CHAPTER

SEVEN

TEMPERATURE FIELD MEASUREMENT
IN BUOYANCY-DRIVEN FLOWS USING
INTERFEROMETRIC TOMOGRAPHY

K. Muralidhar

ABSTRACT

Optical methods of measurement are known to have specific advantages in terms of span-
ning a field-of-view and being inertia-free. Though in use for over half a century, optical
methods have seen a resurgence over the past decade. The main factors responsible are
the twin developments in the availability of cost-effective lasers along with high-perfor-
mance computers. Laser measurements in thermal sciences have been facilitated addi-
tionally by the fact that fluid media are transparent and heat transfer applications in fluids
are abundant. Whole-field laser measurements of flow and heat transfer in fluids can be
carried out with a variety of configurations: shadowgraph, schlieren, interferometry,
speckle, and PIV, to name a few. In the present review, temperature field measurements in
fluids by laser interferometry has been addressed.

The ability to record interferograms on a PC using CCD cameras has greatly simpli-
fied image analysis. It is possible to enhance image quality and perform operations such
as edge detection and fringe thinning by manipulating the numbers representing the
image. Image analysis techniques have also been discussed in the present article.

When combined with holography, laser interferometry can be extended to map
three-dimensional fields. Holographic interferometry can be cumbersome in some appli-
cations due to the need of holographic plates, particularly when large regions have to be
scanned. This difficulty is circumvented by using an analytical technique called tomogra-
phy. Here the interferograms are viewed as projection data of the thermal field. The
three-dimensional field is then reconstructed by suitable algorithms. In principle, tomog-
raphy can be applied to a set of projection data recorded by shadowgraph, schlieren,
interferometry or any of the other configurations. The present review covers tomography
applied to interferograms recorded with a Mach-Zehnder interferometer.

As applications, several buoyancy-driven flow experiments have been discussed.
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NOMENCLATURE
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Subscripts

avg
cold
hot
i

speed of light in vacuum

wavelength of the roll pattern

function to be reconstructed

acceleration due to gravity

height of the cavity

height of the heater block

distance traversed by the laser beam through the test cell
number of pixels

number of rays

Nusselt number (line-of-sight and surface averaged)
refractive index of the fluid

experimental projection data

numerically computed projection data

optical path length traversed by the light ray

Prandt] number of the fluid, (v/ot)

radial coordinate

spatial frequency in the CBP algorithm

Rayleigh number

in-plane coordinate required for projections other than 0 and 90°.
temperature

temperature difference between successive fringes

total value of weight function along a ray

weight function computed on a local grid for the i-th ray and j-th
pixel -
Cartesian coordinates, with z parallel to the direction of propagation
of light

thermal diffusivity of the fluid (also, the angle of refraction)
coefficient of volume expansion of the fluid

wavenumber, 2nd/h

wavelength of the laser

relaxation factor

kinematic viscosity of the fluid

polar angle in the CBP algorithm

dimensionless time period of flow oscillation

projection angle

average of the three-dimensional temperature field along the ray
cold wall

hot wall

ray number
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ic ray number of all the rays passing through the j-th pixel
J pixel number

ref ambient reference temperature

Superscript

k iteration number

1 INTRODUCTION

Nonintrusive techniques are being extensively used in engineering measurements.
These techniques employ radiation sources as probes. All radiation-based measure-
ments share a common feature in that they generate images of a cross-section of the
physical domain. This is to be contrasted with mechanical probes which are con-
cerned with measurements at a point in space and can accomplish this task only after
the field to be studied has been physically perturbed. Radiation methods are
also inertia-free. Hence, the scanning of a cross-section of the physical region using
radiation-based probes results in a large volume of information with practically no
time delay.

1.1 Applications

Laser-based optical techniques have reached a high degree of maturity. Optical
methods such as laser Doppler velocimetry and particle image velocimetry have
replaced traditional methods such as pitot tubes and hot-wire anemometry. Flow
visualization methods of the past have evolved to a point where it is now possible to
gain qualitative as well as quantitative understanding of the flow and transport phe-
nomena. Sophisticated measurement techniques such as Rayleigh and Mie scattering
for temperature and concentration measurements and Raman spectroscopy for detec-
tion of chemical species in reacting flows are routinely employed in engineering
research. Using satellite radar interferometry, orbiting instruments hundreds of kilo-
meters away in space, can detect subtle buckling of the earth’s crust and thus detect
minerals and oil and predict volcanic eruptions. Integrating techniques of photogra-
phy and video recording, digital image processing, optics and color measurement, it
is now possible to map the fluid surface slopes of oceans, rivers and lakes optically
into a color space. Using reconstruction techniques, the surface elevations can then
be back-calculated. If the fluid surface is relatively flat, the spectrum of the reflected
light contains rich information about the temperature variation over it. Radia-
tion-based measurements form the backbone of satellite instrumentation, weather
prediction programs and defence weaponry.

Buoyancy-driven convection is encountered in a large number of engineering
applications such as cooling of electronic equipment, solar ponds, stratified fluid
layers in water bodies, and materials processing to name a few. Studying convection
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patterns is also of importance in nuclear power plants. Specific examples include
passive heat removal in advanced reactor systems, stratification phenomena in steam
vessels in which hot and cold water streams mix, and thermal pollution in reservoirs.
The liquid metal pools in fast breeder reactors is also subjected to stratification.

Measurements of the shape of the fluid surface and temperature distribution over
it are critical for studies of near surface dynamics. There has long been interest in
understanding the behavior of short surface wind waves because of their importance
in mass, momentum, and energy exchanges at the air-sea interface, in microwave
remote sensing of the sea surface, and in the theory of wave-wave interactions. Asso-
ciated problems of great interest are (a) the interaction of a free vortex with the free
surface, (b) behavior of turbulence near the free surface, and (c) the effect of a vari-
able surface tension on the shape of the free surface. A free vortex approaching the
free surface may deform the surface and cause the vortex line to be connected to it.
Thus, bursts originating from the lower heated wall can modify the air-water inter-
face and significantly alter the local transport rates.

A special application where laser optics can be profitably used is growth of a
crystal from its supersaturated aqueous solution. Crystals with a high degree of per-
fection are required for important and sensitive high-technology applications. Exam-
ples are the semiconductor industry for making computer chips and optically trans-
parent materials for making high-power lasers. Growing methods for high-quality
crystals include melt growth, flux growth, and solution growth. Each of the crys-
tal-growing processes is determined by principles of physico-chemical hydrodynam-
ics and is extraordinarily complex. To control the process and ensure growth of large
high-quality crystals, it is important to understand the physical phenomena involved
during crystal growth. These include all modes of heat transfer, phase change, inter-
facial transport, and turbulence in complex geometries. Hence, there is a need to
understand the thermofluid mechanics of the crystal growth mechanisms.

Measurements of the temperature and concentration fields around a crystal grow-
ing from an aqueous solution, the surface morphology, and the kinetics of major
faces of the crystal is a critical engineering application. The crystal is grown in a
specially-designed growth cell under controlled temperature conditions. Under
growing conditions, spatio-temporal fields of temperature and concentration are
setup around the crystal. The growth mechanism of the crystal, as well as its mor-
phology, are intricately linked to the temperature and concentration gradients at the
crystal surface. Since these gradients setup a density field as well, the crystal will
experience buoyancy-driven fluid motion around it. The solution around the crystal
can be optically mapped to generate the full three-dimensional information of the
scalar fields. They can be controlled online with the objective of enhancing the in
situ quality of the growing crystal.

1.2 Optical Methods

When the wavelength of the radiation used is in the visible range, the measurement
procedure classifies as an optical technique and the region being scanned appears on
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a screen as an image that is visible to the naked eye. In thermal sciences, a revival of
optical techniques for temperature and velocity measurements in fluids has occurred.
Possible reasons for this development are:

1. Commercially available lasers have a high degree of coherence (both spatial
and temporal) and are cost-effective.

2. Optical images can be recorded conveniently through computers and can be

processed as a string of numbers through numerical algorithms.
The implications are that coherence generates stable image patterns, which truly
reflect the flow behavior, and computer programs now simplify and replace very tir-
ing microscope operations. The image formation can be related to the patterns
formed by solid particles suspended in the fluid, attenuation of radiation, scattering
or the dependence of reflectivity, and refractive index on temperature. Optical meth-
ods that utilize the dependence of refractive index of light on quantities such as den-
sity, concentration, and temperature can be configured in many different ways. Three
available routes are:

1. Shadowgraph, where the reduction in light intensity on beam divergence is
employed,

2. Schlieren, where light deflection in a variable refractive-index field is captured,
and

3. Interferometry, where the image formation is related to changes in the refrac-
tive index with respect to a reference environment.

For a wide class of applications where temperature differences are within certain
bounds, interferometry appears to be a versatile tool for accurate measurement of
three-dimensional unsteady temperature fields, and with some modification, for
velocity fields. Many examples involving free, mixed, and forced convective heat
transfer are included in this category. Worth mentioning is the satellite-based imag-
ing of the planetary atmosphere using coherent optics. In this context, issues such as
evaluation of model constants in weather prediction codes, and stabilizing these
codes using images of the flow field are being addressed.

The author’s experience is with a Mach~Zehnder interferometer for studying
two-and three-dimensional temperature fields in buoyancy-driven flows with air as
the working fluid. Steady as well as slowly evolving fields have been considered.
Flow configurations that have been addressed are:

1. Natural convection from a discrete protruding heater mounted on a vertical wall.

2. Rayleigh-Benard convection in a two-dimensional square cavity.

3. Tomographic reconstruction of three-dimensional temperature fields using
interferograms.

4. Rayleigh-Benard convection in a horizontal fluid layer at high Rayleigh num-
bers.

5. Buoyancy-driven convection in axisymmetric geometries.

The Mach-Zehnder interferometer used in the present work employs a 35 mW
He-Ne laser and 150 mm (diameter) optics. Interferograms are recorded using a
CCD camera with a 512x512 pixel resolution. The camera is interfaced with a PC
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through an 8-bit A/D card which digitizes light intensity levels over a range of O to
255. Image acquisition is at video rates (50 frames/s).

1.3 Image Processing and Tomography

The fringe patterns produced by the interferometer need to be converted into records
of the fluid temperature. This step requires identifying intensity minima within
fringes (fringe thinning), locating fringe edges (edge detection), determining fringe
order, and measuring distances between fringes. Since the image is recorded through
a computer, these operations can be performed with computer programs. In most
real-life experiments, this step is difficult since operations such as locating fringe
minima and edges result in ambiguity. One of the factors that causes difficulties in
identification is speckle, a form of noise. Elaborate procedures must then be
employed to remove speckle from the interferometric images. Examples of cleaning
strategies are Fourier-filtering using band-pass filters, histogram specification, and
Laplacian smoothing.

Let n(x) and T(x) be the refractive index and temperature fields, respectively, in
the physical domain being studied. Let n, and T, be their reference values, as
encountered by the reference beam. The interferogram is a fringe pattern arising
from the optical path difference

APL = I(n — ng)ds )

which in terms of temperature is
APL = @J'(T-T )ds 2)
T dT 0

The integral is evaluated along the path of a light ray. Neglecting refraction effects,
this path will be a straight line and the integral evaluation is greatly simplified. As a
special case, if the flow field is two-dimensional (say in the x-y plane), then the light
beam can be oriented in the z-direction and the equation above reduces to

dn
APL = ‘—ﬁ,(T——To)L 3)

where L is the length of the test cell parallel to the direction of the light beam.

In a more general setting, when the temperature field is three-dimensional, recov-
ering T(x) from a single image is not possible. This image can, however, be viewed
as a projection of the temperature field in the s-direction. If the original field is
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three-dimensional, its projection is a field in a dimension reduced by unity, i.e., two
for the present case. It is theoretically possible to record a very large number of pro-
jections of the test field in many directions and subsequently reconstruct the original
temperature function to a good degree of accuracy. This process of three-dimen-
sional reconstruction from two-dimensional projections is called tomography.

In practical problems, it is not possible to record too many projections, either due
to limitations of the experimental setup or due to cost. A new subject has now
evolved which is concerned with reconstruction with only a few views and is called
limited-view tomography. Some of the popular methods used here are algebraic
reconstruction technique (ART), multiplicative algebraic reconstructive technique
(MART), and maximum entropy (MENT). These techniques are iterative in nature
and reconstruct the unknown function over a grid.

1.4 Scope of the Present Work

Laser interferometry is a powerful measurement technique to record temperature fields
in a fluid medium. Combined with tomographic algorithms, the method can recon-
struct three-dimensional temperature fields. The review covers interferometric mea-
surements, image processing operations for enhancement of interferograms, evaluation
of fringe patterns, and limited-view tomographic algorithms. Experimental results for
a variety of buoyancy-driven flow problems have also been presented. The paper is
organized under the following sections: Review of literature, laser interferometry,
Image processing, Data reduction, Computerized tomography, and Applications.

2 REVIEW OF LITERATURE

2.1 Interferometry

Optical methods have been employed sporadically for heat transfer measurements
over the past 50 years. The convenience of lasers as light sources and computers for
data acquisition and processing has resulted in a resurgence of this technique in the
past decade. Recent developments have been summarized in a special issue of Optics
& Laser Technology (February, 1999) on “Optical Methods and Data Processing in
Heat and Fluid Flow”. In a more general setting, new and novel measurement tech-
nologies can be seen in the proceedings of the biennially held International Sympo-
sium on Flow Visualization and the Pacific Symposium on Flow Visualization and
Image Processing. A survey of interferometry as applied to natural convection prob-
lems is presented below.

An early review of optical methods in heat transfer has been presented by Hauf and
Grigull [1]. Chu and Goldstein [2] have reported a study of turbulent convection in a
horizontal layer of water for the classical Rayleigh-Benard problem. Mach-Zehnder

interferometer was employed by the workers for flow visualization. Lewis et al. [3]
have investigated the development of mixing-layers in laboratory experiments con-
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cerning salt-stratified solutions that are initially stable, but are destabilized by a tem-

perature difference in the vertical direction. Goldstein [4] has surveyed optical tech-
niques for flow and temperature measurement. Lauterborn and Vogel [5] have
reviewed the status of optical techniques in fluid mechanics. Mayinger [6, 7] has
reviewed image forming optical techniques in heat transfer and computer-aided data
processing. Tolpadi and Kuehn [8] have reported a computational and experimental
study of a three-dimensional temperature field in an asymmetric geometry. The heat
transfer problem involves conjugate conduction-convection and the thermal field in
both the solid and fluid phases have been visualized using interferometry. These
authors have compared the performance of several reconstruction algorithms applied
to experimental data against the numerical solution. The Grid method was found to
have the greatest accuracy. Naylor and Tarasuk [9] have presented a computational
technique for processing interferograms that are seen in buoyancy-driven convection.
Muralidhar et al. [10] have studied the transient natural convection in a square cavity in
the intermediate Rayleigh number range using a Mach-Zehnder interferometer. Evalu-
ation of interferograms in high-speed compressible flows has been discussed by Bar-
tels—Lehnoff et al. [11]. Chandrasekhara et al. [12] have discussed a high-speed
phase-locked interferometry system that has been designed and developed for
real-time measurements of dynamic stall flow over a pitching aerofoil. Zhong and
Squire [13] have used interferometry to evaluate organized structures in high-speed
flow past a circular cylinder. They have reported the similarities between compressible
and incompressible wakes as well as similarities in the turbulent structures. Dupont et
al. [14] have discussed the use of electronic speckle interferometry for visualizing iso-
therms as well as streamlines in a Rayleigh-Benard configuration. Dietz and
Balkowski [15] have discussed the estimation of refraction errors in two-dimensional
supersonic boundary layers. Most recently, optical methods for flow and heat transfer
have been reviewed by Lehner and Mewes [16].

2.2 Holographic Interferometry

Mapping of three-dimensional temperature fields can be accomplished using princi-
ples of holography. An algorithm for evaluating holographic interferograms has been
presented by Aparicio et al. [17]. Applications of holographic interferometry to heat
transfer can be seen in the work of Matulka and Collins [18], Shattuck et al. [19],
Spatz and Poulikakos [20], and Shen and Poulikakos [21]. Beer [22] has reported
interference fringes in growing steam and refrigerant bubbles from a heated surface.
Temperature fields within the bubble also have been presented in this work. Faw and
Dullforce [23] have investigated convective heat transfer beneath a heated horizontal
plate in air using holographic interferometry. The application of tomography to holo-
graphic interferometry has been reported by Ostendorf et al. [24]. Bahl and Liburdy
[25] have studied three-dimensional temperature reconstruction above a horizontal
heated disk in air using holographic interferometry. Computerized holographic mea-
surements in supersonic flow past bluff objects has been discussed by Lanen [26] and
Lanen et al. [27]. The author of this article has experienced difficulties with the holo-
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graphic route, primarily due to unavailability of the plates necessary for recording
holograms. This has led to the route of storing interferograms on computers, followed
by a tomographic inversion to recover the three-dimensional temperature field.

2.3 Computerized Tomography

A considerable amount of literature is presently available in the area of tomographic
algorithms. These algorithms work with a set of projections of the field being inves-
tigated and reconstruct it to a certain degree of approximation [28]. They can be
broadly classified as: (a) Transform methods, (b) Series expansion methods, and (c)
optimization techniques. The first leads to the explicit calculation of the recon-
structed field via the Radon Transform. Practical implementation of this method
involves the use of convolution integrals and is called the convolution backprojection
(CBP) algorithm [28]. The second and third are iterative in nature and have been
developed with a view towards handling a limited number of projections. In interfer-
ometry applied to measurement of temperature fields in fluids, the series expansion
method is best suited. Censor [29] has reviewed the series expansion methods in
terms of their rate of convergence and accuracy. Gull and Newton [30] have dis-
cussed the use of maximum entropy principle in tomographic reconstruction. A
method of encoding prior information has been discussed. Verhoeven [31] has
reported the performance of state-of-the-art implementation of a MART (Multiplica-
tive Algebraic Reconstruction Technique) algorithm to multidimensional interfero-
metric data. Subbarao et al. [32] have compared ART (Algebraic Reconstruction
Technique), MART, and entropy-based optimization algorithms for three-dimen-
sional reconstruction of temperature fields. A detailed error analysis has been pre-
sented: The principal finding of their study is that MART gives the best all around
performance even with as few projections as two.

2.4 Interferometric Tomography

Snyder and Hesselink [33] introduced the idea of combining holographic optical ele-
ments with tomography, thus permitting high-speed, high-resolution flow visualiza-
tion. In a similar work aimed at recording microsecond events at a high-speed,
Zoltani et al. [34] have used a flash X-ray source. Gmitro and Gindi [35] have
described an electrooptical device that can perform reconstruction with the CBP
algorithm at video-rates. The idea here is to use optical elements to carry out some of
the numerical integration needed for three-dimensional reconstruction. Tomography
applied to interferometric data can be seen in the work of Faris and Byer [36] for
supersonic jets where refraction effects have been accounted for. Snyder [37] has
studied species concentration in a co-flowing jet using tomographic interferometry.
Liu et al. [38] used speckle photographs to initiate tomographic reconstruction and
have applied the method to axisymmetric and asymmetric helium jets. Watt and Vest
[39] studied structures of turbulent helium jets in air by recording the path integral
images based on the refractive index variation using a pulsed phase-shifted interfer-
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ometer. The advantage of this method is that one can record the phase of the light

wave as continuous data, rather than discrete fringes. This greatly improves the spa-
tial resolution of the measurement, being the pixel size rather than the fringe spac-
ing. Subsequently, the authors have tomographically reconstructed the helium con-
centration field. Tomographic measurement techniques and the appropriate
reconstruction algorithms suitable for the process industry have been discussed by
Mewes et al. [40]. Michael and Yang [41] have discussed three-dimensional recon-
struction of the temperature field using an iterative technique. A Mach~Zehnder
interferometer was used in this work on Rayleigh-Benard convection with water as
the working fluid. Bahl and Liburdy [42] have discussed tomographic reconstruction
for a synthetic temperature field. Soller et al. [43] applied iterative tomographic tech-
niques to study interaction of supersonic jets and independently to buoyancy-driven
convective flow around a light bulb. They have noted significant advantages in the
tomographic approach, particularly when the recorded data is incomplete. Sato and
Kumakura [44] developed the dual plate Fourier transform interferometry to
improve the spatial resolution of the measurement by introducing a carrier frequency
that modulates the usual fringe patterns. This instrument has then been used to map
the thermal field in premixed flames.

2.5 Crystal Growth

Optical methods have been employed in crystal growth research for around half a
century. The exploitation of lasers as light sources and computers for data acquisi-
tion and processing is very recent. Laser-interferometry is evolving as a powerful
technique in studying online and in situ crystal growth phenomena. This application
is of considerable importance because the grown crystals can be used in high-tech-
nology applications, i.e., solid-state lasers. The crystal growth technology being
referred to here is the growth of crystals from their supersaturated aqueous solution.
Once the growth process is initiated, temperature, and concentration gradients are
setup in the liquid phase around the crystal. These in turn can lead to buoy-
ancy-driven currents and influence the crystal quality. The objectives behind mea-
surement are then to monitor the flow, thermal and concentration fields in the solu-
tion, and also the surface topography of the grown crystal. The thermal and
concentration fields can be mapped using refractive index-based techniques; it is
interesting to note that the crystal surfaces can be mapped using differences in the
geometric path length, as in a Michelson interferometer. A brief survey of
laser-interferometry applied to research on fluid mechanics and transport phenom-
ena during crystal growth is presented below.

The observation of growth spirals using phase contrast microscopy (PCM) was
first reported by Verma [45]. Similar microscopy studies were carried out by Suna-
gawa [46] on mineral crystals and summarized later by the author [47]. Extensive
work on the surface microtopographic investigations of solution grown crystals
using PCM and DICM (differential interference contrast microscopy) has been car-
ried out by Bennema and coworkers [48]. They observed the spirals on crystals
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growing from the liquid state. Tsukamoto et al. [49, 50] demonstrated that by com-
bining optical phase contrast microscopy and differential interference contrast
microscopy with a conventional TV system, mono-molecular spiral growth steps on
crystals can be observed during the growth in aqueous solution. Onuma et al.
[51-53] have carried out a study of crystal growth at the microscopic level on barium
nitrate and K-alum using Schlieren and Mach—-Zehnder interferometry. They studied
the effect of buoyancy driven convection and forced flow rate on the microtopogra-
phy of the crystal growing from solution. Maiwa et al. [54] studied the growth kinet-
ics of faces of barium nitrate crystals using micro-Michelson interferometery in con-
junction with the differential interference contrast microscopy. Onuma et al. [S5-56]
developed a real-time phase shift interferometer, an improvement over the DICM,
and applied it to the measurement of the concentration field through a
micro-Mach-Zehnder interferometer. Simultaneouly they used a micro-Michelson
interferometer to study the growth kinetics. Later Sunagawa [57] reviewed the
research carried out by his coworkers on interferometric analysis of crystal grown
from the solution.

In addition to the Japanese researchers listed above, the work carried out by Cher-
nov, Rashkovich, and Vekilov and their coworkers in Russia has helped in under-
standing the mechanisms of solution-grown crystals. Rashkovich et al. [58-64]
developed a Michelson interferometer for studying the growth rate, slope of growth
hillock, step velocity, and the hydrodynamics of the solution around crystals growing
from it. Their experimental setup can be used for studying crystals as small as a few
millimeters to as large as several centimeters. Vekilov [65-67] applied Michelson
interferometry to the study of KDP and ADP crystal growth kinetics, as well as to
understand protein crystal growth mechanisms. Sherwood and his coworkers at
Glasgow have also used interferometry for studying crystal growth rates [68-69].
They have used synchrotron X-radiation for assessment of the strain in crystals and
its relation to growth rate dispersion.

