two-dimensional modal images

The POD modes obtained after applying the algorithm of
Section 2.3 are shown in Fig. 6. The images represent the two-
dimensional distribution of modal contributions of the concentration
gradients on a horizontal plane away from the growing crystal
(y/H=0.50, H being the vertical extent of the schlieren image
above the growing crystal). All modes show the appearance of
concentric rings, indicating that the gradient field is practically
axisymmetric. This symmetry is important from the view point of
obtaining a proper crystal structure. Partial loss in symmetry and
non-uniformity in the contour spacing, particularly in the core
region can be attributed to the influence of crystal morphology
which is closer to pyramidal than circular. Fig. 6(b) shows the
variation of net energy content of the POD modes as a function of
the mode index. It can be seen from the figure that the first 12
modes contribute 99% of the net energy and 18 of them contribute
99.9%. These are sufficient to capture the details of the time-
dependent concentration field in the growth chamber. Remaining
modes can be eliminated from further consideration, as they do
not contribute substantially to the instantaneous concentration
field.

To crosscheck the reconstruction procedure that combines
principles of tomography and proper orthogonal decomposition,
the following procedure has been followed. Reconstruction of the
concentration gradients field has been performed at various time
instants. The projection data is generated from the three-
dimensional field by integration along the viewing direction. This
step should yield the numerical equivalent of the schlieren image.
A comparison of the reconstruction with the original experimental
data is now possible. The comparison is shown in Fig. 7 for an
intermediate horizontal plane (y/H=0.50) above the growing
crystal in the growth chamber at three different time instants.
An overall good match can be seen between the two data sets,
thus validating the reconstruction scheme employed in the
present work.

6.2. Reconstruction of time-dependent concentration gradient field

The rate of solute deposition onto the crystal faces can be
directly correlated with the magnitude of the concentration
gradients prevailing in the growth chamber. Hence, it is interest-
ing to obtain a time history of the variation of concentration
gradients in the crystal vicinity as well as in the regions away from
the growing crystal. The three-dimensional modal analysis of the
concentration gradients field can be extended to determine the
time history of the concentration gradients field in the growth

chamber by using the time components available after POD
analysis. However, for this analysis to be meaningful, the time
component of the projection data i.e. uk(t), k=1yN in Eq. (1)
generated by POD analysis at different projection angles must be
close. To verify this requirement in the context of the present
work, the magnitude of the first four dominant modes with
respect to time are plotted for three projection angles (in an
interval of 451) in Fig. 8(a). Though the time variation of the
magnitude of the basis functions is not strictly identical for the
four views, an approximately similar variation in qualitative terms
exists for the three projection angles. In view of this observation,
the following approach is suggested. Instead of multiplying the
2-D modes by the respective time components, the average of the
time components available for all the projection angles has been
utilized to reconstruct the time-dependent gradients field.

Following the above approximation, the reconstruction of the
concentration gradients field at two horizontal planes closer to
the crystal–solution interface (y/H=0.01 and 0.025) has been
performed. Fig. 8(b) shows first four significant modes of the
concentration gradients and the reconstructed gradient fields are
shown in Fig. 8(c). One would expect a more pronounced role of
the crystal morphology, which is closer to pyramidal rather than
circular, in influencing the distribution of the concentration
gradients near the crystal growth interface. This observation
follows from the reconstructed concentration gradient field. Here,
the data is not perfectly axisymmetric around the periphery,
primarily due to the influence of the grown crystal surfaces and its
edges on the orientation of the rising convection currents, though
symmetry in high concentration gradients can be seen in the form
of concentric rings (y/H=0.01) within the core region. The strength
of these gradients gradually decreases as one moves away from
the crystal as evident from the difference in the number of
concentric rings (in the core region) seen for the planes y/H=0.01
and 0.025. Fluid convection affects the distribution of the
concentration gradients in the regions near the crystal surface
edges. However, overall symmetry is better restored as one moves
towards the bulk of the solution (away from the crystal–solution
interface, where the role played by the crystal morphology is quite
negligible) as shown earlier in Fig. 6.