2.6 Other Techniques

Schlieren and shadowgraph are the other two techniques besides interferometry, that
can be used to form images of the thermal field using refractive index changes. The
advantages of these methods are a simpler optical configuration, better spatial reso-
lution since the image is an intensity distribution rather than fringes, and suitability
for large thermal gradients. The disadvantage arises from the fact that the intensity
variation is related to the derivatives of the refractive index field, rather than the
refractive index itself. Specifically, a schlieren system can capture the temperature
gradient, while a shadowgraph yields the second derivative of the temperature distri-
bution. These distributions can be evaluated in three dimensions, once again by using
principles of tomography. The temperature field in principle, can be determined by
integrating the gradient field. In practice this can be cumbersome and these two meth-

ods continue to be in use primarily for flow visualization. In some problems, the tem-
perature gradient itself may be the primary quantity of interest, for example the local
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Nusselt number on a solid wall. The schlieren image generates a visual picture of the

local heat transfer rates, and hence, on occasion can be a superior measurement tech-
nique in comparison to interferometry. A review of schlieren and shadowgraph tech-
niques can be seen in the edited books of Goldstein [4] and Mayinger [6].

The application of the schlieren technique to problems of practical importance
have been reported by the following authors. Kosugi et al. [70] have experimentally
recorded gas temperature profiles in the shock region of excimer lasers and corre-
lated them to the xenon concentration in a helium gas. Koreeda et al. [71] have stud-
ied shock structures in air at very high Mach numbers (up to 35) using schlieren
signals recorded by a split photodiode. Agrawal et al. [72] have developed a color
schlieren technique coupled with tomography for measurement of temperature in gas
flows. Bystrov et al. [73] report extraction of the density and temperature fields in
shock tube experiments using schlieren signals.

Coherent structures in a mixing layer were visualized using shadowgraphy by
Brown and Roshko [74] in an early pioneering experiment. Images of shocks in
high-speed gas flow can be seen in the exhaustive compilation of Van Dyke [75].
Convective flow in a water-filled square cavity with differentially heated side walls
has been visualized by a shadowgraph technique by Schopf et al. {76]. The images
have been quantitatively evaluated by comparison to a numerical solution of an iden-
tical problem.

Schlieren and shadowgraph are popular measurement techniques in the aerospace
industry where qualitative yet reliable information is required on shocks, bound-
ary-layers, and wakes and their interaction.

2.7 Text Organization

In the following sections, principles of laser interferometry, image processing, data
analysis, and computerized tomography have been discussed. Interferometric exper-
iments of buoyancy-driven flow have been separately discussed in detail. The discus-
sion in the following sections contains material drawn from Darbhe and Muralidhar
[77], Muralidhar et al. [10], Mishra et al. [78], and Mishra et al. [79-82].

3 LASER INTERFEROMETRY

The primary instrument used in the present work for temperature measurement in the
fluid medium is the Mach-Zehnder interferometer. Figure 1 is a schematic drawing
of the interferometer. The optical components present in it, namely the beam splitters
BS1 and BS2 and mirrors M1 and M2, are oriented at an angle of 45 degrees with
respect to the laser beam direction. The first beam splitter BS1 splits the incoming
collimated beam into two equal parts — the transmitted and the reflected beams. The
transmitted beam 2 is labelled as the test beam and the reflected beam 1 as the refer-
ence beam. The test beam passes through the physical region where the convection
process is in progress. It is reflected by the mirror M1 and recombines with the ref-
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Figure 1 Schematic drawing of the Mach~Zehnder interferometer.

erence beam on the plane of the second beam splitter (BS2). The reference beam
undergoes a reflection at mirror M2 and passes through the reference medium unal-
tered and is superimposed with the test beam at, BS2. The two beams on superposi-
tion at the second beam splitter BS2, produce an interference pattern. This pattern
contains the information of the variation of refractive index in the test region. For
measurements in air, the reference medium is simply the ambient. For liquids, a
compensation chamber is required to introduce an appropriate reference environ-
ment. The mirrors and beam splitters employed in the present configuration are of
150 mm diameter. The beam splitter has 50% reflectivity and 50% transmitivity. The
mirrors are coated with 99.9% pure silver and employ a silicon dioxide layer as a
protective layer against oxidation.

The Mach-Zehnder interferometer can be operated in two modes, namely the (a)
infinite fringe setting, and the (b) wedge fringe setting. In (a) the test and reference
beams are set to have identical geometrical path lengths and fringes form due to den-
sity, and so temperature, changes alone. (In this discussion, changes in density due to
changes in pressure are taken to be of secondary importance; this assumption is valid
for many buoyancy-driven flow experiments). Since each fringe is a line of constant
phase, it is also a line of constant refractive index, a line of constant density, and
hence temperature, and hence an isotherm. It can also be shown that the fringe thick-
ness is an inverse measure of the local temperature gradient, being small where gra-
dients are high. The infinite fringe setting is employed for high-accuracy tempera-
ture measurements in the fluid. In (b), the mirrors and beam splitters are deliberately
misaligned to produce an initial fringe pattern of straight lines. When a thermal dis-
turbance is introduced in the path of the test beam, these lines deform and represent
the temperature profiles in the fluid. The wedge fringe setting is commonly
employed for wall heat flux measurements.

The specifications of the components of a Mach-Zehnder interferometer
employed by the author are presented below.
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Table 1 Specifications of the Helium-Neon Laser

Make

Model

Output power

Wavelength

Color

Coherence length

Power consumption

Efficiency

Beam diameter

Beam divergence

Amplitude noise, 10 Hz-2 MHz
Amplitude ripple, 45 Hz-1 kHz
Life time

Spectra-physics
Spectra-physics 127

60 mW (maximum), 35 mW average output
632.8 nm

Orange red

20-30cm

= 0.1 kW of electrical power
0.01-0.1%

1.25+0.10 mm

0.66 £ 0.06 mrad

< 1% rms

< 1% rms

= 20,000 hours of operation

3.1 Laser Source

A 35 mW, continuous wave He-Ne laser (A = 632.8 nm) is employed as the coherent
light source for the interferometer. This laser is sturdy in construction, economical,
and stable in operation. The original laser beam is of 2 mm diameter. A spatial filter
along with a convex lens or a concave mirror is required to expand the beam to any
convenient size. In the present study, the expanded beam diameter is 70 mm. The
spatial filter is a lens-pinhole arrangement with two adjustable screws. The distance
between the pin hole and the lens is also adjustable. These screws determine the
in-plane location of the pin hole and have to be adjusted so that the small laser beam
is focussed on the pin-hole and the outgoing beam is expanded. The specifications of
the laser used in the present work are given in Table 1.

3.2 CCD Camera

A CCD (charged coupled device) camera (Pulnix, model: T5 565) of spatial resolu-
tion of 512x512 pixels has been used to capture the interferometric images. The
fringes formed at the second beam splitter of the Mach—-Zehnder interferometer are
projected on to a screen. The selection of the screen material and collection of inter-
ferometric images from it is an important step. This is because the clarity in the
images will reduce the uncertainty in the subsequent calculations. For this purpose,
tracing sheet has been used to display the interferometric images in the present work.
The attenuation of the laser beam through the thickness of the paper was found to be
small. It was observed that two screens used together with one of them physically
perturbed led to distinctly clear images on the video monitor. This effect can be
understood as a spatial averaging of the image over the two screens which sup-
presses noise by superposition and makes the fringe pattern clear.

The CCD camera is connected to a PC-based image processing system through an
8 bit A/D card (Pip 1024 Matrox). The fringe pattern is stored in an integer matrix
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form with intensities varying between 0 to 255 (the gray scale), where 0 indicates
black and 255 indicates white. With the present setup the image acquisition speed is
at video rates, namely 50 frames per second. The digital output of the CCD camera
is projected to a high-resolution video monitor to visualize, localize, and focus the
fringe patterns.

3.3 Pneumatic Isolation Mount

The optical components of the interferometer are extremely sensitive to vibrations.
This can be experienced from the movement of the fringes which form on the screen.
To avoid ground vibration from reaching the optics, the entire interferometer is
placed over four pneumatic isolation mounts. These mounts are connected to an air
compressor for pressurization. Once the mounts are pressurized the entire interfer-
ometer floats over the mounts. This stabilizes the interferometric images and facili-
tates image acquisition. An air compressor of rated capacity 10 atmospheres has
been used throughout the experiment to pressurize the mounts. The operating pres-
sure for the mounts is 5 kg/cm?. A regulator valve was used to supply air to the
mounts at the right pressure. The compressor in turn was located sufficiently far
away from the interferometer to eliminate motor vibrations.

3.4 Alignment of the Interferometer

Before the start of the experiment the interferometer has to be aligned. Though the
initial alignment of the interferometer is generally not disturbed from one experi-
ment to the other, periodic fine tuning is essential to ensure that the interferometer is
operating at its highest sensitivity. The initial alignment of the interferometer is car-
ried out as per the following steps:

1. The light output of the spatial filter is adjusted so that the diffraction rings,
which appear with the expanded beam, vanish. This requires adjustment of the
screws on the spatial filter. In most experiments, the diffraction ring formed a com-
plete circle and remained outside the periphery of the expanded beam.

2. The laser-power output is measured using a light meter. The laser-power output
is generally not a stable quantity and changes with time. This change in power output
is not a transient phenomena. Instead, it decreases steadily with the hours of operation.
During the present work, the laser output was in the range 30-32 mW over two years.

3. The convex lens is adjusted from the pinhole of the spatial filter so that the
distance of separation is the focal length of the lens. This produces a parallel laser
beam needed for the experiments.

4. All the optical components of the interferometer are adjusted until their centers
fall on a horizontal plane. Once this is accomplished, the first beam splitter (BS1) is
adjusted until it is at 45 degrees to the incoming light rays. All the remaining optical
components are then made parallel to one another by turning one at a time. The mir-
rors and beam splitters being of 150 mm in diameter, the expanded beam of 70 mm
diameter is made to pass through the central portion of the optical components.
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Figure 2 Infinite fringe setting of the Figure 3 Candle flame in the infinite
interferometer. fringe setting.

5. Adjustment for the infinite fringe setting is delicate and requires effort. In the
infinite fringe setting, the initial field-of-view is one of complete brightness since inter-
ference is constructive. The geometrical and the optical path lengths of the test and
reference beams are then the same in the absence of any thermal disturbances in the
path of the test beam. Owing to imperfect adjustment of the mirrors and beam splitters
by screws movement, the exact infinite fringe setting in a theoretical sense may not be
realized. As the interferometer approaches the infinite fringe setting, the distance
between the fringes increases and the number of fringes decreases until the illuminated
spot is spanned by one or two broad fringes. In the present work, it was possible to
reduce the number of fringes to unity at the start of all the experiments (Fig. 2).

To illustrate fringe formation in the infinite fringe setting, a candle flame was put
in the path of the test beam and the interferogram was recorded. The candle flame in

Figure 4 Wedge fringe setting of the Figure 5 Candle flame in the wedge
interferometer. fringe setting.
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the infinite fringe setting is shown in Figure 3. The fringes can be seen to correspond
to isotherms around the candle flame.

The wedge fringe setting is comparatively easier to setup than the infinite fringe
setting. Here the initial fringes form due to deliberate misalignment between the
optical components. The orientation of the fringes can be changed by adjusting the
inclination of the optical components. Initially the fringes are adjusted so that they
are perfectly straight. Figure 4 shows the initial wedge fringe setting of the interfer-
ometer. If a thermal disturbance is introduced in the path of the test beam, the fringes
get displaced to an extent depending on the nature of the temperature profile. Hence
the fringes in the wedge fringe setting of the interferometer are representative of the
temperature profile in the fluid medium under study. The candle flame experiment is
shown in the wedge fringe setting mode in Figure 5. Here the fringes are the temper-
ature profile inside the flame. Note the symmetry in the temperature profile along the
center-line of the flame.

For completeness, the schlieren and shadowgraph configurations are shown in
Figures 6 and 7, respectively. A combined Mach-Zehnder and Michelson interfer-
ometer for simultaneous measurement of thermal convection and crystal topography
is shown in Figure 8.

Point light (X)
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mirror Spherical gygure7 Schematic drawing of

mirror a shadowgraph apparatus.
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Figure 8 Combined Mach-Zehnder and Michelson interferometry for crystal growth from a solution
(courtesy: Sunil Verma, CAT, Indore, India).

3.5 Recording Interferometric Projections

When the method of axial tomography is employed, projection data of the field to be
reconstructed has to be recorded from various angles. The experiments with the dif-
ferentially heated fluid layer (Section 7.3) were conducted by turning the convection
test cell with reference to the light source. The position of the light source and the
detector remained fixed in all the experiments. The experiments were conducted at
various angles and for each angle the full width of the fluid layer was scanned. The
width of the fluid layer being 500x500 mm in plan, required several translations with
the traversing mechanism to scan the complete fluid width for one projection angle.
This is because the diameter of the laser beam was only 70 mm. The data thus
recorded in the form of images were joined together using computer programs to
generate one complete image corresponding to a given projection angle.

4 IMAGE PROCESSING

The information generated by the Mach-Zehnder interferometer is available in the
form of interference fringes. The interferograms contain information about the tem-
perature itself in two-dimensional fields. In three-dimensional problems, interfero-
grams must be recorded at various projection angles and must scan the complete
fluid domain. Temperature distribution can subsequently be determined by interpret-
ing the interferometric images as path integrals and applying principles of
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three-dimensional reconstruction. Tomographic algorithms are applicable in this
context. Tomography falls in the class of inverse techniques and its performance is
characterized by a definite dependence on noise levels in the prescribed data. Specif-
ically, errors in data can be amplified during the reconstruction process. It is thus
natural to examine the sensitivity of the reconstructed temperature field to uncertain-
ties and errors that are intrinsic to image enhancement operations that required pro-
cessing the interferograms. For both two- and three-dimensional measurements, the
fringe patterns thus have to be analyzed in detail.

One of the operations required most often is the extraction of the fringe skeleton
from the dark and bright bands of the fringes. When the interferometer is operated in
the infinite fringe setting, the fringes are a set of curves that are the locus of points
having an identical path difference. This can be interpreted as follows: For rays hav-
ing a certain path difference, the corresponding pixels in the interferometric image
will have identical light intensity. One of the direct ways to locate a typical locus of
points is to connect all minimum intensity pixels within a dark band or the maximum
intensity pixels within a bright band. The minimum intensity will appear at a point of
complete destructive interference and hence will have a zero intensity. Similarly, a
maximum in intensity will appear at a point where interference is constructive.

In experiments, the original as well as partially processed images have superim-
posed noise. Hence the distribution of intensity across fringes will be ambiguous.
Specifically, the minimum intensity will not strictly be a zero and in 8-bit digitiza-
tion, the maximum will not be 255. Hence the strategy that is preferred is to trace the
minima within dark bands and maxima within bright bands, rather than search for
points of known intensity. This is the closest approximation that can be achieved in
tracking a series of pixels having low-or high-intensities. When a laser is used, one
must also take into account the overall Gaussian profile of the light output. Hence,
determination of extrema in intensity becomes a local operation in the image
domain. Subsequently, the locus of minima or maxima need to be connected within
a fringe band across the image, to get a curve on which temperature itself or a tem-
perature-dependent function is a constant.

It is clear that under experimental conditions, only intensity minima can be traced
since intensity itself is not precisely defined. In practice, one observes a greater noise
level in the high-intensity regions, possibly owing to device saturation in the record-
ing medium. This makes locating intensity maxima a difficult task. Hence, fringe
thinning operations referred in the present work are related solely to the location of
intensity minima in the dark fringe bands.

Several fringe thinning methods are available in the literature. Most of the fringe
tracing algorithms that have been suggested are problem-specific and cannot be
accepted as generally valid. A large number of published algorithms are based on
edge detection by global thresholding, but these are specific to a class of problems
and appear to be inapplicable for interferometric images. In the presence of an
non-uniform average level of illumination with superimposed noise, the opinion of
the present author is that the task of automatic extraction of the fringe skeleton is
difficult. This has been experienced even with the well-behaved fringe tracing algo-
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rithms given by Robinson [83] and Krishnaswamy [84] for interferometric fringes
and by Ramesh and Singh [85] for photoeleastic fringe patterns. Funnell [86] has
suggested an easy to implement, but not a fully automatic, technique to trace the
fringes. His method is likely to yield good results for low-quality images. In the
present study, an algorithm that is similar in approach has been proposed. This algo-
rithm is automatic in the sense that no user input is required at any intermediate stage
of the calculation. It is based on the actual two-dimensional grey-level variations and
the fringe skeleton is traced by searching along the minimum intensity direction
while simultaneously maintaining connectivity of the points traced.

In the present section, the performance of the fringe thinning algorithms has been
evaluated in the context of interferometric images. These images were generated by
a Mach—Zehnder interferometer. The experiment performed was one involving Ray-
leigh-Benard convection. The experiment comprised of a layer of air confined
between two horizontal surfaces. The lower surface was heated while the upper sur-
face was cooled, both being maintained respectively at constant temperatures. The
vertical side walls that defined the boundaries of the fluid layer were thermally insu-
lated. The temperature differential across the fluid layer led to buoyancy-driven
motion, whose pattern could be captured from the fringe patterns. This experiment is
described in detail in Section 7.3.

The interferograms represent the projection of the three-dimensional temperature
field on to a plane. However, the data contained in them must be transferred to a
uniform grid before tomographic algorithms can be applied. Several intermediate
steps involving image processing operations have to be performed to reach this
stage. To start with, interferograms recorded using the CCD camera contain super-
imposed noise, speckle being the most significant. While speckle is associated with
the optical components of the interferometer, the images also carry thermal noise
due to edge effects in the fluid layer. Speckle, as well as thermal noise can be conve-
niently removed in the Fourier domain by a band-pass filter. An example of the orig-
inal intensity distribution and that obtained after Fourier-filtering is shown in Figure
9. The filter is two-dimensional and can remove the high-wave number components
of the spectra of the light intensity. The resulting image has blurred edges and must
be processed further. The image quality of the filtered image has been enhanced by
using utilities such as histogram equalization and high-boost image preparation [87].

The present discussion is focussed towards fringe thinning and the associated
errors. The thinning operations have been carried out with the filtered and enhanced
interferograms. Three different approaches have been adopted in this regard: (a)
Search of the minimum intensity points within the dark bands, (b) curve fitting
through the centers of the dark band, and (c) freehand tracing of the fringe skeleton
using a paintbrush option available in Windows-95. These three methods are dis-
cussed below in detail.

The temperatures corresponding to the individual fringes have been computed
using the two known wall temperatures and the temperature difference between two
successive fringes as discussed in Section 5.3. Refraction errors have been estimated
to be quite small in the present experiments. The information available about tem-
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Figure 9 Original and filtered intensity distributions in an interferogram.

peratures at fringe locations has been transferred to a two-dimensional grid by using
two-dimensional quadratic interpolation. Interpolation errors have been found to be
less than 0.1%. The major source of error between the original interferograms and
the data on the interpolated grid was found to be due to fringe thinning alone, other
errors owing to filtering for example, being negligible.

The temperature available at this stage for each grid point is a line integral of the
temperature field and constitutes the input to the tomographic algorithm. Since
refraction errors are small in the present set of experiments, projection data on differ-
ent horizontal planes can be taken to be independent. Hence, a sequential
plane-by-plane reconstruction has been carried out to cover the three dimensions of
the cavity. The present discussion on the influence of fringe thinning on tomographic
reconstruction is based on two projection angles. Since the number of projections is
limited, the algebraic reconstruction technique as against the transform method has
been employed. The use of two orthogonal projection angles is not a limitation
because these can still be used to determine the overall features of the dependent
variable [88]. Subbarao et al. [32] have evaluated the performance of the algebraic
reconstruction techniques for interferometric projection data of the temperature
field. They have concluded that the multiplicative algebraic reconstruction technique
(MART) is best suited in terms of errors and computer time. Hence, in the present
work the multiplicative reconstruction technique has been used.

4.1 Fringe Thinning Algorithms

Three fringe thinning algorithms suitable for interferograms recorded using the
Mach-Zehnder interferometer are presented in this section. The first is an automatic
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technique for fringe thinning using the intensity minima within a dark band and does

not require user intervention. This has been compared to two other methods of
approximately locating the intensity minima. These are: (1) the midpoint search
within a dark band, and (2) paintbrush drawing using a personal computer.

4.1.1 Automatic Fringe Thinning Algorithm. The algorithm under discussion is
similar to the one proposed by Funnell [86], but in view of certain differences in the
details, the full algorithm is presented below. It consists of tracing of the fringes in
the direction of the minimum intensity. The direction is decided by using the inten-
sity information over a template of pixels. The computer code developed in the
present study can run using different sizes of templates and handle complex fringe
shapes. The input required for the code are the starting points arbitrarily selected for
each of the fringes.

The algorithm uses the following ideas. The direction of the tracings are defined
as: (a) forward, and (b) backward (Fig. 10). The turning of fringes by more than +90
degrees results in a change of direction and is a special case. Such areas of the
fringes where a turning occurs has to be predefined in the form of a rectangle cover-
ing the area. These cases are classified into four categories depending on the angle of
turning: (a) while in forward direction turning backward up, (b) while in forward
direction turning backward down, (c) while in backward direction turning forward
up, and (d) while in backward direction turning forward down (Fig. 11). To locate
the point of minimum intensity, eight directions of movement (1-8) are defined (Fig.
12). The direction in which the minima should be searched is located by placing a
template whose size is user-specified at the concerned pixel. While the directions of
movement are defined on a 3x3 template, the intensity minima are computed inde-
pendently. The choice of size of the template for minimum intensity calculation is
related to the fringe thickness. The near wall fringes in the present study were very
thin owing to large heat flux. Hence, the choice of template size was limited to the
minimum possible, namely a 3x3 square. Use of a bigger template is likely to inter-
fere with neighboring fringes and is, hence, undesirable. However, a large template
can be used when the fringe bands spread over several pixels. Use of a template as

Forward
-_— (a) (c)
Backward
~ (b) ) (d)
Starting point

Figure 10 Two major directions for trac- Figure 11 Four possible turning options
ing of fringes. of fringes.
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big as 7x7 and 9x9 results in an average direction of minimum intensity and tends to
produce a smooth tracing. On the other hand, local unphysical variations can be
bypassed by using a large template. Hence a 5X5 template appears to be an optimal
choice for interferometric fringes.

The direction in which the fringe is to be traced is determined as follows. The sum
of the intensities in each of the eight directions are computed and the two sequences
of numbers along which the minima occur are searched. The directions producing
the minimum intensity sums are accepted as the minimum intensity directions within
a fringe band. One of these is the previous direction already identified. Hence the
new direction is the one along which the fringe curve has to be extended. In practice
the two intensity sums may not be identical since the average intensity level of the
image is not constant. Any given pixel will be connected to two neighboring pixels
in a thinned image. Hence the past direction of movement has to be preserved to
decide the future connection points. Because of residual noise present in the image,
it is likely that a pixel may show two new directions in addition to its last movement.
In such a case the sum of intensities that is closer to the previous direction is ignored
and the other direction is accepted for the next movement.

The above algorithm can produce loops if precautions are not taken. If a fringe is
in the forward tracing mode and the special turning case is not supplied, the fringe is
forced to move in the specified direction of (1, 2, 3, 7, and 8) and not (4, 5, and 6),
the backward direction (Fig. 12). Similarly in backward tracing, the direction (1, 2
and 8) is not allowed. If one of the directions that is not permissible during forward
tracing is encountered as the final direction of movement, a loop-like structure is
formed. Tracing may not be completed in some cases. In Funnell’s algorithm [86),
user intervention is suggested to circumvent the difficulty. In the present work, the
ambiguity is resolved by an iterative procedure as described below.

To avoid the formation of loops the nearest forward direction is found iteratively
as follows. Once a reverse direction of movement is encountered, the nearest possi-
ble direction is adopted in its place. For example, if the direction of movement is 4
while the tracing is in the forward direction, the direction nearest to 4 is 3. Similarly
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7 can be replaced by 6. If the direction found is 5, then both 3 and 7 are equally

likely. In such a case, the unbiased estimate to 5 is direction 1.

Reallottment of a direction as described above may result in a wrong movement.
For example, the direction of movement identified may be one of the previously
detected points on the thinned image. In such a case the above steps are repeated and
the next closest direction is searched. If the new pixel located falls in one of the four
special cases for turning, the image is rotated by 90 degrees in the clockwise direc-
tion. Then depending on one of the four cases, one may have to move temporarily in
forward or backward directions. During implementation, the code is prepared in a
modular fashion to trace forward (to the right) and backward fringes. Rotation of the
image enables one of the modules to be used without any change in the marked areas
of the fringes.

The boundaries of the image, i.e. the window size are to be prescribed as an input
to the computer code. On reaching the boundary, control in the computer code is
transferred to the starting point so that the rest of the fringe in the opposite direction
can be traced.

The algorithm used for fringe tracing is summarized below:

1. Initialize the thinned image as black (intensity 0).

2. Read the image containing the interferogram including the boundary.

3. Read the starting point data for all the fringes in the image. These points can lie
in the interior of the image.

4. Specify the desired template size at the starting point.

5. Specify the initial direction of movement to the left or right.

6. Obtain the intensity sums in the eight directions and find the two minima.

7. Start tracing in the direction of the minimum intensity.

8. At the boundary, transfer control to starting point.

9. Start tracing in the opposite direction until the boundary is reached.

10. Assign a grey level of 255 to the traced pixels.

11. Repeat the process for all the fringes.

Figure 13 shows the thinned image developed using the procedure given above. Both
zero and 90 degree projections are shown. Figure 14 shows the superposition of the
fringe skeleton and the interferograms and the agreement can be seen to be satisfac-
tory. The fringe immediately adjacent to the top wall (90°) could not be resolved in
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Figure 13 Thinned images, 0° (left) and 90° (right), automatic fringe thinning.
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Figure 14 Superimposed thinned images (automatic fringe thinning) with original images, 0° (left) and
90° (right).

the sense that a minimum intensity direction could not be identified in certain parts
of the image. This could have been taken care of by manually joining the two seg-
ments of the fringe. Instead, the unresolved fringe has been deliberately taken to be
lost. As discussed later, this was not seen to introduce errors in the tomographically
reconstructed temperature field. A closer evaluation of the thinning process is taken
up in Section 4.2.

4.1.2 Curve Fitting Approach. In this method, the intensity minima are assumed
to coincide with the center of the fringe bands. Specifically, the variations in the grey
levels are not made use of. This is equivalent to the classical microscope route of
fringe analysis. A few points within each band are collected using a pixel viewing
utility available on workstations. The number of points to be collected over an entire
fringe depends on the nature of the function to be fitted through the fringe curve. A
greater number of points is chosen in the region of sharp changes in the fringe slope.
Relatively fewer points are chosen when the fringe shape varies uniformly or is a
constant. In the present work, a cubic spline has been fitted through sets of four
points while maintaining slope continuity between adjacent data sets. While this
method has the disadvantage of not identifying the minimum intensity location, it
does offer certain advantages. These are, thinning of all fringes with no loss and
smoothness of the fringe skeleton.

Figure 15 shows the thinned images obtained using the curve fitting approach cor-
responding to the interferograms in Figure 13. In the interferogram for the 90 degree

e
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Figure 15 Thinned images, 0° (left) and 90° (right), curve fitting method for fringe thinning.
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Figure 16 Superimposed thinned images (curve fitting method) with original images, 0° (left) and
90° (right).

projection, an extra fringe can be seen to be captured. This could not be resolved using
the automatic fringe thinning approach. Figure 16 shows the thinned images superim-
posed with the original interferograms. The match is again seen to be good.

4.1.3 Paintbrush Drawing. This is a freehand drawing technique where the mid-
points within a dark band of the interferogram are approximately located and joined
by a smooth curve. It relies exclusively on eye judgement. The paintbrush utility of
the Windows-95 operating system has been employed in this study. The image con-
taining the fringe curves and the original image are subtracted to get the fringe skel-
eton. Figure 17 shows the thinned images corresponding to the interferograms
shown in Figure 13. Owing to the manual user-interactive approach, the 90 degree
projection has an extra fringe over the image generated by the automatic thinning
method (Figure 13). The superposition of the original interferogram and the fringe
skeleton is shown in Figure 18. The paintbrush approach has the disadvantage of not
locating the minimum intensity location, but does not require code development and
hence is reasonably fast.

4.2 Comparison of Fringe Thinning Algorithms

An implementation of the three thinning algorithms to interferometric fringes
reveals the following. The automatic thinning approach is unambiguous and repeat-

Figure 17 Thinned images, 0° (left) and 90° (right), paintbrush drawing method for fringe thinning.
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Figure 18 Superimposed thinned images (paintbrush method) with original, images 0° (left) and
90° (right).

able, in the sense that the thinned fringes do not depend on the starting point speci-
fied by the user. The curve fitting and paintbrush approaches are sensitive to the user
input. On the other hand, they do not require elaborate code preparation time and can
be adopted if thinning is only sporadically required.

A preliminary examination of the thinned images (Figs. 14, 16, and 18) shows
that the three methods produce qualitatively similar results. An independent assess-
ment of these techniques is taken up in the present section. The first criterion
adopted is the comparison of the width-averaged temperature profile for each projec-
tion. Under nominally steady conditions, i.e., after sufficient time is allowed to
elapse, the width-averaged temperature profile in the fluid plotted as a function of
the vertical coordinate can be shown to be independent of the projection angle. This
is because the total energy transferred across any horizontal plane in the fluid layer is
a constant. These profiles are shown in Figure 19, for all the three algorithms stud-
ied. The S-shaped curve, characteristic of buoyancy-driven convection can be seen in
this figure. Within experimental limits, a close match between the zero and 90 degree
profiles is seen to be realized when the first fringing thinning approach is employed.
This match confirms the accuracy of fringe thinning, temperature allocation to
fringes (Section 5), and the absence of interpolation errors while transferring the
data to a rectangular grid. Figure 19 also shows that the fringe lost during thinning

Automatic fringe thinning Curve fringe thinning Paintbrush method
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Figure 19 Width-averaged temperature profile of the projection temperature field inside a roll.
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near the top wall does not degrade energy balance. The agreement in case of the
curve-fitting method is partial, while it is unsatisfactory with the paintbrush method.

The tomographic reconstruction of the temperature field using two projections is
considered next. The three fringe thinning algorithms are quantitatively evaluated.
The three-dimensional temperature field in the fluid layer has been reconstructed
using the MART algorithm. The MART algorithm converged asymptotically to a
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Figure 20 Reconstructed temperature surface within the cavity at the central horizontal plane.
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solution for all the three thinning algorithms. Since a correction corresponding to the
average of all the rays passing through a pixel was used, a relaxation parameter of
unity was used for reconstruction (see Section 6 for details). A convergence criterion
of 0.01% between successive updates was employed for stopping the iterations. For
each horizontal plane, the number of iterations required was in the range of 30 to 50.

Figure 20 shows the reconstructed temperature surfaces along the central plane
for all the three thinning algorithms. These surfaces show the formation of rolls. The
rolls show only a minor variation in the x direction and accordingly, may be classi-
fied as longitudinal, with the roll axis being parallel to the x coordinate. Qualitatively
all the three methods display similar results for the temperature field. The formation
of longitudinal rolls can be seen with greater clarity with isotherms. The isotherm
plots along the midplane of the fluid layer from the automatic thinning algorithm is
shown in Figure 21. The stretching of isotherms in one direction clearly brings out
the orientation of the rolls.

A quantitative assessment of the reconstructed temperature field is taken up next.
To compute errors, a reference solution is required. Since this is not available for
experimental data, the following strategy has been adopted. The temperature field
obtained by merging the S-shaped curves in the two projections has been taken as the
reference solution. The temperature field thus developed satisfies exactly the energy
balance criterion. Errors have been determined between the temperature field devel-
oped from the thinning algorithms and the reference solution. Errors reported are the
absolute maximum error (E,, in °C), the RMS error (E, in °C) and the percentage
RMS error (E,). The percentage RMS error has been calculated with respect to the
temperature difference across the fluid layer. The complete fluid layer has been con-
sidered while obtaining these quantities. The errors for each thinning algorithm have
been summarized in Table 2.

An examination of Table 2 shows that errors associated with the automatic thinning
algorithm are uniformly small. The absolute maximum errors with the other algo-
rithms are larger, being in excess of 1°C. This may not be acceptable in many applica-
tions. A comparison of the absolute maximum and RMS errors shows the latter to be

Figure 21 Isotherms on the midplane of the fluid layer.
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Table 2 Reconstruction Errors from the Three Fringe Thinning Algorithms

Error Automatic fringe thinning| Curve fitting method | Paintbrush method
E,°C 0.034 1.51 1.03
E,, °C 0.011 0.60 0.34
E, % 0.066 3.51 2.01

smaller, by more than a factor of two. This suggests that large errors are localized over
the flow field. The percentage RMS error is truly small for the automatic thinning algo-
rithm, while it is in the range 2-3.5% for the curve fitting and paintbrush methods. This
range may still be acceptable in engineering measurements.

The extent to which large errors are localized over a plane of the fluid layer has
been examined next. To this end, the percentage fractional area over which a range of
error values are to be found, has been computed (Table 3). Error bands considered
are 95-100%, 75-95%, and 50-75% of the maximum errors. All three algorithms
show that the largest error are confined to only a small area, being 0.19, 0.43, and
0.24 percent respectively, for the three algorithms. This shows that all three thinning
algorithms are acceptable in principle. The final choice depends on the need for a
high-accuracy measurement on one hand, and the time available for code develop-
ment on the other.

A comparison of the wall heat transfer rates determined from the temperature
field is presented next. The dimensionless form of the heat flux, namely the Nusselt
number has been determined in the present study. For reasons discussed below, heat
fluxes have been computed over one as well as two roll widths at the wall. The wall
heat flux is simply the gradient of the field temperature in the near-wall region. It is
possible to define a Nusselt number for each of the hot and cold walls. The average
Nusselt number can be computed from the slope of the S-shaped curve shown in
Figure 19. For comparison, the benchmark result for Nusselt number has been taken
from Gebhart et al. [89]. This reference value is based on a wide variety of experi-
ments reported in the literature and has an uncertainty level of 20%.

Figure 22 shows the local Nusselt number variation with the z-coordinate over
one roll for the three thinning algorithms. Both the hot and cold walls have been
considered. The view angle is 90 degrees and so the roll formation is visible in this
projection. The roll being inclined, the Nusselt number variation on the two walls are
of opposite orientation. The three thinning algorithms qualitatively reproduce these

Table 3 Fractional Distribution of the E, Error over a Horizontal Plane

Nl}mber of Pomts (%) Automatic fringe thinning | Curve fitting method Paintbrush method
having error in the range
>95% 0.19 043 0.24
75-95% 2.09 024 2.0

50-75% 13.4 7.24 4.47
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Figure 22 Local Nusselt number variation over the hot and cold plates; comparison of the three thinning
algorithms.

trends. The Nusselt number profile predicted by the automatic thinning algorithm
can be seen to be the smoothest of the three. Differences among the three algorithms
can be seen to have increased in Figure 22, compared to the errors reported in Table
2. This is because the Nusselt number is calculated as the derivative of the tempera-
ture field. The local Nusselt numbers calculated from the three algorithms are within
+10% of one another.

Table 4 presents the Nusselt number averaged over a single roll in the fluid layer.
The automatic fringe thinning algorithm gives Nusselt numbers that are compara-
tively close on the two walls. For the zero degrees projection, the average Nusselt
number over the two plates differs for both the curve-fitting and the paintbrush meth-
ods. The roll in the present study is seen to be formed parallel to the zero degrees
axis. There is a considerable mismatch in the average Nusselt number over a single
roll as viewed along the 90° projection data. The cavity-averaged Nusselt number,
however, is close to the predictions of Gebhart et al. [89].

To stretch the automatic thinning algorithm to a problem of much greater diffi-
culty, the following strategy was adopted. Instead of two, six independent view
angles were considered. For each projection, the entire width of the cavity (namely

Table 4 Comparison of Average Nusselt Number Based on the Width
of a Single Roll

Automatic fringe ) Curve fitting !}aintbrush method | Gebhart et al. [89)
thinning method
0%, cold 237 301 181
0°, hot 2.38 3.14 3.11
90°, cold 299 2.53 3.02
90°, hot 241 2.88 234

Cavity average 2.53 2.64 257 2.59
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Table 5 Average Nusselt Number over the Full Width of the Cavity

Projecgon Angle in Nu (Cold) Nu (Hot) Nu (Average) from all
egree angles
0 2.18 1.94
30 233 2.02
60 1.99 2.34
90 2.00 2.17
120 2.19 2.32
150 227 1.95
2.14

500 mm) was scanned. The average Nusselt number obtained for each projection and
for each wall is presented in Table 5. The total average Nusselt number seen here is
lower than that predicted by the one-roll data. It is however within the experimental
uncertainty of the reference value. As a second check on data reduction, experiments
were conducted at a Rayleigh number of 40200. The Nusselt number calculated for
the entire fluid layer using the automatic thinning algorithm was found to be 3.32.
This value is within 3% of the correlation given by Gebhart et al. {89].

4.3 Closure

Three fringe thinning algorithms based on a search for minimum intensity, curve
fitting, and the paintbrush option available on PCs have been compared in the con-
text of tomographic inversion. The main conclusions that have been drawn from the
present study are:

1. The three methods of fringe thinning produce qualitatively similar temperature
fields.

2. Quantitative analysis shows differences in the results, but large errors are local-
ized and over 95% of the fluid region, errors are smaller than 1%.

3. The loss of a wall fringe during the automatic fringe thinning does not increase
errors either in the reconstructed temperature field or the Nusselt number.

4. The automatic fringe thinning algorithm requires the most code preparation
time. It is however superior to the other two methods since it is repeatable and takes
the minimum computer time for execution. It is also physically meaningful since it
closely satisfies the energy balance criterion.

5 DATA REDUCTION

Principles of interferometry and the evaluation of interferograms for the determination
of fringe temperature are discussed in the present section. It is shown that fringes in the
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infinite fringe setting are isotherms when the flow field is two-dimensional. More gen-
erally, fringes are isocontours of a path integral function of temperature.

5.1 Interferometry

In the infinite fringe setting, the optical path difference between the test and the ref-
erence beam is zero in the absence of any thermal disturbance. Hence interference is
constructive and a bright field-of-view is obtained. The image obtained is practically
fringe-free, but may show imperfections associated with the spatial filter and the
interferometer optics in the form of a single broad fringe. When non-isothermal con-
ditions prevail in the path of the test beam (i.e., a candle flame) each ray of light
undergoes a change of phase, depending on the extent of change of the refractive
index of the medium. Hence an optical path difference is established between the test
and the reference beams, resulting in a fringe pattern. In the wedge fringe setting, the
optical components are deliberately misaligned to produce a set of line fringes of any
convenient spacing. In the presence of a thermal disturbance the fringes would be
displaced towards regions of higher temperatures, thus producing a fringe pattern
that resembles the temperature profile itself.

In the present discussion, attention is restricted to image patterns that form in the
infinite fringe setting. Here, the test beam records information about the variation of
the refractive index of the fluid. To make temperature measurement possible, the
refractive index variation must be related to temperature. The relationship between
the refractive index n and temperature T is established as follows. For transparent
media, the Lorenz—Lorentz relationship

n-1

m = constant “)

holds. For gases, the refractive index is close to unity and the expression reduces to
the Gladstone-Dale equation

n—;l = constant o)

where p is density [4]. Hence dn/dp = constant. For moderate changes in tempera-
ture, typically < 20 K and nearly uniform bulk pressure, density varies linearly with
temperature as

p = po(l - (T~ Ty)) ©)
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It follows that dn/dT is also a constant, being purely a material property. Hence
changes in temperature simultaneously result in changes in refractive index and from
principles of wave optics, lead to changes in the phase of the wave. This is the origin
of fringe formation in interferometric images.

If temperature differences within the physical region being studied are large, two
factors arise which limit the usefulness of interferometry. These are: (1) the linearity
of relationship between density and temperature, and (2) beam deflection due to a
refractive index gradient. These factors complicate the data reduction process and
make interferometry more of a qualitative tool. However, fringes continue to form
and images can be used for flow visualization. In the present study, temperature dif-
ferences between the test section and the ambient are within 20 K and the linear
relation between refractive index and temperature has been taken to be valid.

Let n(x, y) and T(x, y) be the refractive index and temperature fields respectively,
the physical domain being a two-dimensional horizontal plane. A three-dimensional
region can be visualized as a collection of two-dimensional horizontal planes. Let n
and T, be the reference values of n and T respectively as encountered by the refer-
ence beam. Let L be the total geometric path length covered individually by the test
and reference beams. The interferogram is a fringe pattern arising from the optical
path difference

L

APL = J.(n(x, ¥) = ng)ds )
0

Differences between n(x, y) and n, occur only over the length of the test cell. Hence
L can be taken directly to be the length of the test cell. In terms of temperature, the
difference in the path length can be expressed as

L
APL = %I(T(x,y)—ro)ds @)
0

The integral is evaluated along the path of a light ray given by the coordinate s.
Neglecting refraction effects, this path will be a straight line and the integral evalua-
tion is greatly simplified. The fringes seen on the interferograms are a locus of points
having the same optical path difference. Hence on any given fringe the optical path
difference APL is a constant and

L

[y -Toyas =
0

APL

anldT = constant




TEMPERATURE MEASUREMENT USING INTERFEROMETRIC TOMOGRAPHY 299

Hence,

L

IT(x, ¥)ds — ToL = constant

(4]

The integral ILT(x, y)ds is defined as TL, where T is the average value of T(x, y) over

the length L of the laser beam through the test cell. This is also the line integral of the
function 7(x, y). Hence

L(T-T,) = constant &)

In the infinite fringe setting Equation (9) holds good for all fringes. When L is constant
for all the rays, Equation (9) implies that T is a constant over the fringe and hence each
fringe represents a locus of points over which the average of the temperature field
along the direction of the ray is a constant; in this sense, fringes are isotherms.

Consider a geometry where the length of the ray through the test cell changes for
each ray. The line integral of the function T(x, y) (= T2) at a location which corre-
sponds to a length L, can be given in terms of the line integral of the function T(x, y)
(= T1) at some other location corresponding to a ray length of L, as

- L, -
Ty = T0+17‘(T1-T0) (10)
2

Since the change in path length per fringe shift is a constant, the temperature drop per
fringe shift is also a constant. Defining the function L(T — T,) in Equation (9) as f(T,
L), the fringe temperature on two successive fringes for same value of L can be given as

: - APL
frmgel fl(T7 L) = m
. = .y _ (A+APL)
fringe 2 H(T L) = Tl

where A is the wavelength of the laser used. From these two equations, the tempera-
ture change per fringe shift can be calculated as

AL

1 - -
AT, = Z(fz(T, L)-fi(T,L)) = m

1)
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The interferograms reflect the equation

L
_ dnJ‘
APL = T (T-Ty)ds

0

This shows that the fringe patterns contain information about the line integral of the
temperature field. The set of all line integrals (an interferogram, in the present study)
defines a projection of the temperature field. The interferograms can be numerically
processed so that the left side of the above equation is a known quantity. The mathe-
matical problem now is one of solving the temperature field from its projections. If
the original field is three-dimensional, its projection is a field in a dimension reduced
by unity, i.e., two for the present case. It is theoretically possible to record a large
number of projections of the test field at various angles and reconstruct the original
temperature function with accuracy. This process of three-dimensional reconstruc-
tion from two-dimensional projections, called tomography, is discussed in Section 6.

The above derivation of temperature difference between successive fringes will be
modified in the presence of a strong refracting field. In the present context, a strong
refracting field will arise when a large transverse temperature gradient is present. The
light ray will not travel in a single horizontal plane, and depending on the sign of the
temperature gradient, the ray will bend in the vertical plane owing to refraction effects.
Refraction, thus will introduce an additional optical path length to the test beam.
Refraction effects can be precisely computed and accounted for. The extent of refrac-
tion determines the type of the three-dimensional reconstruction algorithm that can be
used in a particular experiment. In the present work, refraction errors were found to be
negligible and hence a sequential plane-by-plane reconstruction approach was possible.

An estimate of the increase in path length due to refraction is developed here.
Following Goldstein [4], consider the path of the light ray AB through a test cell (Fig.
23) when it is affected by the refraction effects. Let o be the bending angle at a loca-
tion P of the test cell. The optical path length from A to B is given by:

Figure 23 Calculation of bending angle of light ray due to refraction effects.
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L L
ds
AB = [n(s,,ds = [n(xy, -2
0 0

Here y is a coordinate parallel to the gravity vector and z is parallel to the direction of
propagation of light. Assuming o is small, cosc can be expressed as

cosa = (1-a?)i”2
and further using the first two terms of the binomial expansion

%
cosO=1—-—
2

Hence the optical path length is given by

L L
2\-1 2
AB = J.n(x,y,z)(l —%) dz = In(x,y,z)(l +%)dz
0 0

The angle a(z) at any location z can be calculated as described below.