The variation of the concentration gradients in the growth
chamber with time, especially near the crystal surface–solution
interface can provide important information in addressing the
coupled effects of fluid dynamics and mass transport that are
often detrimental to the crystal quality. The rate of solute
transport from the solution to the crystal surfaces is primarily
controlled by the magnitude and orientation of concentration
gradients in the crystal vicinity. Hence, larger the size of
fluctuations of concentration gradients in time, higher would be
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the probability of the occurrence of morphological instabilities,
such as macro steps, step bunches and solution inclusions on the
growing crystal surfaces. The technique proposed in the present
work is capable of analyzing how rapid these time variations are
near the crystal–solution interface as well as in the regions away

from the growing crystal. To demonstrate this capability, the
temporal variations of the concentration gradients around the
growing crystal over a period of 18 s have been reconstructed
using the proposed technique and are shown in Fig. 9 for four
horizontal planes (y/H=0.01, 0.025 (closer to the crystal–solution
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interface),3 0.25 and 0.50 (away from the growing crystal)). It is to
be seen that in the vicinity of the crystal–solution interface, the
concentration gradients and hence the rate of solute transport is
purely time-dependent and relatively large temporal fluctuations
at a given point along the horizontal plane can be seen in the
plotted values. However, as one moves towards the bulk of the
solution (y/H=0.25–0.50), the degree of unsteadiness decreases
and a better symmetry is also to be seen in the temporal profiles.
This can be attributed to the effect of crystal rotation which
homogenizes the solution and orients the upward moving
convection currents to follow a helical path as evident by two

symmetrically located peaks (Fig. 7). These two peaks correspond
to the path of the helical structure that rises symmetrically from
the edges of the growing crystal. These are the regions of high
concentration gradients indicated by bright intensity zones in the
schlieren images. Hence, a practically axisymmetric and steady
distribution of the gradient field on horizontal planes away from
the crystal is confirmed. However, the gradients are strongly time-
dependent near the crystal–solution interface and hence, the
unsteadiness in the solute transport process is more pronounced
in regions that are closer to the crystal surfaces.

7. Conclusions

A method based on combining proper orthogonal decomposi-
tion and computed tomography is proposed in the present work
for the reconstruction of a time-dependent three-dimensional
concentration gradient field. The potential of the proposed
inversion scheme is demonstrated by reconstructing concentra-
tion gradients field on selected horizontal planes above a KDP
crystal growing from its aqueous solution. The reconstruction
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Fig. 9. Temporal variation of reconstructed concentration gradients at four horizontal planes (y/H=0.01, 0.025, 0.25 and 0.50) above the growing crystal over a period of 18 s.

(y/H=0.0 corresponds to the top surface of the crystal). Large temporal fluctuations are to be seen for the planes closer to the crystal–solution interface (y/H=0.01, 0.025)

compared to the bulk solution.

3 How closely one can visualize the crystal–solution interface depends on the

resolution of the imaging technique. The present work employs laser schlieren

technique to visualize the concentration gradients around the growing crystal. One

of the factors limiting the resolution of the laser schlieren technique is camera

saturation at high intensities and it occurs in the regions of very high

concentration gradients, which are close to the crystal–solution interface. This

limitation can be overcome by employing more sensitive imaging techniques, e.g.

interferometry and color schlieren, coupled with the proposed reconstruction

algorithm to precisely address the growth conditions in these regions.
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results of the concentration gradients field in the crystal growth
chamber as obtained by the proposed scheme have been verified
against the original experimental projection data. A satisfactory
agreement was seen between the two data sets. The reconstructed
two-dimensional POD modes reveal an overall axisymmetry of the
concentration gradient field in qualitative terms. A slight loss of
symmetry near the core region was also evident from the
reconstructed spatial modes. The applicability of the proposed
scheme is demonstrated by reconstructing the time history of
concentration gradient field near the crystal–solution interface
and in the regions away from the growing crystal. The results
provide an insight into the distribution of concentration gradients
near the crystal-solution interface and in the fluid. The recon-
structed gradients field is found to be purely time-dependent in
the crystal vicinity whereas the level of temporal fluctuations
decreases towards the bulk of the solution. The effect of crystal
morphology in the reconstructed gradient field near the crystal–
solution interface is also revealed through reconstruction. The
proposed algorithm provides for an extension of tomography
principles to imaging unsteady processes that are often encoun-
tered in various processes of the crystal growth.
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