Consider Figure (24) where two wave fronts at times T and T + AT are shown. At
time 7 the ray is at a position z. After a time interval of At, the light has moved a
distance of Az. Hence

Wave front
(after time A1)

Fluid layer

Light ray

Ay

z Wave front Az
(initial)

RPN | S

Figure 24 Bending of a light ray in a stratified fluid medium due to refraction.
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Az = Arc—"
n

where ¢ is the velocity of light in vacuum. There is a gradient in the refractive index
along the y direction. The gradient in n results in a bending of the wave front due to
refraction. The distance A%z is given by

A Al/n(x, y,
Nz = 8z, B2y 0, = Ay = Az, + T (A2)y = -co"(A—y“)Amy

Let Ao represent the bending angle at a fixed location z. For a small increment in the
angle, Ao can be expressed as

2

= - Az Aln(xy2)
Ao = tan(Ao) = Deltay ~ Co A At
_ Al/n(x,y, z)
- "(X,}’, Z)AZ Ay
In the limiting case
1 9dn(x,y,2)

do = ) 12

nxny 9y ¢ (12

Hence the cumulative bending angle at any location along the z axis is

a(z)=j 1 3n(x,y,z)dz

n(x,y,z) 9y
0

From Equation (12) the optical path length from A to B is

L

= L1(om2 )\ _ & L (omyy,
AB = jn(x,y,z)(l +2n_2(8y) F4 )dz = n(x,y,z)L+ 7%, 5, z)(ay) L
0

where 7i(x, , z) is the average line integral of n(x, y, z) over the complete length L.
Similarly the expressions 1/6n and 07i/dy represent average line integrals over the
length L. The optical path length of the reference beam is simply
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L
Reference path = Inodz = nyL (13)

0

Hence the difference in the optical path length in the presence of refraction effects is

APL = fi(x, y,z)L + — a—nj2L3—n0L

6n(x,y, z)(

1 on
L4y —m—
(n(x’ y’ Z) nO) + = 6n(_x y, Z)(ay]

d 1 on
= (Ty(xy,2) - Ty)L a7 m(ay)

where 7_'_1(x, ¥, 2) represents the average line integral of the temperature field along
the direction of the ray at a given point on the fringe. The corresponding ray over the
next fringe traverses an additional distance of A. Hence this can be written as

1 on
APL+A = (Ty(x, y, 2) - TyL™ —( )
( 2(x Y, 2 ) 0) dT 6n(x v, Z) ay

where T,(x, y, z) represents the average line integral of the temperature field along
the direction of the ray at a point on the next fringe. The successive temperature
difference between two fringes can be computed from

(Tz(x5 ¥, < ) T](x: Y, Z))L ;(Z;’)

dT 6n(x, y, z)
(&) -G a4

and the temperature drop per fringe shift is

J-G))) e

Since the gradient in the temperature field is not known before the calculation of the

. aT aT
fi t ture the fact -
ringe temperature the factor (3} 2) (3}

AT, = Ldnl/dr()“gn(xfy, Z)(Zﬁ’) ((g_:

] must be calculated from a guessed
1
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temperature field. Thus, the final calculation of AT, relies on a series of iterative steps

with improved estimates of the temperature gradients.

The refraction errors in the present set of experiments can be shown to be quite
small. As a conservative estimate, the temperature gradient term can be replaced by
its value at the wall. This would give an upper bound on the refraction error. For the
following numerical values: A = 632.8 nm, L = 0.5 m, dn/dT for air at 20°C and 1 bar
=-0.927-10-% (°C)-! and refractive index of air at 20°C = 1.0, the contribution of the
refractive index term in Equation (14) can be evaluated as 2.617-10-8 m. This value
is small as compared to the wavelength (= 6328-10-8 m).

The number of fringes expected in a projection can be estimated directly from the
relation

Thot - Tcold
AT,

E

Number of fringes =

This equality was seen to be satisfied in all the experiments reported in the work.
This also indicates that refraction errors in the present experiments are negligible.

5.2 Evaluation of Interferograms

The thinned fringes essentially carry the information of the path integrated tempera-
ture field. Hence, to extract temperature profiles and heat transfer rates from the
interferogram, it is the fringe skeleton rather than the fringe bands that is needed. In
the context of three-dimensional reconstruction of the temperature field, the line
integral of the temperature field is required over a uniform grid so that tomographic
algorithms can be applied. Consequently the calculation of temperature associated
with the fringes is an important step in interferometry. The methodology adopted for
the calculation of fringe temperature is presented in this section. The technique has
been discussed in the context of an experiment with a differentially heated fluid layer
(Section 7.3).

For definiteness, consider the fringe skeleton as shown in Figure 25. The upper
and lower walls as shown in the figure have known temperatures. It is possible that
high temperature gradients near the wall produce a large number of thin fringes.
Hence during the recording and processing of the interferogram a few near wall
fringes could be lost. The loss of near wall fringes could be due to the finite resolu-
tion of the CCD camera, and loss of signal information during filtering and other
image processing operations. The first fringe seen in a thinned interferogram near
the wall will thus be of arbitrary order. One cannot assign a temperature to the
fringes directly from the wall temperature by using Equation (15) though the wall
itself is an isotherm. Even when no near-wall fringe is lost, assigning a temperature
to the first fringe is not straight-forward since the wall (though an isotherm) need not
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Figure 25 Calculation of the fringe temperature from an idealized fringe skeleton.

be a fringe, i.e., a site for destructive interference. The following procedure has been
adopted in the present work to derive temperature values at the fringes.

Over the interferograms, two regions were selected, one where the fringes are
close to the cold wall (marked I in Fig. 25) and the other where the fringes are close
to the hot wall (marked II in Fig. 25). Two sets of independent calculations were
performed to obtain all the fringe temperatures in the interferogram. The estimates
of fringe temperature from both regions were found to be within 1%. The fringe tem-
peratures then allotted was the average of the two estimates. Consider the fringes
marked 2, 3, 4 (region I, cold wall) in Figure 25. Fitting a function of the type

T(y) = a+ by + cy?

where y is a vertical coordinate, one obtains

AT, = T,-T; = b(y,-y3) +c(y3-»3)

AT, = Ty~ T, = b(y3-y) + c(y3-y3)

These two equations can be solved for the constants b and c. Here, AT, is the tempera-
ture change per fringe shift and y is a local coordinate measured from the upper wall.

The local wall temperature gradient is simply (37/9y), . y, From Equation (15),
this gradient can be expressed as (b + 2cy,). The gradient in the temperature field
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very near the wall is likely to be constant since conduction heat transfer is dominant.
Hence the gradient in temperature field at the first fringe (fringe marked 2 in Fig. 25)
is expected to be same as the gradient at the wall in region I. The gradient in temper-
ature field at the first fringe is (b + 2cy,). The wall temperature gradient is allotted as
an extrapolation step, the average of the two gradients. Once the gradient at the wall
is known, the first fringe temperature near the cold wall can be calculated as

(b+2cy)+ (b+2cy,)
T, = (y2-1) l0.5 2 + T

Since AT,, the temperature difference between successive fringes is known, the sub-
sequent fringe temperatures are found out by simply adding or subtracting the
amount from the first fringe temperature depending upon the sign of the temperature
gradient. Since the image is available in the form of a matrix, the above procedure
for calculating the fringe temperature can be implemented at any column. The col-
umn where the near-wall fringes are dense (as in regions I and II) is preferred for this
purpose. Column-to-column variation in the computed fringe temperatures was
found to be generally small for the interferograms recorded in the experiments.

5.3 Temperature Data over a Grid

Once the absolute fringe temperatures are obtained, this data must be transferred to a
two-dimensional uniform grid over the fluid region. This is required to apply tomo-
graphic algorithms for the reconstruction of the three-dimensional temperature field.
The data transfer is achieved by interpolation as described below. The nine different
points where the fringes intersect the column (Fig. 26) are first mapped to a uniform
rectangular grid using a quadratic polynomial as a basis. Temperature at any point
(such as P, Fig. 26) can be computed by using two-dimensional quadratic interpola-
tion again [90]. Interpolation using a higher order schemes can produce oscillations
in the interpolated data. Consequently, the interpolated value in the interior may
exceed the values at boundary points and is thus undesirable. Though rare, this may
occur when the data spacing is large. In the present study, such overshoot and under-
shoot have been taken care of by using the idea of universal limiters [91]. The limiter
used is one-dimensional in the sense that it is applied only along the vertical direc-
tion. Once the interpolated value at a point on the superimposed grid is obtained, its
value is compared with the two nearest vertically separated fringes. If the interpo-
lated temperature is outside the range of the two fringe temperatures, the limiter is
switched on to force the interpolated value to be one of the temperatures closest to
the interpolated value. Interpolation errors in the present work were found to be neg-
ligible (< 0.1%).

The collection of thinned images from the Rayleigh-Benard experiment at a 90
degrees projection angle is shown in Figure 27. Interpolation has been carried over
the entire image by superimposing a two-dimensional grid on it. The grid has 120



TEMPERATURE MEASUREMENT USING INTERFEROMETRIC TOMOGRAPHY 307

-1,1) an

1

| [ 4 7
2 5 8
3 6 9

-1,-1) 1,-1

Figure 26 Data transfer from an interferogram to a two-dimensional grid.

points along the horizontal and 21 points along the vertical direction. Once the inter-
polation is complete isotherms have been drawn to represent the fringes in the origi-
nal image. This is shown in Figure 28. It can be seen here that the temperature data
on the grid follows closely the pattern of the original thinned image and interpolation
errors are negligible. The isotherms based on the interpolated grid data are seen to
capture the lost fringe in the interferogram as well. Hence the isotherms in Figure 28
show all the fringes with continuity throughout the width of the cavity.

The correctness of fringe thinning, assigning fringe temperatures, and a check on
the magnitude of interpolation errors have been examined by using the following
result: At steady state, the width-average of the line integrals of temperature field
plotted as a function of the vertical coordinate is independent of the projection angle.
This is because the total energy transferred across the cavity is unchanged from one
horizontal plane to the next. Figure 29 shows the variation of line integrals of the
temperature field averaged over a horizontal plane as a function of the vertical coor-
dinate. The line integrals are simply the temperature as computed from the interfero-
grams. The y coordinate is measured from the cold top wall. Both zero and 90
degrees projections have been shown and the Rayleigh number based on the temper-

Figure 27 Collection of thinned images.
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Figure 28 Isotherms obtained from the interpolated data.

ature difference across the fluid layer is 13900. The corresponding graph for Ra =
40200 is shown in Figure 30. The S-shaped curve, characteristic of buoyancy-driven
convection can be seen in all the figures. The curves for the two projections match
closely and their slopes at the hot and cold walls are practically equal. Temperatures
in the zero and 90 degrees data have been subsequently corrected to ensure that
between the two projections, the S-shaped curve is strictly unique. This step does not
alter the isotherms in the projection data to any significant degree, but is expected to
improve the convergence of the tomographic inversion process.

6 COMPUTERIZED TOMOGRAPHY

The three-dimensional temperature field can be reconstructed from its interferomet-
ric projections using principles of tomography. Tomography is the process of recov-
ery of a function from a set of its line integrals evaluated along some well-defined
directions. In interferometry, the source of light (the laser) and the detector (CCD
camera) lie on a straight line with the test cell in between. Further a parallel beam of
light is used. This configuration is called transmission tomography and the ray con-
figuration as the parallel beam geometry [28]. Tomographic algorithms used in inter-

15 {

i0 T 1 Figure29 Width-averaged temperature profiles from the
{ interferograms; Ra = 13900.
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Figure 30 Width-averaged temperature profiles from the interferograms; Ra = 40200.

ferometry reconstruct two-dimensional fields from their one- dimensional projec-
tions. Reconstruction is then applied sequentially from one plane to the next until the
third dimension is filled.

Tomography can be classified into: (a) transform (b) series expansion, and (c)
optimization methods. Transform methods generally require a large number of pro-
jections for a meaningful answer [92]. In practice, projections can be recorded either
by rotating the experimental setup or the source-detector combination. In interferom-
etry, the latter is particularly difficult and more so with the Mach—Zehnder configu-
ration. With the first option, it is not possible to record a large number of projections,
partly owing to inconvenience and partly due to time and cost. Hence, as a rule, a
large number of projections cannot be acquired with interferometry and one must
look for methods that converge with just a few projections. Limited-view tomogra-
phy is best accomplished using the series expansion method [29]. As limited-view
tomography does not have a unique solution, the algorithms are expected to be sensi-
tive to the initial guess of the field that start the iterations. Optimization-based algo-
rithms are known to be independent of initial guess, but the choice of the optimization
functional plays an important role in the result obtained. Depending on the mathemat-
ical definition used, the entropy extremization route may yield good results, while the
energy minimization principle may be suitable in other applications.

For the algebraic techniques considered in the present study, an unbiased initial
guess such as a constant profile was seen to be good enough to predict the correct
temperature field. A complete random number guess can also be viewed as an unbi-
ased initial guess. Tomography being an inverse technique, was seen to preserve (and
amplify under certain conditions) the noise in the initial data. The dominant trend in
the field variable was seen to be however captured during tomographic inversion.
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6.1 Convolution Backprojection

The convolution backprojection (CBP) algorithm for three-dimensional reconstruc-
tion classifies as a transform technique. It has been used for medical imaging of the
human brain for the past several decades. Significant advantages of this method
include (a) its noniterative character, (b) availability of analytical results on conver-
gence of the solution with respect to the projection data, and (c) established
error-estimates. A disadvantage to be noted is the large number of projections nor-
mally required for good accuracy. In engineering applications, this translates to
costly experimentation, and nonviability of recording data in unsteady experiments.
The use of CBP continues to be seen in steady flow experiments, particularly when
the region to mapped is physically small in size. The statement of the CBP algorithm
is presented below.
Let the path integral equation be written as

p(s,0) = [fir, 0)dz (16)

(o

where p is the projection data recorded in the experiments and f'is the function to be
computed by inverting the above equation. In practice, the function fis a field vari-
able such as density, void fraction, attenuation coefficient, refractive index, and tem-
perature. The symbols s, 0, r, and ¢ stand for the ray position, view angle, position
within the object to be reconstructed, and the polar angle, respectively (Fig. 31). The
integration is performed with respect to the variable z along the chord C of the ray
defined by s and 6. Following Herman (28], the projection slice theorem can be
employed in the form

P(R,0) = f(Rcos(), Rsin(0)) a7

where the overbar indicates the Fourier transform and R is the spatial frequency. In
words, this theorem states the equivalence of the one-dimensional Fourier transform
of p(s, 0) with respect to s and the two-dimensional Fourier transform of f(r, ¢) with
respect to  and ¢. A two-dimensional Fourier inversion of this theorem leads to the
well-known Radon transform

T oo

fir,0) = [ [ (R, ©)expiznRreos(6 - 0))IRIdRd

0 —c0

where
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(R, 0) = I p(s, 0) exp (—i2nRs)ds

—o0

The first integral in the form given above is divergent with respect to the spatial fre-
quency R. Practical implementation of the formula replaces |R| by W(R)|R|, where W
is a window function that vanishes outside the interval [-R_, R ]. The cut-off fre-
quency R_ can be shown to be inversely related to the ray-spacing for a consistent
numerical calculation of the integral. When the filter is purely of the band-pass type,
the Radon formula can be cast as a convolution integral [93]:

£5,0) = [ [ (s, 9)a(s" - 5)dse (18)
0 oo
where
q(s) = IIRI W(R)exp(i2nRs)dR
and

s’ = rcos(0-9)

The inner integral over s is a one-dimensional convolution and the outer integral, an
averaging operation over 0 is called back projection. This implementation of the
convolution backprojection algorithm is commonly used in medical imaging,
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Applications of the CBP algorithm to flow and heat transfer problems have been
reviewed by Munshi {94).

6.2 lterative Techniques

Series expansion methods are perhaps the most appropriate tomographic technique
for interferometry since they work with limited projection data. These methods are
iterative in nature and consist necessarily of four major steps, namely:

1. initial assumption of the field to be reconstructed over a grid,

2. calculation of the correction for each pixel,

3. application of the correction, and

4. test for convergence.
The central idea behind the calculation of the correction (step 2) is the following.
With the assumed field, one can explicitly compute the projection values by numeri-
cal integration. The difference between the computed projection and experimentally
recorded projection data is a measure of the error in the assumed solution. This error
can be redistributed to the pixels so that error is reduced to zero. Repetition of these
steps is expected to converge to a meaningful solution. The series expansion tech-
niques differ only in the manner in which the errors are redistributed over the grid.

The word convergence in step 4 is used in an engineering sense as a stopping
criterion for the iterations, and not in the strict mathematical sense, where a formal
proof is needed to show convergence of the numerical solution to the exact solution.

The iterative methods require the discretization of the plane to be reconstructed
by a rectangular grid (Fig. 32). The length of the intercept of the i-th ray with the j-th
cell in a given projection is known as the weight function, w;. If f; is the field value
in the j-th cell, it can be shown that

N
0, = Zwijﬁ i=12..,M (19)

j=1

where ¢ refers to the projection data. The number of unknowns N in most cases is
much larger than the number of unknowns M. This discretization produces a
matrix equation

[Wij](fj} = {¢;} (20)

The problem of reconstruction thus is a problem of inversion of a rectangular matrix.
Iterative techniques that are used in the tomography can be viewed as developing a
generalized inverse of the matrix [w,]. This matrix in a typical laser tomography
problem has large dimensions. For the differentially heated fluid layer, the greatest
matrix size encountered was 560x14400. This is a sparse matrix with many of its
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elements being zero. General purpose matrix libraries cannot be used to invert such
matrices since they are highly ill-conditioned and rectangular in structure. The tomo-
graphic algorithms can be seen as a systematic route towards a meaningful inversion
of the matrix equation.

Series expansion methods being discussed in the present section can be classified
into: ART (Algebraic Reconstruction Technique) and MART (Multiplicative Alge-
braic Reconstruction Technique). The optimization techniques that are also iterative
in nature have been discussed with reference to maximization of the entropy and
minimization of the energy functions.

The ART and MART families of algorithms differ only in the method of updating
the field parameters in each iteration. In ART, the correction is additive while for
MART, the correction is multiplicative. In both cases, the numerical procedure is
based on the comparison of the estimated projection from an initial guess with the
measured projection data obtained through experiments. This gives a correction term
for the field variables. The value of the field variables are then updated. Once an
iteration is over, the field value differs from the previous guess. The extent of the
difference is then calculated. If the difference is within acceptable limits, the field
value is taken to represent the physical field. Otherwise the jterations continue until
the convergence criterion is satisfied.

Since the original field in real experiments is unknown, an estimate of the number
of iterations can be found by using test functions (called phantoms) that are similar
in nature to the original field. The test functions are also perturbed with noise to
gauge the sensitivity of the algorithms to issues such as initial guess and errors in the
projection data. This method can only be adopted where an exact estimate of noise in
the projection data and a good knowledge of the original field is known beforehand.
Variations in the noise level and nature of distribution of the noise in the projection
data can alter the convergence rates.

Tomographic algorithms used in the present work are iterative in nature and inter-
mediate steps may also involve iterations in the form of FOR loops. To identify the
beginning and the ending of each iterative loop, start and close labels with statement

numbers have been indicated in the description of each algorithm. These algorithms
are briefly surveyed in the following sections.



314 ANNUAL REVIEW OF HEAT TRANSFER, VOL. 12

6.3 ART

Various ART algorithms are available in the literature owing their origin to Kacz-
marz [95] and Tanabe [96]. They differ from each other in the way the correction is
applied. Those presented below have been tested successfully by the author and his
coworkers in the context of interferometry.

6.3.1 Simple ART. This algorithm has been suggested by Mayinger [6]. The cor-
rections are applied through a weight factor, computed as an average correction
along a ray. The difference between the calculated projections with the measured
projection data gives the total correction to be applied for a particular ray. The aver-
age correction is then the contribution to each cell falling in the path of the ray. This
is computed by dividing the total correction obtained with the length of the ray. The
calculated projections are computed once for a particular angle. Though the field
values are continuously updated the calculated projection values remain unchanged
until the completion of all the rays for a given angle. This algorithm will be referred
to as ART1 in future discussions.

Let ¢4 be the projection due to the i-th ray in the 0 direction of projection and fi
be the initial guess of the field value. Numerically the projection §;e using the cur-
rent field values is defined as:

N
bio = Fowief;  i8=12..,M, @1

j=1

The individual steps in the algorithm are listed below.

Calculate the total value of weight function (W) along each ray as:
start: 1 For each projection angle (0):

start: 2 For each ray (i0):

start; 3 For each cell (j):
N
Wig = 2 Wi, j
j=1
ose:
close: 2
close: 1

start: 4 Start iterations (k):

start; 5 For each projection angle (0):

start: 6 For each ray (i0):

Compute the numerical projection (Equation 21)
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close: 6
start: 7 For each ray (i9):
Calculate the correction as:

Adyp = 0;9—Pio

Calculate the average value of correction as:

rvw A¢i0
Adip = W
close: 7
start: 8 For each ray (i8):

start: 9 For each cell (j):
If wyg ; is non-zero then:

f’_new = f}old+ P'Zq)_.e

where W is a relaxation factor.
close:

close: 8

close: 5

Check for convergence as:

If

abs[f::k#k] x100<e

(where e is the prescribed convergence criteria, say 0.01%)
STOP:

Else: Continue

close: 4 (k)

6.3.2 Gordon ART. The ART algorithm contributed by Gordon et al. [97] is con-
sidered. Mayinger’s ART is similar to this original version under the condition that
no two rays simultaneously pass through a particular cell for a given projection. In
this method corrections are applied to all the cells through which the i-th ray passes,
using the weight factor which is exactly the proportion of w; to the total length of the
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ray. The projection data gets updated after calculations through each ray. This proce-
dure will be referred to as ART?2. The individual steps are:

Calculate the total value of weight function (W,y) along each ray as:

start: 1 For each projection angle (8):

start: 2 For each ray (i6):

start: 3 For each cell (j):

N
Wi = Zwie,jxwie,j

j=1

close: 3

close: 1

start: 4 Start iterations (k):

start: 5 For each projection angle (6):

start; 6 For each ray (i0):

Compute the numerical projection (Equation 21)
Calculate the correction as:

Adig = 0,0 io

start: 7 For each cell (j):
If Wi, j is non-zero then:

a Ao X Wi
f} ew — f}old_'_ “'——W—

where  is a relaxation factor.

close: 7

close: 6

close: §
Check for convergence as:

If

k+1_ fk
abs[f—;ﬁli} x100<Le

STOP:
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Else: Continue
close: 4 (k)

6.3.3 Gilbert ART. Gilbert [98] has developed independently a form of ART
known as SIRT (Simultaneous Iterative Reconstruction Algorithm). In SIRT, the ele-
ments of the field function are modified after all the corrections corresponding to
individual pixels have been calculated. This will be referred to as ART3. The numer-
ically generated projections are computed once for all the angles and gets updated
only after the completion of calculations through all the rays. For each ray from all
angles, all the cells are examined to look for those rays which pass through a partic-
ular cell. For each cell, the rays which pass through it will contribute a correction
that is decided by the weight factor w;;. The algebraic average of all these corrections
is implemented on the cell. This procedure will be called ART3. Its individual steps
are: Calculate the total value of weight function (W) along each ray as:

start: 1 For each projection angle (8):
start: 2 For each ray (i0):
start: 3 For each cell (j):

N
Wi = Ewie,jxwie,j

Jj=1

|
e
172
E

close: 2

close: |

start: 4 Start iterations (k):

start: 5 For each projection angle (8):

start: 6 For each ray (i9):

Compute the numerical projection (Equation 21)

l«

Calculate the correction as:

Ao = s —Fpie

close: 6
close: 5
start: 7 For each cell (j):
Identify all the rays passing through a given cell () (let Mec; be the total number of
rays passing through the j-th cell) and corresponding 8, wy, ;, W5 and Ad,,.
Apply correction as:
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1 Wig jA9:
new — fold, 19,7 ¥i
=4 +Mc,.2” W,

Mcj

where 4 is the relaxation factor.
close: 7

Check for convergence as:

If

abs[/ ’;k‘:lf k] x100<e

STOP:
Else: Continue
close: 4 (k)

6.3.4 Anderson ART. Anderson and Kak [99] have proposed a variation to the
ART algorithm. This algorithm is abbreviated as SART (Simultaneous Algebraic
Reconstruction Technique). The method of implementing the correction is similar to
ARTI. The only difference this algorithm has from ART1 is in the calculation of
correction for each cell. The weight factor used here is the exact intersection of a ray
with the concerned cell. In contrast, ART1 uses the average correction for all the
cells. This algorithm will be referred to as ART4. The individual steps are:
Calculate the total value of weight function (W,,) along each ray as:

start: 1 For each projection angle (8):

start: 2 For each ray (i0):

start: 3 For each cell (j):

N
Wi = zwie,jxwi&j

j=1

close: 3

close: 2

close: 1

start: 4 Start iterations (k):

start: 5 For each projection angle (0):

start: 6 For each ray (i0):

Compute the numerical projection (Equation 21)
close: 6

start: 7 For each ray (i6):

Calculate the correction as:
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Adip = i0—bio
start: 8§ For each cell ()):
If wy, ; is non-zero then:
Adje X Wig ;

f}new = f}old+ n Wi

where W is a relaxation factor.
close: 8

close: 7

close: §

Check for convergence as:

If

k+1__ fk
abs[f;k—nf] x100<e

STOP:
Else: Continue
close: 4 (k)

6.4 MART

When the corrections in the iterative algorithms are multiplicative rather than addi-
tive, the algorithms are grouped under the family of MART (Verhoeven, [31]). Gor-
don et al. [97] and Gordon and Herman [100] have suggested different forms of
MART. The MART algorithms presented below are similar to those considered by
Verhoeven [31].

The major difference between ART and MART algorithms is in the method of
computing the corrections. While ART uses the difference between the calculated
projections and measured projections, MART uses the ratio between the two. Hence
the corrections applied to each cell during calculations are via the multiplication
operation. The structure otherwise is similar to Gordon’s ART (ART2).

The individual steps of three versions of MART (1, 2, and 3) are summarized below.
start: 1 Start iterations (k):

start: 2 For each projection angle (0):

start: 3 For each ray (i0):

Compute the numerical projection (Equation 21)
Calculate the correction as:
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[y
A¢ie = ':f
0
start: 4 For each cell ():
If Wi, is non-zero then:
MARTI:
frev = fRx (1.0 - p % (Adye))
MARTZ2:

j}new = f;"dx(l.o - )X __‘_vﬂtj__ X ( 1.0- A¢i6))
(Wie,j)max

MART3:

HWig j
frew = foldx ( A¢ie)(wi9,i)mu

where i is a relaxation factor.
close: 4
close: 3
close: 2
Check for convergence as:
If

k+1_ £k
abs[t——f]x 100<e

fk +1
where e is a suitable stopping criterion.
STOP:
Else: Continue
close: 1

Steps 3 and 4 form the essence of the reconstruction algorithm. All three versions
include the relaxation factor p. Typical values of the relaxation factor reported are in
the range 0.01-0.1, larger values leading to divergence. It is to be noted that the cor-
rection calculated in step 3 is the ratio of the recorded projection data (¢,,) and that
calculated from the guessed field, namely ;o which is being iterated. The three ver-
sions of MART differ in the manner in which the corrections are implemented. In
MART], the weight function is prescribed in binary form, being unity if a particular
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ray passes through a pixel and zero otherwise. In MART2 and MARTS3, the weight
function is precisely calculated as the ratio of the length of the ray intercepted by the
pixel and the maximum dimension of a segment enclosed by it.

6.5 AVMART

The reconstruction of a function from a finite number of projections recorded at dif-
ferent view angles leads to an ill-posed matrix inversion problem. The problem is
accentuated when the projection data is limited. The resulting matrix is rectangular
with the number of unknowns being greater than the number of equations. In view of
the ill-conditioning of the matrix, the convergence of the iterations to any particular
solution is dependent on the initial guess, the noise level in the projection data and
the under-relaxation parameter employed. In the present study, the MART algorithm
has been extended so as to (1) enlarge the range of the usable relaxation factor, (2)
diminish the influence of noise in the projection data, and (3) guarantee a meaningful
solution when the initial guess is simply a constant.

The original MART algorithm described above has been modified in the present
work to form a new approach to applying the corrections. In the proposed algorithm
the corrections are calculated by considering all the rays from all the angles passing
through a given pixel. Instead of a single correction obtained from individual rays, a
correction that is determined as the average of all the rays is used. The difference
between the conventional MART and the present implementation is the following.
The correction at each pixel is updated on the basis of the N-th root of the product of
all the corrections from all the N rays of all view angles passing through a pixel. This
idea is based on the fact that average corrections are expected to behave better in the
presence of noisy projection data. Since an average correction is introduced, the
algorithm is desensitized to noise. There is however a potential drawback. Since an
average pixel correction based on a set of rays is computed, the reconstructed field is
not required to satisfy exactly the recorded projection data. This was seen to be no
cause for concern for the three applications considered. The projection data was
exactly satisfied by the reconstructed field in each case.

The modified algorithms have been identified below as AVMART, the prefix AV
referring to average. The important step, namely step 4 alone is presented here, with
the understanding that all other steps remain unchanged.
star¢: 4 For each cell (j):

Identify all the rays passing through a given cell (j). Let Mc; be the total number of
rays passing through the j-th cell.

Apply correction as:

AVMARTI:

e
Ml‘]

frov = f,—°"'><[ﬂ(l-0— " x<A¢ie))]

Me;
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AVMART?2:

fjnew = f}oldx{H( 1.0 - T (yv# X ( 1.0 - A¢i9)JJMcj

wiev.i)max

Mc;

AVMART3:
HWig,j —l—c
frew = foldx H(Aq)ie)(”’w.j)m !
Mc;
close: 4

The symbol ITin the three algorithms above represents a product over the variable
Mec;. The Mc;-th root of this product is evaluated in each approach. The relaxation
factor p has been retained in the statements above for completeness. In all calcula-
tions, it was set equal to unity to bring out a mixture of the “smooth” and “sharp”
features of the temperature field [16]. As discussed in Section 3, the proposed algo-
rithms require a smaller CPU time per iteration, when compared to the existing ones.
Section 6.7 evaluates the benefits derived by modifying step 4 for problems of prac-
tical importance.

6.6 Maximum Entropy

Based on ideas from information theory, one can perform image analysis and con-
struct meaningful tomographic algorithms. Suppose there is a source which gener-
ates a discrete set of independent messages r, with probabilities p,. Then the infor-
mation associated with r, is defined logarithmically as

I, = -Inp,

The entropy of the source is defined as the average information generated by the
source and can be calculated as

entropy

L
_Zpklnpk
k=1
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When the source is the image, the probability can be replaced by the gray level £, for
the j-th pixel and entropy can be redefined as

N
entropy = —ijlnjj
Jj=1

For natural systems, the organization of intensities f; over the image can be expected
to follow the second law of thermodynamics namely,

fi —Efjlnfj = maximum

J

This is the basis of the MAXENT algorithm. For interferometric images, one can
view the pixel temperature as the information content and entropy built up using
their magnitudes. In the absence of any constraint, the solution of the above optimi-
zation problem will correspond to a constant temperature distribution, more gener-
ally a uniform histogram in terms of probabilities. Hence, the MAXENT algorithm
is properly posed only along with the projections as constraints.

Requiring that the entropy of the system be a maximum along with the interfero-
metric projections as constraints is known as the Maximum entropy optimization
technique (MAXENT) {30]. It produces an unbiased solution and is maximally non-
committal about the unmeasured parameters. This technique is particularly attractive
when the projection data is incomplete (see Censor [29]). The MAXENT algorithm
is described below:

Consider a continuous function f(x, y, z) with the condition f(x, y, z) 2 0 and val-
ues f;atj=1... N pixels. In the present context, the entropy technique refers to the
extremization of the

N
F ==Y fnlf| (22)

j=1

subject to a set of constraints. In MAXENT the collected projection data and any
other a priori information about the field to be reconstructed can be viewed as the

constraints over which the entropy is to be maximized. A typical maximum entropy
problem can be stated as:
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N

Maximize| - )" f;In|f]

j=1

N
subjectto ¢; = Zw‘ffj
j=1

and  f20 (23)

Different schemes are available for optimizing a functional over some constraints,
for example the Lagrange multiplier technique.

The MART algorithms have been shown to be equivalent to the maximum
entropy algorithm in the literature [28, 29]. Hence the entropy algorithm has not
been considered further in the present article.

6.6.1 Minimum Energy. The MAXENT algorithm can be generalized for any
other function in place of entropy. Gull and Newton [30] have suggested four such
functions which can be maximized with the projections as constraints to obtain the
tomographic reconstruction. After entropy, the energy functions are attractive and
natural for use in physical problems. The minimum energy method (MEM) can be
implemented in a manner analogous to MAXENT as follows

N

S 2
Maximize Zf}
j=1
N

subject to §; = )" wyf; (24)

j=1

Compared to MAXENT, MEM has a simpler implementation while using the
Lagrangian multiplier technique, since it results in a set of linear equations. Gull and
Newton [30] however have recommended the MAXENT over MEM, since they
found that the MEM produces a field which is negatively correlated and hence pro-
duced a biased solution.

6.7 Testing of Tomographic Algorithms

The ART, MART and the optimization algorithms have been tested for variety of
cases by Subbarao et al. [32]. In the examples, the temperature fields were syntheti-
cally generated. Hence it was possible to determine explicitly the convergence prop-
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erties and errors for each of the methods. Among the various algorithms, the authors
have identified MART3 as the best in terms of the error and CPU time requirements.
The AVMART algorithms proposed by the author and his coworkers have been vali-
dated in the present section against two benchmark cases: (1) a circular region with
five holes, and (2) the numerically generated three-dimensional temperature field in
fluid convection. Employing a temperature field similar to that encountered in the
experiments aids in the choice of the proper initial guess and the error levels to be
anticipated. This also helps in selecting the proper tomographic algorithm.

6.7.1 Results and Discussion. The algorithms stated in Sections 6.4 and 6.5 have
been tested for a circular region with distribution of holes and a numerically gener-
ated three-dimensional temperature field in Rayleigh-Benard convection. Sensitivity
of the algorithms to noise has been tested in the context of numerically generated
temperature data. Issues addressed in the sensitivity study are initial guess, noise in
projection data, and the effect of increasing number of projections on the accuracy
of reconstruction.

Reconstruction of a Circular Disk With Holes. A circular region with five
symmetrically placed holes is considered. The object is recognized in terms of the
local dimensionless density, which is zero at the holes and unity elsewhere. To
implement the reconstruction algorithm, it is convenient to enclose the circular
object within a square domain. The gap between the circle and the square is specified
to have zero density (in calculations, a value of 0.001 has been used for zero den-
sity). The square region is discretized into 61x61 cells in the x and y directions. Pro-
jections of this object have been determined analytically and are hence exact. The
recovery of the original object from a limited number of these projections using the
original MART as well as the proposed AVMART algorithms is discussed below.

Projections at angles of 0, 45, 90, and 135 degrees have been considered in the
present application. The initial guess for the density field was a constant value of unity.
A convergence criterion of 1% for the iterations has been uniformly used. At a conver-
gence of 0.01%, the solution was practically identical, except that errors were seen to
be marginally higher. This feature of tomographic algorithms, that convergence is
asymptotic (but not monotonic) has been reported earlier [28]. Such trends are to be
expected in the reconstruction of fields having a step discontinuity, at the hole bound-
ary in the present example. The relaxation factor was set at 0.1 in case of original
MART while it was unity in the AVMART algorithms. All calculations were carried
out on a DEC-alpha workstation with 196 MB RAM and a 233 MHz processor.

A summary of the reconstructed fields using the three original and three proposed
algorithms is shown in Figure 33. In principle, all the six algorithms were seen to
converge to a qualitatively meaningful solution. The void fraction, namely the frac-
tion of the space occupied by the holes was 0.34 in the present application. In the
reconstructed solution, the void fraction can be determined from the formula
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Figure 33 Original and reconstructed density fields of a circular region with holes (the outer circle
appears as an octagon because of a finite number of view angles employed).
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It was found that all the six algorithms reproduced a void fraction of precisely 0.34.
The algorithms however differed in terms of CPU time, errors, and error distribution.
The three different error norms reported in the present work are:

E, = max[abs(Pig — Precon)] Maximum of absolute difference

Z[(porig - precon)]2

E, = N RMS error
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Table 6 Comparison of the MART Algorithms: Circular Region with Holes

Quantity l MARTI I MART?2 l MART3 lAVMARlI AVMART2 | AVMART3

E, 0.99 0.96 095 0.99 0.96 0.96
E, 0.25 024 023 0.24 023 0.23
E, % 25.12 24.08 23.63 24.59 23.72 23.65
Number of points
(%) having error in
the range
>95% 027 0.05 0.05 027 0.05 0.05
75-95% 0.64 0.62 0.86 0.83 0.72 0.70
50-75% 3.90 4.11 443 3.47 4.00 3.98
Iterations 51 63 29 17 24 21
CPU (minutes) 9.51 11.97 5.65 0.32 0.45 0.40
E 2 .
E; = —————x 100 Normalized RMS error, %
Pmax ~ Pmin

Results for the error level distribution in the reconstructed field have also been deter-
mined. The distribution of the absolute error as a percentage of the E, error has been
presented in the regions 95%, 75%-95%, and 50%-75%. Errors and their distribu-
tion along with the computational details are given in Table 6.

It is clear from Table 6 that the errors for all the six algorithms are practically
close, with those of MART ] and AVMART 1 being marginally on the higher side. An
examination of the error distribution shows that large errors (>95%) are seen only
over 0.27% of the physical region. Specifically, large errors are restricted to the sur-
face of the holes, where a step change in the field property (the density in the present
example) takes place. The errors are uniformly small elsewhere. The most signifi-
cant difference between the original and the proposed algorithms is in terms of the
number of iterations (and correspondingly in the CPU time). The proposed algo-
rithms require fewer iterations for convergence and require a smaller CPU time. This
is clear evidence of the computational efficiency of the proposed algorithms in the
context of exact projection data.

Reconstruction of a Numerically Generated Thermal Field. The second appli-
cation taken up for analysis comprises of a numerically generated convective thermal
field in a horizontal differentially heated fluid layer. For definiteness, the wall tem-
peratures employed are 15°C and 30°C, respectively. The three-dimensional temper-
ature field has been determined as follows. The stream function, vorticity, and
energy equations are solved in two dimensions with symmetry conditions applied on
the side walls, by a finite difference method [101]. The solution thus obtained corre-
sponds to a system of longitudinal rolls spread over an infinite fluid layer. Such
geometries show a polygonal planform corresponding to a fully three-dimensional
temperature field [102]. The three-dimensionality has been simulated in the present
work by superimposing a sine variation in the thermal field parallel to the axis of the
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Figure 34 Temperature surface of the midplane of
the fluid layer, in the form of cubic cells.
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roll. A surface plot of the resulting temperature field revealed the flow to be orga-
nized in the form of cubic cells in the fluid layer (Fig. 34).

The advantages of selecting the field to be reconstructed in the particular manner
outlined above are: (1) The field is continuous and hence reconstruction errors can
be expected to be small, as compared to the application with holes. (2) Errors with
perfect data being small, one can systematically study errors induced by the initial
guess, and noise in the projection data. (3) The thermal field being analyzed is phys-
ically realizable.

For reconstruction, the fluid layer has been discretized into 11 planes and each
plane into 61x61 cells. The relaxation factor for the proposed algorithms has been
set to unity. Since the algorithms are being tested under conditions of limited data,
only two and four projections have been considered. A convergence criterion of
0.01% has been uniformly employed in the computation. Results obtained using the
proposed MART algorithms alone have been reported.

The errors reported here are on the basis of the entire fluid layer. The three differ-
ent errors reported are:

E; = max[abs(T o5 = Tiecon)] Maximum of absolute difference, °C

2 [(Torig - Trecon)]2
- N

E, RMS error, °C

E
= —2__x100 Normalized RMS error, %
Thol ~-T old

C

E,

In these definitions, T, and T4 are the hot and cold plate temperatures. T,;, and

T, are the temperature variables of the original and the reconstructed field respec-

tively. Results for the error level distribution in the fluid layer have also been deter-
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Table 7 Comparison of the AVMART Algorithms in a Differentially
Heated Fluid Layer

Initial guess —‘ Quantity AVMARTI AVMART?2 AVMART3
Constant E,°C 1.97 1.97 197
E,, °C 0.49 0.48 0.49
E, % 2.86 279 2.86
lterations 9 12 14
CPU, sec 30.6 41.3 472
Two-dimensional E,°C 1.98 1.98 1.98
longitudinal rolls
E, °C 0.49 0.49 0.49
E,% 2.86 2.86 2.86
lterations 8 12 12
CPU, sec 289 412 427
Random E,°C 12.15 13.42 6.20
E, °C 5.59 474 0.60
E, % 32.70 27717 3.50
Iterations 15 17 14
CPU, sec 52.8 59.1 47.8

mined. The distribution of the absolute error as a percentage of the E, error has been
presented in the three zones as before namely, > 95%, 75% to 95%, and 50-75%.

Sensitivity to Initial Guess. The inversion of matrices arising from the ART fam-
ily of algorithms from limited projection data is a mathematically ill-posed problem.
As a rule, the number of equations here is much smaller than the number of
unknowns. This makes the solution-set infinite in the sense that a unique solution is
not guaranteed. Different initial guesses, may in principle, lead to different solutions
of this infinite set. In the absence of any knowledge about the field being studied, it
is a difficult task to prescribe the initial guess. The sensitivity of the algorithms to the
initial guess has been studied with reference to three different fields, namely:

1. a constant temperature field (= 1°C)

2. temperature distribution corresponding to two-dimensional longitudinal rolls,
and

3. arandom field between 0°C and 1°C with an RMS value of 0.5°C.

The initial guesses 1 and 2 were seen to qualitatively reproduce the thermal field
of Figure 34 quite well (the reconstructed thermal field have not been shown as they
are very close to the original). The noise present in the third guess was seen to be
present in the reconstructed data. But the noise could be filtered in the frequency
domain using a band-pass filter function. The reconstructed field after noise-removal
was seen to be similar to the original in Figure 34. The errors, number of iterations
and the CPU time for the three initial guesses are presented in Table 7. The fractional
distribution of errors are reported in Table 8, With initial guesses 1 and 2, the RMS
and fractional errors can be seen to be small for all the three algorithms. The maxi-
mum error is larger, but with reference to Table 8, it can be seen that large errors are
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Table 8 Fractional Distribution of the E; Error over the Fluid Layer

Number of points

Initial guess (%) having error in AVMART1 AVMART?2 AVMART3
the range
(¢)) >95 0.17 0.17 0.17
75-95 0.57 048 0.57
50-75 5.76 5.15 5.73
) >95 0.17 0.17 0.17
75-95 0.60 0.62 0.62
50-75 5.68 5.58 5.58
3) >95 0.02 0.01 0.002
75-95 5.79 2.00 0.02
50-75 34.46 11.92 0.30

restricted to small areas and are hence localized. Thus, in effect the initial guesses 1
and 2 may be considered to be equivalent. The errors corresponding to the third
guess are uniformly higher for the proposed AVMART1 and AVMART? algorithms,
but small for AVMART3. The number of iterations for AVMART3 are also smaller.
Hence, AVMART3 emerges as the best algorithm among those proposed in terms of
errors and CPU time for a noisy initial guess. For an unbiased and regular initial
guess, computations over a wider range of parameters show AVMART? to be the
best (see the section on Sensitivity to Noise in Projection Data).

The insensitivity of AVMART3 algorithm to noise can be explained as follows. In
the other two algorithms, correction is applied by finding the Mecj-th root of the prod-
uct of all corrections arising from Mc; rays. In the third, the root is corrected for the
length of the intercept of each ray with the cell under question. This improves the
estimate of the path integral.

Sensitivity to Noise in Projection Data. In measurements involving commercial
grade optical components and recording and digitizing elements, the projection data
is invariably superimposed with noise. Software operations such as interpolation and
image processing can also contribute to errors in the projection data. Experience of
the authors with interferometric experiments shows that the RMS noise level is
around 5% [78].

The performance of the three proposed algorithms have been compared with noisy
projection data as the input. A 5% noise level has been adopted for all calculations. The
noise pattern has been generated using a random number generator, with a uniform
probability density function. Results have been presented for 2 and 4 projections corre-
sponding to view angles of (0° and 90°) and (0°,60°, 90°, and 150°), respectively. The
initial guess for reconstruction with 2 projections is simply a constant; for 4 projec-
tions, the result obtained with 2 projections has been used as the initial guess.

Results with 2 projections show that all three algorithms reproduce qualitatively
the temperature field of Figure 2. However quantitative differences are to be seen.
The noise level in the reconstructed field is found to be slightly higher than that in
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Table 9 Comparison of the AVMART Algorithms: 5% Noise in Projection
Data, Two-View Reconstruction

Quantity AVMART1 | AVMART2 AVMART3
E,°C 4.452 4.449 4.450
E, °C 1.08 1.08 1.08
E,, % 6.37 6.36 6.37

Number of points (%)
having error in the range

>95 0.004 0.004 0.004
75-95 0.222 0.200 0.222
50-75 4.400 4.387 4.400

Inerations 9 12 14
CPU, sec 30.5 40.9 47.8

the projection data. The magnitude of the three different errors and the distribution
of the fractional error over the fluid domain are presented in Table 9. All the three
algorithms are practically equivalent in terms of errors, though AVMART? is seen to
be marginally better from the error point of view. However the CPU time of
AVMART!1 is minimum. It is to be noted that noise (in terms of E,) in the projection
data has been amplified during the reconstruction process (from 5% to 6.4%). This is
in contrast to noise in the initial guess, where iterations tend to diminish errors in the
converged field.

Reconstruction with 4 view angles is taken up next. Table 10 shows the error lev-
els in the reconstructed data and the distribution of these errors within the fluid layer.
It can be seen immediately that the E, errors with 4 projections are larger than those
for 2 projections alone. The distribution of errors shows that these are at best local-
ized, i.e., large errors may occur at a few sporadic points. The AVMART1 algorithm
shows a considerable deterioration in performance, since errors as well as CPU time
are substantially higher. AVMART?2 and AVMART3 algorithms are seen to perform

Table 10 Comparison of the AVMART Algorithms: 5% Noise in Projection
Data, Four-View Reconstruction

Quantity AVMARTI1 AVMART?2 AVMART3
E,°C 11.80 5.52 552
E, °C 1.78 1.36 1.36
E;, % 10.41 8.00 8.00
Number of points (%)
having error in the range
>95 0.004 0.007 0.007
75-95 0.029 0.349 0.346
50-75 0.276 5.186 5.177
Inerations 190 53 53

CPU, sec 1767.7 502.3 520.8
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better than AVMART1. AVMART?2 is marginally superior to AVMART3 since the

error magnitudes are equal, but the former takes a smaller CPU time. Hence, a con-
solidated view to emerge from the discussion above is that AVMART? exhibits the
best performance.

It is of interest to compare the best proposed algorithm, namely AVMART?2 with
the best original MART algorithm identified by Subbarao et al. {32], namely
MART3 of the present study. To this end, reconstruction was carried out using
2-views of 0° and 90° for convection in a horizontal differentially heated fluid layer,
leading to two-dimensional longitudinal rolls. The projection data was superimposed
with 5% noise and an initial guess of a constant temperature field was used. Errors
for MART?3 were seen to be amplified by a factor of 4 compared to a factor of 1.6 for
MART?2_new. The computer time was also higher by a factor of 4 when compared
with MART2_new. However the fractional distribution of errors over the fluid layer
were seen to be similar for both, thus confirming that they continued to belong to the
same family of algorithms.

The following inferences can now be drawn from the discussion above:

1. The three AVMART algorithms show similar performance in the presence of
noise in the projection data. AVMART? is however marginally superior in terms of
errors and CPU time.

2. The noise in the projection data persists after reconstruction.

3. Increasing the number of noisy projections amplifies the error in reconstruction.

4. AVMART? clearly shows superiority over MART3 for noisy projection data.
Hence it supersedes MART3 as the favored tomographic algorithm for the class of
problems studied.

Both MART and AVMART algorithms have been tested extensively against
experimental data. The errors as well as the convergence rates have been reported in
Mishra et al. [81]. The conclusions drawn above carry over to experiments without
any major modification. The convergence rates of all the algorithms were seen to
deteriorate with increasing number of projection angles. This could be traced to the
partial de-correlation among the interferometric images owing to mild unsteadiness
in the convection patterns.

6.8 Closure

The MART family of algorithms available in the literature was seen to require a
small relaxation factor leading to delayed convergence. To address this issue, a new
set of algorithms have been proposed in the present work. The new set is conceptu-
ally similar to the original, but differs significantly in the manner in which correc-
tions are applied. Specifically, the reconstructed field does not satisfy the projection
data, pointwise. However, it can accommodate a wider range of relaxation factors
and thus is better from a theoretical view point. Results with the relaxation factor set
at unity have been reported in the present work.

The proposed algorithms have been evaluated in the context of three applications,
namely: (1) circular disk with five holes, (2) three-dimensional convective thermal
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field, and (3) interferometric data from a laboratory-scale differentially heated fluid
layer experiment. The major results that emerge from the study are:

1. All six algorithms reconstruct the field variable in a qualitative sense. Differ-
ences are seen only in the numerical values.

2. The AVMART? algorithm emerges as the best, in terms of CPU time, errors
and sensitivity to initial guess and noise in the projection data.

3. The CPU time of the proposed algorithms is significantly smaller than those
presently available in the literature.

4. With a limited number of projections, all algorithms show large absolute max-
imum errors, but these are sharply localized. Specifically, the qualitative appearance
of the reconstructed field variable is acceptable from a practical viewpoint.

5. The convergence rate of the proposed algorithms is found to be better than the
original, when the projection data is exact. In the presence of noise, all the six algo-
rithms record a sharp reduction in the convergence rate. In a few cases, the proposed
algorithms require a greater number of iterations compared to the original. However,
in all applications, the CPU time requirement is substantially smaller for the pro-
posed algorithms.

7 APPLICATIONS

Three sets of experiments involving (1) buoyant flow around a protruding heater
[77], (2) transient convection in a square cavity [10], and (3) a differentially heated
fluid layer [78-80, 82] are discussed in the present section. All of them employ inter-
ferometry, while experiment 3 is an extensive application of interferometric tomog-
raphy to thermal convection.

7.1 Buoyancy-Driven Flow Around a Protruding Heater

Buoyancy-driven flow in the vicinity of a protruding heated copper block placed on
a vertical wall and exposed to the ambient is experimentally studied here. The copper
block is of height A, protrusion b, and a length L, which is much larger than 4 and b.
It is located on a vertical bakelite board with its longest dimension L lying in the
horizontal plane. All measurements have been carried out at steady state. The aver-
age Nusselt number as a function of Rayleigh number has been reported in this work.
The thermal wake above the heated block as visualized by the Mach—Zehnder inter-
ferometer is also presented in this study.

The problem addressed here arises frequently in the thermal design of high-per-
formance electronic components such as integrated chips in computers. An overall
review of the subject for practical cooling configurations of electronic circuit boards
has been presented by Incropera [103]. Heat transfer from arrays of protruding
three-dimensional heaters under forced flow conditions have been experimentally
studied by Garimella and Eibeck [104]. Experiments on two- and three-dimensional
natural convection heat transfer from vertical, discrete, and arrays of flush and
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mildly protruding heaters have been presented in the literature [105]. Nusselt num-
ber and wake size in natural convection for vertical and horizontal protruding ther-
mal sources using thermocouple data have been studied by Kang and Jaluria [106].

The dimensionless parameters of the problem are the aspect ratio A (= h/b), Ray-
leigh number (Ra) and the average Nusselt number (Nu) based on the height h of the
copper block. Fluid properties are evaluated at the average of the heater and room
temperatures. There is some uncertainty in the form of the boundary condition at the
heater surface since it can be prescribed as constant temperature or as constant heat
flux. The use of a copper block would suggest the former, but since the heater size is
quite small in the present study we continue to examine the constant heat flux
boundary condition. The respective values of the temperature difference in the defi-
nitions of Ra and Nu are computed as (T, - T, ,.,) and (q(h + 2b)/k) respectively. In
all the data presented in this work, the aspect ratio A is equal to two.

Two different heaters of sizes (h, b, L) = (10, 5, 192) mm and (16, 8, 180) mm
have been employed in the present work. Surface temperatures employed vary from
60°C to 101°C and room temperatures are in the range of 23.7-25.6°C. The copper
block is electrically powered by a nichrome-wound heater placed behind it. The
electrical resistance of the nichrome wire used is 95 ohms/m. The voltage applied to
the heater is stabilized using a series of variances. The entire heater assembly is
mounted on a bakelite sheet (Fig. 35). This sheet is placed vertically in an enclosed
test cell that straightens the flow approaching the copper block.

Heat transfer from the electric heater to the ambient from the rear side of the test
cell is estimated as follows. A thin copper strip of 25 mm height is firmly held
against the bakelite sheet and its temperature is monitored by an array of thermocou-
ples. The energy lost to the ambient outside the test cell is obtained by applying ver-
tical flat plate correlations of natural convection to the copper strip. The ambient
energy loss is found to be about 10% of the electrical input. Radiation losses are
found to be negligible for the smaller of the copper blocks since its area is small and
the surface is polished. For the larger block, radiation accounts for up to 5% of the
energy input. It has been accounted for through detailed calculations including shape
factors. Energy transferred in a direction parallel to the gravity vector to the bakelite
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sheet supporting the copper block is not considered as a loss since it is recovered by
the fluid ahead and beyond the heater.

The thermal field in the vicinity of the heater has been studied using a
Mach—Zehnder interferometer. The path of the light beam is arranged to be parallel
to the heater length. The interferograms are collected in the infinite fringe setting and
hence the fringes are isotherms. Skeletonized fringes alone have been presented
here. The fringe density near the chip is high and is corrupted by refraction errors.
Hence the near-wall fringes have been removed using image processing operations.
The outer most fringe representing the thermal boundary layer and all the fringes in



336 ANNUAL REVIEW OF HEAT TRANSFER, VOL. 12

the wake have been preserved. For the experiments reported here the temperature
drop per fringe shift is 3.5 K.

7.1.1 Interferograms. Interferometric data for the smaller copper block of height
10 mm and a protrusion of 5 mm is presented first. Figure 36 shows thinned fringes
in the proximity of the heater at temperatures of 60°, 80.2°, and 101°C. Since the
fluid below the lower surface is nearly stationary, fringes in this region have not been
shown. The images have been recorded with varying magnifications to maintain
clarity. The outermost fringe can be treated as the edge of the boundary-layer. The
fringes within the boundary-layer are densely packed and as stated earlier, have been
removed through image processing operations. The boundary-layer thickness & can,
however, be used for analysis. For an assumed quadratic temperature profile within
the boundary-layer, the local Nusselt number for constant temperature as well as
constant heat flux boundary conditions is 2h/5.

An examination of Figure 36 shows the following trends. With temperature
increasing from 60°C to 80.2°C, the thermal boundary-layer thickness decreases.
Further increase in temperature to 101°C does not lead to any significant reduction
in the boundary-layer thickness. At 60°C, the boundary-layer thickness is nonzero at
the leading edge of the heated block. For the other two temperatures, d is small at
this location.

A drop in the value of boundary-layer thickness indicates an increase in the local
Nusselt number. Hence the Nusselt number on the vertical face increases as one goes
from 60°C to 80.2°C. This increase is only marginal between 80.2°C and 101°C.
The fringe density, and hence, the heat flux over the upper horizontal face, continu-
ally increases as one moves from 60°C to 101°C. This is also a source of increasing
the average Nusselt number with chip temperature.

7.1.2 Heat Transfer Rates. Figure 37 shows a plot of the local Nusselt number on
the vertical face of the copper block determined using the boundary-layer thickness.
The average value of the Nusselt number on the vertical face (= Nu(v)), and Nusselt
number at the midpoint of the chip (= Nu(m)) corresponding to the three Rayleigh
numbers are given in Table 11. Except for a block temperature of 60°C, these are

80 T T T
~ 40l ] Figure 37 Local Nusselt number as a function of distance
2 along the copper block.
T.=80°C
i 101°C
60°C
0 05 1.0

x/h
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Table 11 Average and Midpoint Nusselt Numbers on the Vertical Face
of the Copper Block

T,°C 60 80.2 101
Ra (D) 2477 3349 3894
Nu(v) 13.5 308 286
Nu (m) 10.5 230 19.0

larger than the corresponding average values for the entire heater. At T, = 60°C, the
boundary-layer thickness at the leading edge is nonzero, resulting in a low Nusselt
number over the vertical face of the copper block.

Table 12 gives values of Nusselt number (Nu) as a function of the Rayleigh num-
ber (Ra(T) and Ra(g)) based on the average heat transfer measurements of the
present study.

It is of interest to compare the results obtained in Table 12 with correlations and
data available in the literature. This comparison for buoyancy-driven flows from
flush as well as protruding surfaces is presented below.

Isothermal vertical flat plate [89]

Nu = (0.825 + 0.387F(Pr)(Ra(T))!/6)?

where F(Pr) = (1 + (0.492/Pr)%/16)-8727, The minimum and the maximum Nusselt
numbers computed using this equation for the limiting Rayleigh numbers in Table 12
are 4.07 and 6.11, respectively.

Constant heat flux vertical surface [107]

Nu = 1.2G(Pr)°2Ra(q)°?

where G(Pr) = Pr/(4 + 9Pr%5 + 10Pr). The minimum and maximum Nusselt numbers
from this correlation are 5.28 and 7.86, respectively.

Protruding block on a vertical surface, aspect ratio = 2.5, [106]

For 1-10% < Ra(q) < 4-10%, Nu varies from 10 to 12.

Fully developed flow for an array of protruding blocks, aspect ratio = 2, [108]

For 10% < Ra(T) < 10%, Nu varies from 5 to 8.

Cuboid Model for an isothermal block of dimensions HxBxL, Ra(T) < 1011, [109]

Table 12 Average Nusselt Number as a Function of Rayleigh Number;
(Ra(T) 2 9290 corresponds to the larger block)

Ra(T)-10- | 248 335 3.89 929 133 149 173
Ra(g) 10~ 8.7 127 15.1 287 443 53.0 63.6
Nu 13.2 13.5 13.8 147 16.0 17.1 17.6
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Nu = Nu, + F(Pr)GRa%?%
where
L)076
3.192 + 1.868(FIJ
Nu, =
105
(1 . 1.1891-_-1J
G = o _HLBY_ ¥
(LB+H(L+ B))!s
F(Pr) = 0.67

0.5 9/16\ 4/9
(%))

For the range of Rayleigh numbers given in Table 12, this equation gives Nusselt
numbers in the range of 4.75 to 7.45.

The qualitative agreement of the local Nusselt numbers of the present study with
[106] is good. Discrepancies are possible in the average Nusselt number since these
authors use thermocouples to determine the local Nusselt number, resulting in loss of
resolution, especially near the peak values. It is clear that the flush heater correla-
tions substantially underpredict the average Nusselt number. As discussed by Park
and Bergles [105], this discrepancy is due to the inapplicability of large plate corre-
lations for short segments, especially near the leading edge. Conduction losses to the
supporting plate is significant for small surfaces and lead to a higher measured Nus-
selt number. The cuboid model also underpredicts the Nusselt number because it is
primarily designed for a fin assembly and not an isolated copper block. The Nusselt
number for a block located in an array is smaller than for a single block since the
fluid approaching the block is preheated and the thermal boundary-layer over the
vertical face is thick. For the isolated heated surface considered in the present work,
the boundary-layer thickness (Fig. 36) is zero at the leading edge and at all Rayleigh
numbers except the lowest value.

7.1.3 Closure. Heat transfer in natural convection from an isolated protruding
heater is found to be larger than that computed from correlations for a flush heater, a
large cuboid, and data for an array of blocks. Interferometric study shows the local
Nusselt number over the vertical face of the copper block to be quite large. This
factor along with conduction to the supporting plate in the vertical direction provides
the reasons for this difference.
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7.2 Transient Convection in a Two-Dimensional Square Cavity

An interferometric study of transient natural convection in a long air-filled square cav-
ity is reported. The top and bottom walls of the cavity are maintained at uniform tem-
peratures at all times in an unstably stratified configuration. Three different Rayleigh
numbers namely 8.79-104, 1.98-105, and 3.38-105 have been considered. The orienta-
tion of the light beam is maintained parallel to the longest dimension of the cavity. The
fringes thus obtained reveal depth-averaged isotherm patterns in the cavity at various
instants of time. The image is filtered and the fringes are thinned using image process-
ing operations. Subsequently, the local and average heat transfer parameters in the
experimental setup have been computed. Results of the present study show that the
onset of flow in the cavity is bicellular. However, the flow is unicellular for the most
part of the transient. The flow becomes increasingly vigorous with time and the aver-
age Nusselt number of the cavity is a maximum at steady state.

Buoyancy-driven flow in an air-filled cavity heated from below is a problem of
fundamental as well as practical importance. A summary of experimental and theo-
retical results including several correlations for buoyancy-dominated flows is pres-
ently available [89]. These results pertain essentially to steady-state situations, with
only a few numerical results being available for transient convection. One of the
principal difficulties associated with transient flows is the measurement of the wall
heat flux. Energy balance methods require careful accounting of losses and are sim-
ple to use only after steady state has been reached. In contrast to this, optical meth-
ods of measurement have several advantages. These include non-intrusiveness,
absence of inertia while following transients, and the ability of a light beam to scan
a flow field rather than the flow property at a point. Besides they can be used for
qualitative as well as quantitative analysis of the problem at hand since the fringe
spacing or the fringe slope can be related to the fluid temperature or the temperature
gradient. The fringe thickness, however, places a lower limit on the length scales that
can be resolved by the image.

Interferometric study of natural convection in a two-dimensional cavity whose
side walls are heated has been reported earlier [108]. A similar study for a horizontal
cylindrical annulus has also been described [109]. The study that comes closest to
the present work is that of Eckert and Carlson [110] where the effect of wall conduc-
tion on natural convection in a square cavity has been presented using interferome-
try. The bottom-heated/top-cooled configurations is one of the several arrangements
considered in Eckert and Carlson [110]. Features such as plume formation and fringe
symmetry about the vertical plane have been observed and these are similar to the
results obtained in the present work. However, there are significant differences aris-
ing from initial and boundary conditions and in the data reduction procedures.

The present work is concerned with visualizing isotherms in a square cavity at
various instants of time. The top and bottom walls of the cavity are respectively cold
and hot and their temperatures are maintained constant for all time. This is the clas-
sical Rayleigh-Benard problem with confining side walls. The original problem of
convection in an infinite fluid layer of small thickness admits three-dimensional cel-
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Figure 38 (a) Flow patterns in an infinite fluid layer and a square cavity; (b) schematic of the test cell.

lular flow as a solution. This is, however, considerably modified in the presence of
confining side walls [111, 112] and at higher Rayleigh numbers. The formation of
longitudinal rolls with their axes aligned normal to the shortest side has been
observed in experiments on a horizontal fluid layer [41]. It is to be expected that
when symmetry planes between adjacent cells are replaced by adiabatic walls, there
will be no fundamental change in the flow pattern. This assumption has also been
made implicitly in Tolpadi and Kuehn [8]. Fluid contained in the cavity whose verti-
cal cross-section is a square and is long in the third dimension in the horizontal
plane, is thus expected to exhibit cellular motion with the cell axis parallel to the
longest side (Fig. 38(a)). If the length exceeds a critical value, two cells with the
same direction of vorticity appear in the cavity. Since the cells are unidirectional, the
temperature distribution within the two cells is similar. Hence, the average tempera-
ture distribution obtained by optical projection is representative of the flow field at
any section along the cavity length.

Interferograms have been obtained in the present work by orienting the light beam
parallel to the longest dimension of the cavity. Rayleigh numbers considered in the
study are 8.79-10¢4, 1.98-10°, and 3.38-105. These are large in comparison to the critical
Rayleigh number for the infinite fluid layer. These are, however, close to the critical
value for a cavity with confining side walls [113]. Fringe patterns have been thinned
using image processing operations. The thinned fringes near the cold wall have been
used to compute the local Nusselt number. Images have been acquired during the tran-
sient evolution of the thermal field as well as at steady state. The images show distinct
flow patterns during the early transient phase in comparison to steady state.
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The apparatus used to study buoyancy-driven motion of air in a cavity is shown in
Figure 38(b). The cavity is of a square cross-section with its width and height being
adjustable in the range of 4 to 6 cm. The top wall is cooled with the help of chilled
water from a constant temperature bath to a temperature of around 10°C, while the
bottom wall is maintained at a temperature of around 25°C (close to room tempera-
ture). The temperatures of both the walls are maintained constant for the entire dura-
tion of the experiment. In the present study, special precautions have been taken so
that the top and bottom walls attain a uniform temperature in a very short time. This
is accomplished by making the walls out of thin brass sheets and exposing them to
large volume flow rates of water. The side walls are made of 12.5-mm thick perspex
sheets and padded using thermocole insulation. To avoid temperature nonuniformi-
ties at corners, the cavity is made smaller than the respective tanks containing hot
and cold water. The upper wall is cooled to a temperature below the ambient value
and convection is initiated in this part of the cavity. The heat transfer rates at the hot
and cold walls are unequal during the transient process and approach each other at
steady state. Since the active boundary in the present work is the cold upper wall, the
heat transfer rates have been computed in this region.

The cavity used in the present work is 74 cm long, thus giving an aspect ratio of
15 to 20. As stated earlier, the resulting flow is expected to be in the form of cells
with an axis parallel to the longer side. The light beam of the interferometer averages
the temperature field along the length of the cavity. The temperatures of the hot and
cold walls are measured using ten 18 gage chromel-alumel thermocouples on each
surface. Temperature on each surface is found to be constant to within £0.2°C along
the path of the light beam. The hot and the cold walls of the cavity reach steady state
in less than five minutes, while the flow reaches steady state in about two hours.
Environmental conditions in the laboratory are stable for three hours and data is col-
lected over this duration.

At the Rayleigh numbers considered in the present investigation the fringes in the
core of the cavity are not strictly stationary even after a sufficiently long time is
allowed to elapse. To estimate the extent of this uncertainty in the heat transfer data
the following procedure has been adopted. Five interferometric images are recorded
at the camera snapping speed of one picture every 20 minutes at predetermined
instants of time. This time interval is required to transfer light intensity data over
512x512 pixels from the camera to the PC. The Nusselt number at a given time is
computed as the average of the Nusselt numbers evaluated at 20 minute intervals.
The uncertainty in this average Nusselt number in relation to the instantaneous value
is as high as ¥20% with 95% confidence.

The time required to collect five images consecutively is 100 minutes. This time
is, however, small in comparison to the time scale of evolution of flow. The first
image is typically collected after 8 to 10 minutes and the flow reaches steady state
after 2 to 3 hours. Hence, the response time of the measurement system can be con-
sidered to be negligible.
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(a) (b)

Figure 39 (a) Fringe patterns at steady state in a square cavity; (b) wedge fringes at steady state in a
square cavity (Ra = 8.79-103).

7.2.1 Steady State. Results are presented below for three Rayleigh numbers
namely, 8.79-103, 1.98-104, and 3.38-104 corresponding to cavity sizes of 4.0, 5.0,
and 5.7 cm respectively. Figure 39(a) shows the overall distribution of fringes in the
full cavity at steady state attained with a Rayleigh number of 8.79-103. The spacing
among fringes near the wall is seen to be small around the midplane of the cavity and
gradually increases towards its edges. Since each fringe is an isotherm a small fringe
spacing gives rise to a large local heat flux. The largest local heat flux on the cavity
walls at steady state occurs around the midplane of the cavity. The fluid accelerates
on one side of the midplane, reaches a maximum at this point, and decelerates to
small values on the other side of the cavity, as it approaches the side walls. The over-
all flow pattern in the cavity is hence unicellular.

Figure 39(b) shows wedge fringes in the cavity at steady state at the same Ray-
leigh number of 8.79-103. The wedge fringes are obtained by deliberately misalign-
ing the mirrors of the interferometer so that under zero flow conditions a set of par-
allel fringes are seen. When temperature gradients are present in the test cell the
fringes are curved and the fringe slope is a measure of the local heat flux. The direc-
tion in which the fringes are displaced depends on the direction of the local fluid
velocity. Figure 39(b) shows that the fringes are displaced to the right near the bot-
tom wall and to the left near the top wall. This confirms the result from the infinite
fringe setting (Fig. 39(a)) that the flow in the cavity is unicellular with the roll mov-
ing in an anticlockwise direction.

The intrinsic symmetry of the cavity and associated boundary conditions affords
the formation of many cells whose axes are parallel to the cavity length. A single cell
is preferred over other configurations owing to several factors that include mild
imperfections in the experimental apparatus. A qualitative explanation can be given
in terms of the energy requirement to sustain multicellular flow. In a square
cross-section and at moderate Rayleigh numbers, one can expect unicellular flow to
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Figure 40 Fringes near the cold wall during tran-
sient convection. (a) Original, (b) Fourier-filtered, and
(c) Fringe- extracted Image. Ra =8.79-103, Fo = 6.34.

consume the least energy and hence be most likely to appear in the cavity. The
present set of experiments, however, provide evidence of bicellular flow for
small-time and is discussed in the following section.

7.2.2 Evolution of the Flow Field. Figures 40(a—) respectively show the original
fringe pattern, the Fourier-filtered image and, the fringe skeleton extracted using the
procedure given earlier. The figure represents fringe patterns in the vicinity of the
cold upper wall during the transient period at a Rayleigh number of 8.79-103 and a
Fourier number of 6.34. Figures 41(a—) show the original and the processed fringes
near the cold wall for the same Rayleigh number at a Fourier number of 91.26. The
near-wall fringes are nearly stationary at this time and steady state can be assumed to
have been reached.

The interferograms shown above have been obtained at the infinite fringe setting
and hence fringes are coincident with isotherms. At the centre of the cold wall, the
isotherms in Figure 41 are straight and hence correspond to parallel flow. A displace-
ment of the isotherms is indicative of transverse flow. This is seen near the side walls
in Figure 41 where flow moves up and down in the vertical direction to complete a
loop. Displacement of the isotherms is also seen at the centre of the cavity in Figure
40. This is proof of the existence of two convection cells during the early stages of
evolution of fluid movement.

7.2.3 Heat Transfer. Table 13 compares the average Nusselt number computed in
the present work at the end of three hours with the steady state correlation given in
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(a)

Figure 41 Fringes near the cold wall at steady
(b) state. (a) Original, (b) Fourier-filtered and (c) Fringe-
Extracted Image, Ra = 8.79-103, Fo = 91.26.

()

Gebhart et al. [89]. This correlation is applicable for a rectangular cavity with a mod-
erate aspect ratio, but is independent of the aspect ratio itself. It is given as

1708 Ra \!/3
Nu = ”““{“ﬂ}*[(@j —1} (25)

for Ra < 108, The comparison is seen to be fairly good, the values obtained in the
present investigation being about 4 to 8% lower than the values given by the correlation.

The variation of the Nusselt number for each half of the cavity and for the cavity
as a whole as a function of time are given in Table 14. A study of the transient data
reveals the following features. For a given Rayleigh number, the average Nusselt
number in the cavity is a maximum as steady state is reached. This is quite consistent
with the fact that the flow (measured in terms of the maximum velocity or minimum
stream function) is initially quiescent and increasingly becomes vigorous with the

Table 13 Average Steady State Nusselt Number in a Square Cavity

Ra- 10+ ’ Nu (present) J Nu [89] % difference
8.79 3.56 3.89 8.5
19.8 4.35 4.67 6.9

33.8 5.07 5.30 4.3
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Table 14 Average Nusselt Number as a Function of Fourier Number

Ra=8.79-10%
Fo 6.34 11.5 35.7 91.3
Nu (left) 221 3.42 3.65 345
Nu (right) 2.06 3.11 245 3.68
Nu (cavity) 2.13 3.26 3.06 3.56
Ra=1.9810%
Fo 9.14 13.7 20.3 60.94
Nu (left) 224 252 4.53 4.89
Nu (right) 2.64 2.79 3.77 381
Nu (cavity) 2.44 2.66 4.15 4.35
Ra=3.3810°
Fo 8.93 31.9 474 65.7
Nu (left) 287 447 4.54 5.89
Nu (right) 3.33 4.49 431 4.26
Nu (cavity) 3.1 4.48 442 507

passage of time. The increase in Nusselt number is however not found to be mono-
tonic. The thermal field is seen to be symmetric with respect to the vertical axis
dividing the cavity only at the lowest Rayleigh number (Ra = 8.79-103). It is not
symmetric at higher Rayleigh numbers, both during the transient as well as steady
state. This is also seen in the average Nusselt numbers obtained for each half of the
cavity. Hence, analyses that assume symmetry are likely to yield incorrect results.

Table 14 shows that at any Rayleigh number the initial increase in Nusselt number
is rapid. This is followed by a slow transient until steady state is reached. This behav-
ior can be explained as follows. The initial increase in Nu is controlled by the forma-
tion of boundary-layers near the hot and the cold walls and the characteristic dis-
tance is this boundary-layer thickness. Hence, the characteristic time over which
initial changes in Nu are significant is quite small. At larger times heat transfer is
established across the cavity dimension and the changes in Nu occur at a slower rate.

For all three Rayleigh numbers studied, the initial fringe patterns are qualitatively
identical to those shown in Figure 40(a). The fringes in this figure show a thick
boundary-layer and a plume descending downwards along the vertical axis of the
cavity. This suggests that the flow is initially bicellular. At later times the flow pat-
tern reverts to a unicellular form with nearly constant boundary-layer thickness over
the horizontal cavity walls (Fig. 41(a)). There is a considerable amount of uncer-
tainty in the exact time instant at which this transition occurs. It corresponds approx-
imately to a Fourier number of 10 while steady state is reached at around Fo = 50.
Once the flow becomes unicellular, transients are characterized by the formation of
newer fringes. This represents the penetration of the thermal front into the bulk of the
fluid. The process continues until steady state is reached.

Figures 42(a~c) show the local Nusselt number at the cold wall of the cavity at Ra =
8.79-103, 1.98-104, and 3.38-10* respectively. Transient as well as steady state distribu-
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Figure 42 Local Nusselt number as a function of distance and time. (a) Ra = 8.79-103, (bp) Ra=1.98.104
and (c) Ra=3.38-104

tions are shown in these figures. The corner regions of the cavity are zones of high heat
transfer and this is seen as spikes in the distribution of the local Nusselt number. These
distributions show a minimum in the local Nusselt number at the midpoint of the cavity
walls during the early transient. As stated above, this corresponds to the formation of
two convection cells in the test cell. In contrast, the local Nusselt number reaches a
maximum around the same point at steady state. The local values of the Nusselt num-
ber differ considerably from their average computed over the cavity width. In particu-
lar the average value is sensitive to the choice of the mathematical definition of an
average. An average based on Simpson’s rule has been used in the present work.

7.2.4 Closure. Transient Rayleigh-Benard convection in a square cavity with
rigid walls has been experimentally studied. Results show that the time-evolution of
flow is initially bicellular, while it is unicellular at steady state. The sense of unicel-
lular motion depends on the experimental bias. Experiments also show a large varia-
tion with distance in the local Nusselt number at the cold wall. The evolving flow
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shows symmetry at the lowest Rayleigh number studied. Symmetry is however lost
when the Rayleigh number is increased. The average cavity Nusselt number reaches
a maximum at steady state.

7.3 Convection in a Horizontal Differentially Heated Fluid Layer

7.3.1 Overview. An experimental study of Rayleigh-Benard convection in an
intermediate aspect ratio box that is square in plan is reported. An intermediate range
of Rayleigh numbers has been considered in the study. The fluid employed is air. A
Mach~Zehnder interferometer is used to collect the line-of-sight projections of the
temperature field in the form of interferometric fringes. Images have been recorded
after a sufficient time has elapsed for the initial transients to have been eliminated.
Interferograms have been collected from four to six view angles. These are used to
obtain the three-dimensional temperature field inside the cavity by using tomogra-
phy. The MART algorithm has been used for the inversion of the projection data. The
convergence of the iterative inversion procedure was unambiguous and asymptotic.
The reconstructed temperature field with a subset of the total data was found to be
consistent with the remaining unused projections.

Results for two Rayleigh numbers, namely 13900 and 40200 have been reported.
These were found to correspond to two distinct flow regimes. At these Rayleigh
numbers, a well-defined steady state was not observed. At the lower Rayleigh num-
ber, the fringes away from the wall showed mild unsteadiness. At the higher Ray-
leigh number, the fringes were found to switch between two patterns. Results for the
dominant mode alone have been presented for this problem. At a Rayleigh number
of 13900, three-dimensional flow structures, whose influence is equivalent to longi-
tudinal rolls have been observed. At a Rayleigh number of 40200, cubic cells have
been noted in the cavity. The associated flow pattern is inferred to be a plume rising
from the heated plate. The local Nusselt number variation is seen to be consistent
with the observed flow patterns.

7.3.2 Motivation. Rayleigh-Benard convection in horizontal fluid layers is a
problem of fundamental as well as practical importance. The flow pattern associated
with this configuration shows a sequence of transitions from steady laminar to
unsteady flow and ultimately to turbulence. This configuration has been studied by
analytical and computational techniques as well as by experiments to understand the
physics involved in the transition phenomena. Although extensive work has been
reported, many questions remain to be answered. Many of the global features
observed by numerical solutions are supported by experimental observations. How-
ever, a closer comparison in terms of thermal fields and convection patterns remains
to be carried out. With renewed interest in understanding nonlinear systems and
simultaneously the availability of powerful computers, there has been a revival of
interest in Rayleigh-Benard convection. The experimental technique has also been
strengthened by the availability of optical methods to visualize the flow phenomena
and computers for data storage, processing, and analysis.
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Interferometric study of Rayleigh-Benard convection for two Rayleigh numbers

(13900 and 40200) is reported in the present work. The cavity is square in plan and
the aspect ratio employed leads to an intermediate aspect ratio box. The aspect ratio
is defined as the ratio of the horizontal dimension to the height of the cavity. The
fluid considered is air. Results have been presented for flow patterns that develop at
long-time, that is after the initial transients have been eliminated. Interferograms col-
lected from several line-of-sight projections have been processed to reconstruct the
complete three-dimensional temperature field. The multiplicative algebraic recon-
struction technique in a modified form called AVMART has been used as the pre-
ferred tomographic algorithm (Section 6.5).

7.3.3 Rayleigh-Benard Convection. The present state-of-understanding of Ray-
leigh-Benard convection is discussed below. In the simplest form, the flow configu-
ration is comprised of a horizontal fluid layer confined between a pair of parallel
horizontal plates. The fluid is differentially heated by maintaining the lower surface
at a higher temperature compared to the top. This situation produces a top-heavy
arrangement that is unstable. The dimensionless quantity that characterizes the buoy-
ancy-driven flow is the Rayleigh number defined as

- gB(Thot - Tcold)h3
va

Ra (26)

When Ra is below a critical value, the gravitational potential is not sufficient to over-
come the viscous forces within the fluid layer. For Rayleigh numbers above the crit-
ical value, a steady flow is established. Subsequently, flow undergoes a sequence of
transitions, finally resulting in turbulence.

Transitions in Rayleigh-Benard convection depend on a Rayleigh number, a
Prandtl number, and the cavity aspect ratio. Additionally, there is an effect of the
geometric structure of the side walls being straight or curved [113]. The present dis-
cussion is restricted to a rectangular cavity. For a fluid layer with an infinite aspect
ratio, the first transition, namely the onset of fluid motion, occurs at a Rayleigh num-
ber of 1708, irrespective of the Prandtl number. The associated flow pattern is in the
form of hexagonal cells. The general effect of lowering the aspect ratio is to stabilize
the flow due to the presence of the side walls and thus increase the critical Rayleigh
number [116]. All subsequent transitions are Prandtl number dependent. The present
discussion is devoted to Prandtl numbers in the range 0.7-7, for which some general
conclusions can be drawn.

Flow patterns in rectangular cavities can be divided into three main categories,
depending on the aspect ratio. These are small (= 2-10), intermediate (= 10-30), and
large (= 30-60) aspect ratio boxes. Transition and chaos in a small aspect ratio enclo-
sure with water has been experimentally studied by Nasuno et al. [117]. Their data is in
good agreement with the stability diagram of Busse and Clever [118]. In a large aspect
ratio enclosure, it has been shown that flow beyond the critical Rayleigh number is



TEMPERATURE MEASUREMENT USING INTERFEROMETRIC TOMOGRAPHY 349

always time-dependent and nonperiodic (see Ahlers and Behringer [119]). In contrast,
a large number of bifurcations have been recorded both experimentally as well as in
numerical studies in small aspect ratio enclosures. Information regarding intermediate
aspect ratio enclosures is sparse. The transition sequence appears to be via the forma-
tion of longitudinal rolls that are aligned with the shorter side, polygonal cells; roll-loss
and displacement; and finally towards turbulence. The literature on convection in low
and intermediate aspect ratio enclosures is briefly presented below.

When the Rayleigh number is close to the critical value for the onset of convec-
tion, hexagonal convection cells have been observed both experimentally and in
computation [113]. With a further increase in the Rayleigh number, stable
two-dimensional longitudinal rolls have been observed. Krishnamurti [120] is one of
the earliest authors to conduct an experimental study and observe roll patterns. Much
later, Kessler {121] obtained steady rolls formation through a numerical simulation.
With further increase in the Rayleigh number, the two-dimensional rolls were seen to
bifurcate slowly to three-dimensional rolls, showing variation in shape along the roll
axis. The three-dimensional rolls were found to be steady over a range of Rayleigh
numbers. For further increase in the Rayleigh number, a loss-of-roll phenomena was
observed. Kirchartz and Oertel [116] have shown for a box of small aspect ratio the
transition from four rolls to three rolls and finally to two rolls. Simultaneously,
three-dimensional rolls become unstable and a periodic motion of the roll system
begins along its axis. The critical Rayleigh number for the onset of oscillatory rolls
is shown to be in the range of a Rayleigh number of 30000 for air (Pr=0.71) [121].
This critical Rayleigh number increases with the increase of the Prandtl number. The
frequency of oscillation is not a strong function of the Rayleigh number, but
increases slowly with increase in the Rayleigh number. Kessler [121] has also
observed the exchange of mass between different rolls. This is due to a periodic
motion in the location of the vertically upward and downward flow.

The evolution of time dependence and the nature of bifurcations sequence in
intermediate aspect ratio boxes is more complex compared to both low and high
aspect ratio boxes. Hence there is no general agreement in the literature. Krishna-
murti [122] has shown that convective flow for air in a box of aspect ratio of around
12 will become unsteady at a Rayleigh number greater than 9000. The unsteadiness
referred to here was identified through the velocity field by introducing neutrally
buoyant particles. This approach should be contrasted with interferometry, where the
temperature field is recorded in terms of fringes of finite thickness. It is likely that a
marginally unsteady flow field will continue to generate a stable set of fringe pat-
terns. In broader terms, the stability boundaries identified by Krishnamurti [122] can
be interpreted as the limit below which flow would be steady and above which the
the possibility of unsteadiness is high. Steady flow can still be observed at a higher
Rayleigh number for certain combinations of aspect ratios and length-to-breadth
ratios. Flow reversal from unsteady to steady flow has been shown by the numerical
study of Mukutmoni and Yang [123] for a small aspect ratio box. The intermediate

aspect ratio box on the other hand is an approximation of the infinitely extended
horizontal fluid layer only to a limited extent. Mukutmoni and Yang [102] have seen
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in their numerical work that the side walls play a role even when the aspect ratio is
large. Kolodner et al. [124] have reported the formation of stable rolls from experi-
mental studies at the onset of convection. The Rayleigh number was increased by
slowly heating the lower wall. The stable pattern was characterized by rolls of uni-
form size. The first bifurcation was observed around a Rayleigh number of 10200,
where the rolls were seen to deform. The deformation in the size of the roll and time
dependent oscillations were used to identify the transition Rayleigh numbers. The
loss-of-roll phenomena, i.e., a reduction in the number of rolls was observed around
a Rayleigh number of 11000. A ten-roll initial structure was found to have six rolls
at a Rayleigh number of around 20400. The complete time dependence of the flow
pattern was observed near a Rayleigh number of 30600. The six-roll pattern with
time dependent flow reappeared at a Rayleigh number of 68000. Mukutmoni and
Yang [102] have also shown the loss of roll phenomena as the Rayleigh number
increased in an intermediate aspect ratio box. Maveety and Leith [125] have
explored the relationship between heat flux characteristics and loss-of-roll structure
via experiments in rectangular cavities of intermediate aspect ratio, with air as the
working fluid. They have found the quadratic increase in heat flux to relax to a linear
growth with increasing aspect ratio, mainly due to a loss of rolls.

The present study is concerned with mapping the full three-dimensional tempera-
ture field in an intermediate aspect ratio box, using interferometric projections fol-
lowed by tomography. In an earlier study, the authors have reported experiments at a
Rayleigh number of 34800, using interferograms of the central core of the fluid layer
[79]. In the present work, Rayleigh numbers of 13900 and 40200 have been selected
for the experiments. The fluid layer has been completely mapped and a larger num-
ber of projections have been employed. At these Rayleigh numbers, longitudinal
rolls and polygonal cells are to be expected. The objective of the present work is to
explore under these conditions the detailed thermal field in the fluid layer.

7.3.4 Experimental Details. The apparatus used to study convection in the hori-
zontal layer of air is shown in Figure 43. The cavity employed was 500500 mm? in
plan, the vertical depth being adjustable. Two different vertical depths were used in
the present study to generate the two Rayleigh numbers. For a Rayleigh number of
13900, the vertical depth was 20 mm. For the higher Rayleigh number of 40200, the
vertical depth was increased to 26.8 mm. The aspect ratio was thus maintained at 25
and 18.6 respectively. The lowering of the aspect ratio was seen to reduce the extent
of unsteadiness in the convection pattern at the higher Rayleigh number. The fluid
layer was confined by two aluminium plates of 5 mm thickness above and below.
The side walls comprised of two superposed layers of perspex sheets, each 10 mm
thick. A small window in the side walls enabled the recording of interferograms. The
top wall was cooled and the bottom wall was heated by pumping water continuously
from constant temperature baths. Special attention was given to ensure that isother-
mal conditions prevailed at the aluminium plates. This was achieved by circulating a
large volumetric flow rate of water over the highly conducting aluminium plates. To
produce a Rayleigh number of 13900, the top wall is cooled to a temperature of
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Figure 43 Schematic of the experimental apparatus.

13.4°C while the bottom wall is heated to a temperature of 30.5°C, for a vertical
depth of 20 mm. For Ra = 40200, the temperature difference was increased to 21.1°C
by cooling the upper plate to 12.4°C and heating the bottom plate to 33.5°C, the
cavity height being 26.8 mm. The ambient temperature was 21.7°C in all the experi-
ments. Both walls were maintained at their respective temperatures to within £0.2°C
for the complete duration of the experiment. The temperatures of the walls were con-
tinuously monitored using thermocouples connected to a 30-channel temperature
recorder. The entire test cell was placed inside a chamber made of a plastic sheet to
eliminate the influence of external air currents. The test cell was mounted over a
traversing mechanism capable of both translational and rotational motion. The tra-
versing mechanism was padded with a rubber sheet, 30 mm thick, to damp external
vibrations. The interferometer was itself mounted on four pneumatic legs. A variety
of tests were carried out to ensure that the convection patterns in the fluid layer were
insensitive to external disturbances such as floor vibration and the flowing water. It
was thus established that air convection was driven by the temperature difference
alone. The hot and cold walls bounding the cavity were found to reach steady state in
about 30 minutes whereas the convection pattern reached steady state in three to four
hours. The experiment was conducted beyond four hours to eliminate the initial tran-
sients and obtain a dynamic steady state.

The interferometric fringes associated with the convective flow pattern can be inter-
preted as the line-of-sight projection of the refractive index field. This in turn depends
on the temperature field in the fluid layer. Using the projection data, the three-dimen-
sional temperature field has been determined using a tomographic algorithm. Recon-
struction of the three-dimensional temperature field requires that the projection data
employed be complete. In the present work, this requires the recording of interfero-
grams for the entire width of the fluid layer along different view angles (Fig. 43). The
laser beam diameter being 70 mm, the flow field of width 500 mm was mapped com-
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pletely by translating the test cell with the traversing mechanism. View angles of 0°,
30°, 60°, 90°, 120°, and 150° have been considered in the present study for the Ray-
leigh number of 13900. In these experiments, the fringes near the solid surfaces were
seen to be stationary. Hence, for a given projection angle, there was no difficulty in
maintaining the continuity of fringes from one projection record to the next. Mild
unsteadiness however was observed in the fringes near the central region of the fluid
layer, midway between the two horizontal walls. To circumvent this difficulty, several
images were recorded at a given position and those giving the best continuity were
chosen for analysis. Axial tomography that has been applied to the present work
requires that the axis of rotation be maintained strictly invariant from one projection to
the next. This has been enforced in the experiments by matching the center of the test
cell with the center of the traversing mechanism.

7.3.5 Uncertainty and Measurement Errors. Errors in the experimental data are
associated with misalignment of the apparatus with respect to the light beam, image
processing operations including filtering, thinning and assigning temperature to
fringes, error amplification during three-dimensional reconstruction, and the intrin-
sic uncertainty in the convection process itself. Errors related to refraction effects
have been found to be quite small. All experiments were conducted several times to
establish the repeatability of the fringe patterns. Time-dependent movement of
fringes was not a source of uncertainty in the present work at a Rayleigh number of
13900. However, at a Rayleigh number of 40200, two sets of convection patterns
were seen to be formed. Analysis has been carried out for the fringe patterns that
formed for the most part of the experiment. The associated uncertainty in the local
Nusselt number was found to be £20% with 95% confidence. At both Rayleigh num-
bers, the plate-averaged Nusselt number was found to be in good agreement with
published correlations and is discussed in Section 7.3.8. The width-averaged temper-
ature profile that represents energy balance across the cavity was also found to be
unique and well-defined. Hence, the results obtained in the present work can be
taken to be qualitatively meaningful.

7.3.6 Image Processing and Data Reduction. The three-dimensional reconstruc-
tion of the temperature field requires a noise-free set of projection data as input.
Hence, prior to the calculation of the projection data in terms of the temperature,
interferometric images have to be cleaned. Image processing operations employed in
the present study are described in Section 4. The fringe thinning algorithm is
described in Section 4.1.1.

The projection data of the temperature field in the fluid layer is available at this
stage in the form of temperatures at locations defined by the fringe geometry. To
apply a tomographic algorithm, the projection data is required over a uniform grid.
In the present study, two-dimensional quadratic interpolation has been employed to
transfer projection data from the fringe patterns to a uniform grid. The cavity height
was discretized into 21 horizontal planes. The number of vertical columns at which
interpolation was carried out for the 0° and 90° projections was 120. For the angular
projections, the cavity width was effectively larger. However, the extreme ends of the
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Figure 44 Original interferograms showing 5 full and 2 partial rolls at Ra = 13900, 90° projection.

cavity could not be used due to reduction in the path iength of the light beam travers-
ing the fluid layer. At these locations, there was a drastic reduction in the number of
fringes and a corresponding increase in the fringe spacing. Hence, for angular pro-
jections, only 160 vertical columns covering 60% of the cavity width were consid-
ered. The error introduced in the projection data due to interpolation was found to be
less than 0.01%.

Figure 44 shows a collection of original interferograms at a Rayleigh number of
13900 for a view angle of 90°. The roll formation, specifically five complete and two
partial rolls are clearly seen here. For the cavity size studied, the number of rolls is in
the range of 14-16. For compactness, thinned interferograms alone have been pre-
sented in this work. Figure 45 shows isotherms within the cavity for four different
view angles at Ra = 13900. As discussed earlier, the isotherms completely corre-

(a) 0° Projection

Figure 45 Thinned images of
the cavity, Ra = 13900, (a) 0°,
(b) 60°, (c) 90°, (d) 150° pro-
jections.

s/h . 275

0 2/h 75

8 275
(d) 150 sth
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spond to the fringe skeleton of the 0° and 90° projections. At other view angles, the
correspondence between fringes and isotherms is lost owing to changes in the path
length traversed within the fluid layer. This is not a source of error since the geomet-
ric factor can be analytically accounted for. In the present work, the fringes have
been mapped to temperatures over a grid and isotherms extracted from this data.
Thus, thinned images for other view angles in Figure 45 show isotherms, determined
from the interpolated grid values. Figure 46 shows thinned images of the fluid layer
for a Rayleigh number of 40200 at view angles of 0° and 90°.

The correctness of fringe thinning, assigning fringe temperatures, and a check on
the magnitude of interpolation errors have been examined by using the following
result: At steady state, the width-average of the line integrals of temperature field plot-
ted as a function of the vertical coordinate is independent of the projection angle. This
is because the total energy transferred across the cavity is unchanged from one hori-
zontal plane to the next. Figure 47 shows the variation of line integrals of the temper-
ature field averaged over a horizontal plane as a function of the vertical coordinate
measured from the cooled top wall for both 0° and 90° projections at a Rayleigh num-
ber of 13900. The corresponding graph for Ra = 40200 is shown in Figure 48. The
S-shaped curve, characteristic of buoyancy-driven convection can be seen here. The
curves for the two projections match closely and their slopes at the hot and cold walls
are practically equal. The S-shaped curve for the angular projections have not been
shown since the corresponding projection data does .not span the entire width of the
test cell. Temperatures in the 0° and 90° data have been subsequently corrected to
ensure that between the two projections, the S-shaped curve is strictly unique. This
step did not alter the isotherms in Figures 45 and 46 to any significant degree, but was
expected to improve convergence of the tomographic inversion process.

P

(b) 90°

Figure 46 Thinned images of the cavity, Ra = 40200, (a) 0°, (b) 90° projections.



TEMPERATURE MEASUREMENT USING INTERFEROMETRIC TOMOGRAPHY 355

20 }iRa=13900
0 degree —_— e
00 dRgree  wewwnn o
15 ¢ H
.
10 ¢
5 F
15 20 25 30
T°C
Figure 47 Width-averaged temperature Figure 48 Width-averaged temperature
profile in the cavity, Ra = 13900 (y = 1 is the profile in the cavity, Ra = 40200 (y = 1 is the
top wall.) top wall.)

7.3.7 Three-Dimensional Reconstruction Algorithm. The temperature data
available on a Cartesian grid for each view angle represents the line integral of the
temperature field in the fluid layer. Reconstruction of the three-dimensional temper-
ature field from the projection data requires the use of tomographic algorithms.
AVMART algorithm discussed in Section 6.5 has been used in the present analysis.

A check on the correctness of the reconstructed field was carried out along the
following lines. For a Rayleigh number of 13900, six different sets of projections
were collected. Of these, four projections were used to reconstruct the three-dimen-
sional temperature field inside the cavity. The reconstructed field was used to com-
pute the projections numerically at the two angles not included in the tomographic
algorithm. These two projections could thus be used for direct comparison with the
experimentally recorded interferograms. For the higher Rayleigh number of 40200,
two complete sets of projections (0° and 90°) were recorded. Besides this, for view
angles of 30° and 60°, projections of the near central region of the cavity over a
width of 6.2 cm were collected to serve as a cross-check for the reconstructed field.

The comparison between the numerically generated projections and the experi-
mentally recorded interferograms not utilized in reconstruction is now presented.
The Rayleigh number is 13900, but similar checks were also carried out at Ra =
40200. The cross-checks have been carried out at view angles of 30° and 120° in
terms of isotherms, Figure 49. The close match between the two sets of data con-
firms the correctness of the reconstructed temperature field. A similar cross-check
was carried out in terms of local Nusselt numbers at these projection angles and the
comparison was found to be good.

7.3.8 Results and Discussion. Results have been presented for two Rayleigh num-
bers, namely 13900 and 40200. The flow structure and roll pattern, temperature field
over horizontal planes, and the wall Nusselt numbers have been reported. An earlier
report of the present work at a Rayleigh number of 34800 with partial projection data
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Figure 49 Comparison of experimentally obtained thinned images with generated projections for
cross-check of reconstructed temperature field, (a) Ra = 13900, 30° projection, (b) Ra = 13900, 120°
projection.

at two view angles has been reported elsewhere [79]. Experiments were conducted at a
fourth Rayleigh number of 51800 as well. The flow field at this Rayleigh number was
found to be completely unsteady with no noticeable periodicity. Hence images even at
neighboring positions were seen to be uncorrelated. Tomographic interferometry of
fully unsteady convection phenomena has been taken up as a topic for future research.
Convection at Ra = 13900. The experiments at a Rayleigh number of 13900 are
considered first. Isotherms in the projection data at this Rayleigh number (Fig. 45) in
the 0° and 90° projections indicate the formation of longitudinal rolls in the fluid
layer. For a cavity square in plan, the orientation of the rolls is indeterminate in prin-
ciple, and will depend on mild imperfections in the experimental apparatus and non-
uniformities in the thermal boundary condition. In the present work, the roll axis is
seen to be parallel to the 90° view angle. The rolls are stacked adjacent to one
another, but the roll-width is not a constant. Despite the presence of a dominant flow
pattern, the temperature field is fully three-dimensional, as can be seen from the lack
of straightness of the isotherms in the 0° projection. At the onset of longitudinal rolls
in the fluid layer, scale analysis suggests the formation of as many rolls as the aspect
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ratio, 25 in the present experiment. The number of rolls seen in the projection data,
Figure 45, is 15. The reduction in the number of rolls with increase in Rayleigh num-
ber finds support in the work of Kolodner et al. [124]. These authors have reported a
decrease in the number of rolls from 10 to 6 in a 10:5:1 cavity for a Rayleigh number
increasing up to 20000.

The loss-of-roll phenomena has been predicted using stability theory and summa-
rized in Figure 2 of Busse and Clever [118]. This figure indicates that the movement
of the flow state occurs along the stability boundary that separates skewed varicose
(SV) instability from the knot (KN) instability in a direction of diminishing wave-
number. In the present set of experiments, the Rayleigh number was increased from
zero to its final value in one step rather than in a gradual sequence. Hence, the tran-
sitions that would occur for a gradual change in Rayleigh number were not visible in
the fluid layer. Thus the appearance of 15 rolls (instead of 25, as should happen if
equal-sized square rolls were to be formed) at Ra = 13900 has been presented here,
not as a transition point, but as a descriptor of the flow field.

For 25 rolls, the dimensionless wavenumber ¥y is 7, while it decreases to 1.88 for
15 rolls. This places the flow regime in a state of oscillatory instability [118]. The
mild unsteadiness in the fringe patterns can be associated with the oscillatory insta-
bility mechanism corresponding to a Rayleigh number of 13900 and a dimensionless
wavenumber of 1.88.

y/h=15,Ra=13900
1.°C

(a)

Figure 50 Temperature surfaces in the cav-
ity at three horizontal planes, Ra = 13900, (a)
y/h =0.15, (b) y/h = 0.5, (c) y/h = 0.85.
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Figure S1 [sotherms on horizontal planes of the fluid layer, Ra = 13900. (a) 2-view y/h = 0.85, (b)
4-view y/h = 0.85, and (c) 4-view y/h = 0.5 tomography.

The temperature surfaces on three horizontal planes at which y/h = 0.15, 0.5, and
0.85 respectively, are shown in Figure 50. To preserve visual clarity, these surface
plots have been partially filtered, without any noticeable loss of signal strength. The
ordering of the horizontal planes is from the cooled top plate where y = 1. The nature
of the temperature field is three-dimensional but is similar at all the three planes.
One can see rolls spreading over the entire length of the cavity. While this is a quali-
tative trend, distortions can also be seen in the form of nonuniformity in roll width
and straightness, and possible interference between neighboring rolls. These aspects
are brought out in the isotherms over horizontal planes of the fluid layer (Figs.
51(a—)). One can think of the isotherm patterns emerging from two-views (Fig.
51(a)) as the equivalent or the dominant trend, with other details surfacing from
increasing view angles (see Natterer [88]). The patterns on two different planes
obtained with the final set of four views (0°, 60°, 90°, and 150°) are shown in Fig-
ures 51(b—c). These figures have also been partially filtered for presentation. While
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the unfiltered plots strictly satisfy the projection data (as in Fig. 49), the isotherms in
Figure 51 are quite close. Hence, the resulting influence of the apparently
three-dimensional flow field in Figures 51(b—) is akin to longitudinal rolls. While
Figures 51(b—) show three-dimensionality in the flow field, the similarity in the
geometry of isotherms suggests the formation of a stable structure in the fluid layer.
The situation is analogous to chaotic convection superimposed on a set of stationary
rolls observed by Gollub and Benson [126] at a Rayleigh number of 60000.

The local, the line-of-sight averaged (i.e., along a light ray) and the cavity-aver-
aged Nusselt numbers have been computed at both the walls. The Nusselt number
has been computed using the reconstructed field as well as the projection data. The
average Nusselt number for the entire surface has been computed from the
width-averaged temperature profile of the projection data. This corresponds to the
slope of the S-shaped curve at the bounding planes (Fig. 47). The average Nusselt
number at both plates has been reported for various angles of projection. The angular
projections other than 0° and 90° do not include the entire width of the test cell, but
it is expected that the average Nusselt number over the partial length will be repre-
sentative of the entire width of the cavity. The average Nusselt number for each of
the plates has also been compared with the experimental correlation reported by
Gebhart et al. {89] in air, Equation (25).

A summary of all the Nusselt numbers referred to above is given in Table 15. The
Nusselt numbers computed from interferometric measurements are within £10% of
the globally averaged value of 2.14. The individual plate-averaged Nusselt numbers
are 2.16 and 2.12 as shown within brackets in Table 15. As stated earlier, interfero-
metric projections at 30° and 120° were not utilized for reconstruction. The close-
ness of the average Nusselt numbers at these view angles with respect to other pro-
jections shows overall consistency in the measurements. The above equation gives a
value of Nu = 2.59 at Ra = 13900. The Nusselt number obtained from the present set
of experiments is thus approximately 17% below the Nusselt number based on the
above correlation. The agreement is much closer at the higher Rayleigh number and
is discussed later. Within experimental uncertainty, the comparison with previous
experiments at the lower Rayleigh number may be taken to be favorable.

The temperature field derived from the interferograms suggest the formation of
longitudinal rolls in the cavity. The presence of rolls can be deduced from the local

Table 15 Comparison of Average Nusselt Number with [89], Ra = 13900

Projection angle in Nu (average) from

Nu (cold surface) | Nu (hot surface) Nu (reference)

degree all angles
0 2.18 1.94 2.12 (hot) 2.59
30 233 2.02 2.16 (cold)
60 1.99 234 2.14 (cavity)
90 2.00 217
120 2.19 2.32

150 2.27 1.95
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Nusselt number variation with distance. When the local Nusselt number is computed
from the projection data, the value corresponding to the average computed along the
light ray within the test cell is obtained. These line-of-sight Nusselt numbers are
averaged along the direction of the light ray and are shown in Figure 52 for various
projections angles for the top and the bottom plates. The rolls being parallel to the
x-axis, the line-averaged Nusselt number along the z-axis that is the 0° projection is
expected to show similar trends over both the walls. This is evident in Figure 52(a),
where except for a small part of the test cell towards the ends, the local hot and cold
wall Nusselt numbers are similar. Along the x-axis, that is the 90° projection, the
local Nusselt numbers at the two walls are expected to show a phase shift. This cor-
responds to the inclination of the major axis of the roll cross-section with respect to
the vertical direction. This shift is seen in Figure 52(b). Hence in a qualitative sense
the variation of the line-averaged Nusselt number over the two plates supports the
equivalent flow pattern in the cavity to be in the form of longitudinal rolls. The local
Nusselt number along the direction of the 0° projection angle shows definite varia-
tions with distance. This suggests three-dimensionality in the longitudinal rolls
which are no longer two-dimensional at the Rayleigh number studied. The loss of

xperimental projection
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Figure 52 Experimentally obtained line-integrals of Nusselt numbers for both the walls, Ra = 13900,
{a) 0°, (b) 30°, (c) 60°, (d) 90°, (e) 120°, (f) 150° projections.
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two-dimensional structure in the rolls can also be confirmed from other projections
(Figs. 52(c)-52(f)). Since the rolls identified in the projection data are parallel to the
x-axis, projections symmetric with respect to the 90° axis will be identical at the
limit of strict two-dimensionality. A comparison of projections obtained from sym-
metrically placed angles, namely (30, 150) and (60, 120) shows qualitative similar-
ity. This strengthens the suggestion of rolls, but also highlights their unequal sizes
and their three-dimensional nature along the roll axis.

The Nusselt number surface obtained from the reconstructed temperature field is
shown for each of the hot and cold surfaces in Figure 53. Along the roll axis, the
Nusselt number surfaces of the top and bottom plates are oppositely oriented. Heat
transfer from the lower to the top plate by a buoyancy-driven roll is associated with
the peaks and valleys of the Nusselt number surface.

Convection at Ra = 40200. Analysis of results from the experiments at a Ray-
leigh number of 40200 are presented next. In the higher Rayleigh number experi-
ment, formation of a hot buoyant plume arising from the bottom plate and advancing
towards the cold top plate has been observed. Since the discussion is based on two
views, structures referred to below are to be interpreted as representative of the flow
field. The temperature surfaces, namely the temperature variation over horizontal
planes, are shown in Figure 54. Three horizontal planes, namely y/h = 0.15, 0.5, and
0.85, have been considered. A clearer picture emerges when isotherms at the corre-
sponding planes over an assembly of four adjacent cells are examined. This is shown
in Figure 55. Here, each cell corresponds to the portion of the cavity reconstructed
from the interferograms. On assembly, the collection of temperature surfaces over
the three planes clearly shows the structure of a rising plume. The repeating roll-like
structure seen from both the 0° and 90° view angles suggests that a cubic cell exists
inside the cavity. Mukutmoni and Yang [102] have shown the formation of an oscil-

Figure 83 Nusselt number surfaces for top
and bottom walls, Ra = 13900.

Bottom plate
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y/h =0.15, Ra = 40200

Figure 54 Temperature surfaces in the
cavity at three horizontal planes, Ra =
40200, (@) y/h = 0.15, (b) y/h = 0.5, (¢)
ylh = 0.85.

latory polygonal planform structure for intermediate aspect ratio boxes for a fluid of
Prandt! number equal to 3.5 at a Rayleigh number of 24000. The present observation
that flow organizes in the form of cubic cells in the cavity is similar to their conclu-
sion. It is also in agreement with the authors’ previous study based on partial projec-
tion data with two view angles [79].

Figure 55 shows that the size of the heated region increases as one moves towards
the heated lower wall. The buoyant plume rises from the center of the cluster of four
adjacent repeated cubic cells. Each cubic cell can be visualized as being divided
along its diagonal plane with high- and low-bulk-fluid temperatures on each side.
Thus, the fluid rising along the center descends uniformly around the plume in the
four quadrants. The assembly of four cells encloses a set of four rolls, all of which
raise hot fluid jointly along the central vertical axis, which after being cooled,
descends all around towards the lower surface. While it is possible to identify a cubic
cell that is isolated from a thermal viewpoint (for example from the interferograms),
it should be noted that the associated velocity field need not be isolated. In fact, the
velocity fields in individual cubic cells will interact and an orderly pattern for flow
can be discerned only over a collection of cells.

A flow model that integrates all aspects of the temperature contours is shown in a
schematic diagram in Figure 56. This figure shows the hot mass of fluid rising in the
form of a buoyant fountain from the center of the four adjacent cubic cells and dis-
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Figure 55 [sotherms in the cavity at three horizontal planes, Ra = 40200, (a) y/h = 0.15, (b) y/h = 0.5,
(c) yth = 0.85.

tributing the cold fluid in the four quadrants from above, almost symmetrically.
When viewed from any direction this flow field will show a roll-like repeating struc-
ture. The plume cross-section is not seen to be of any definite shape, but is closer to
an ellipse than a circle. This is simply because the cubic cell has unequal edges.

At a Rayleigh number of 40200, the average dimensionless wave-number of the
dominant roll-pattern was found to be 2.52. The stability diagram of Busse and
Clever [118] does not extend beyond Ra = 20000. However, an examination of the
stability diagram for Pr = 7 (water) is possible though it is known that a higher
Prandtl number has a stabilizing effect. The point Ra = 40200 and y = 2.52 falls very
close to the cross-roll stability boundary. The corresponding shadowgraph images
are vividly shown by Busse and Clever [118], and Nasuno et al. [117].

The work of Busse and Clever [118] shows that the approach to cross-rolls in
water is via skewed varicose and knot instabilities as the Rayleigh number is raised.
In contrast, at Pr = 0.7 the sequence is skewed varicose, oscillatory, and with knot
instabilities, but no data is really available for Ra > 15000. As discussed below,
Lipps [127] has shown the formation of (semi) cross-rolls at Ra = 25000 in a small
aspect ratio fluid layer. The formation of cubic cells as a dominant pattern, and a
switch between this pattern and longitudinal rolls have been observed at Ra = 40200
in the present experiments. This suggests that the boundaries of the oscillatory, knot,



364 ANNUAL REVIEW OF HEAT TRANSFER, VOL. 12

A

2
0
#
Q

Figure 56 Schematic of the cubic cells and rising plume inside the cavity.

and cross-roll regimes (when extended) should be in the vicinity of this Rayleigh
number in air. As in the case with Ra = 13900, one cannot comment on the route
followed in the present experiments by the flow field to attain its final state on the
stability diagram.

The analysis of the temperature field reported in the present study is based on the
dominant fringe patterns. It was not possible to capture the momentary appearance
of the secondary mode, but a visual examination showed it to be straight fringes, and
hence equivalent to a longitudinal roll. The estimated time scale involved in the
problem was estimated to be around ten seconds, corresponding to a frequency of
0.1 Hz and a Fourier number (ou/h?) of 0.25. Frequencies of a similar order of mag-
nitude have been reported by Gollub and Benson [126] in their LDV study of RB
convection at Rayleigh numbers up to 100 times the critical Rayleigh number for the
onset of convection.

The experimental results are compared next with those of Lipps [127]. This is a
numerical study of Rayleigh-Benard convection in air over the range 4000 < Ra <
25000. The comparison is between the present experiments at Ra = 40200 (aspect
ratio = 18) and the numerical predictions at Ra = 25000 (aspect ratio = 5-6). Thus
the comparison is at best qualitative. Lipps [127] has reported time-dependent oscil-
lations in the fluid layer whose characteristic time scales are position dependent. On
the midplane of the fluid layer, this was in the range 0.05 < T < 0.2. The mean flow
itself had a periodicity of T = 1.3. The corresponding number for the present experi-
ments based on visual judgement was 0.25, as mentioned in the previous paragraph.
Despite this difference, typical isotherms shown by Lipps [127] are remarkably sim-
ilar to the interferograms recorded in the experiments. Numerical calculations do not
reveal plume formation, and instead, the author has identified a tongue-like structure
spreading in the horizontal plane.

Lipps [127] has reported the appearance of a dominant flow pattern in the shape
of a (semi) cross-roll followed by a disturbed flow regime, and the time scale for the
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Figure 57 Experimentally obtained line-integrals of Nusselt numbers for both the Walls, Ra = 40200, (a)
0°, (b) 90° projections.

switch-over was T = 1.3. This result has a definite similarity with the experiments of
the present study, in which the switching phenomenon has been reported. The time
scale seen in the experiments (= 0.25) is smaller than 1.3, but can be explained as
being due to

(a) a higher Rayleigh number which tends to lower the time scales, and

(b) a higher aspect ratio which can activate a whole range of wave numbers
including small ones thus causing a lowering of t.

Results for the Nusselt number at a Rayleigh number of 40200 are presented next.
The Nusselt numbers averaged over the entire surface are given in Table 16. These
have been compared with the correlation of Gebhart et al. [89] given above. The
agreement between the Nusselt numbers of the present work and the correlation can
be seen to be close. Specifically, the Nusselt number computed from the present set
of experiments is within 1.5% of the empirical correlation.

The variation of the line-of-sight averaged Nusselt number with distance closely
reflects the flow pattern in the cavity. As in the case of the lower Rayleigh number,
these have been computed directly from the interferograms and are shown in Figure
57. Both 0° and 90° projections have been presented. A roll-like structure can be
seen from both view angles and so the Nusselt number variation is expected to be
oppositely oriented for the two active surfaces. This result is clearly brought out in
Figure 57. The line-of-sight averaged Nusselt numbers were also computed from the
reconstructed (fully three-dimensional) temperature field. The comparison between
the reconstructed and the original local Nusselt numbers is presented in Figure 58.
For the 0° and 90° view angles that have been employed in reconstruction, the com-
parison for both surfaces is excellent. The Nusselt number surfaces over the two
bounding planes are shown in Figure 59. These surfaces are clearly oppositely ori-
ented at the hot and cold walls. This confirms that when visualized from any angle,

the resulting fringe pattern will be a roll-like repeating structure. It strengthens the
suggestion made earlier that the flow field is in the form of a buoyant plume.
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Table 16 Comparison of Average Nusselt Number with [89], Ra = 40200

Projection angie in Nu (average) from

Nu (cold surface)} | Nu (hot surface) Nu (reference)

degree all angles
0 3.22 3.30 3.32 3.28
90 3.48 3.30

7.3.9 Closure. A three-dimensional temperature field in a differentially heated
horizontal fluid layer has been reconstructed from its interferometric projections.
Two different Rayleigh numbers namely 13900 and 40200, have been considered.
The tomographic reconstruction technique that has been employed is AVMART. The
algorithm converged without ambiguity to the final solution and did not display
excessive sensitivity to the initial guess, relaxation factor, and noise in experimental
data. The reconstructed field was seen to be fully consistent with the projection data.
The reconstructed field was also seen to be in good agreement with the projection
recorded, but not used in the tomographic algorithm. The three-dimensional field
was seen to satisfy energy balance checks. The cavity-averaged Nusselt number
computed from the interferometric projections was seen to be in reasonable agree-
ment with published correlations.

At a Rayleigh number of 13900, the fringes were seen to be steady near the bound-
ing walls, but mild unsteadiness was observed in the central horizontal layers. At the
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Figure 58 Comparison of experimentally obtained line-integrals of Nusselt numbers with generated
line-integrals of Nusselt numbers, Ra = 40200, (a) 0°, (b) 90° projections.
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Top plate, Ra = 40200

Figure 59 Nusselt number surfaces for top
and bottom walls, Ra = 40200.

higher Rayleigh number of 40200, the unsteadiness was more pronounced, with flow
switching between two well-defined states. The interferograms corresponding to the
dominant mode have been recorded and analyzed in the present work.

At a Rayleigh number of 13900, the flow field was seen to be organized in the
form of a three-dimensional structure. A two-view tomographic calculation showed
a set of longitudinal rolls as a dominant pattern in the fluid layer. The rolls could be
identified from the projection data. The number of rolls was smaller than that based
on the aspect ratio consideration. The roll also displayed three-dimensionality along
its axis. At a Rayleigh number of 40200, the thermal field was determined by
cube-like cells that were spread all over the cavity. A collection of four cubic-cells
was found to reveal a centrally located buoyancy-driven thermal plume rising from
the hot plate and descending around it from the cold wall. The variation of the
line-of-sight averaged Nusselt number as a function of a wall coordinate at each of
the hot and cold surfaces was seen to be consistent with the proposed flow models.

8 CLOSING REMARKS

Mapping of thermal fields in fluids by interferometry has been described in the
present article. By interpreting the interferograms as path integrals of the field vari-
able, it has been shown that the three-dimensional field can be reconstructed using
principles of tomography. Iterative algorithms based on the ART family have been
found to be suitable for this purpose. Experimental results for buoyancy-driven con-

vection in three configurations namely, a protruding heater, a two-dimensional
square cavity, and a differentially heated horizontal fluid layer have been presented.
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Interferometric tomography has good potential for applications to problems of far
greater complexity. Examples are: (1) fully unsteady three-dimensional flow, (2)
simultaneous reconstruction of fluid-fluid interfaces along with the temperature varia-
tion over them, (3) strongly refracting thermal fields where the reconstruction has to be
performed with integrals evaluated over space curves, and (4) monitoring the growth
of laser crystals from an aqueous solution by controlling the prevailing thermal fields.
There is also the possibility of recovering the velocity field in the fluid medium from
the complete temperature data. With advances being made in improving the spatial
resolution and recording speed beyond video rates, it is now conceivable that interfer-
ometric tomography can be used to analyze turbulence structures, for example in
buoyant flows, jets, and chemically reacting fluids. Color interferometry is a promising
tool to improve spatial resolution since fringes will form corresponding to each wave-
length of the laser (this approach has not been reported in the literature). Tomography
by itself is a versatile tool to analyze data recorded by other measurement strategies
that do not rely on changes in the refractive index. Projection data for example, can
also be generated by reflection, absorption, and attenuation mechanisms.

Of great practical utility would be the extension of laser tomography to
field-scale problems. Optical elements are needed here mainly to generate the pro-
jection data. Thus a field-scale problem is characterized by a large volume of data
and the processing reduces to purely a numerical challenge. This aspect will be
resolved with further improvements in computer technology. The use of lasers to
process satellite images, and in turn provide a reference input to weather prediction
codes, is an application that can deliver significant benefits to the society.
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