Problems from Computer Aided Engineering Design
Anupam Saxena and Birendra Sahay

Chapter |

1.1 A four-bar mechanism is shown in Fig. P1.1. Fixé{s are given to be £0,= 20 cm. The input crank
0,A=10 cm and AB= B@=25 cm. Trace the point path of point P for AP=6 &ll links are rigid.

1.2 A Chebychev's straight line linkage is shown in .FRf.2. Fixed pivots are given to bed=20 cm.
0O,A=25 cm and AB=10 cm and BE25 cm. Determine the path traced by the pointBPi£5 cm. All links
are rigid.

1.3 A film advance mechanism is shown in Fig. P1.3f@&5 mm camera. Link 2 is attached to the dc memdr
rotates at a constant angular velocityO@Qare fixed pivots. Link 3 is extended and has aquid, which
goes into the rectangular groove of the film, moa&mng a straight line by 35 mm and then lifts op t
disengage from the film at the end of its motiomsn the mechanism by selecting suitable sizebeof
linkages.

1.4 For the mechanism shown in Fig. P1.4, the inpuleafg=6(f, and the constant angular velociby=5
radians/sec (CCW). If body 4 is in rolling contagth the ground, determine the velocity and aceien of
links 3 and 4 using kinematic coefficients. Th&dirAB=25 cm, BC=15 cm, and radius of the rigid eol
is12.5 cm.




Fig. P1.: Fig. P1.:

1.5 Steps for design of compression springs for statidings has been described earlier which can biéyea
implemented on a computer using MatLab.

(a) Extend the method for design of compressioimgprunder fatigue loading. These types of sprargs

used in IC engines, compressors, shock absorbesehinles etc.

(b) Add modules to your computer program (makatiractive) to include design of extension springs,
torsion springs and leaf springs.

1.6 Write a computer program for selection of ball liegs. The program should include a look-up table
(Timken or SKF) for some standard bearings. It &healculate and check the bearing life under tiverg
loading conditions.

1.7 Write an interactive computer program for compldesign of short journal bearings. It is easy to use
Ocvirk’s solution. The software should take int@@ant the bearing material, type of lubricatings aind
their viscosities and thermal considerations.

1.8 Shafts and axles are most commonly used mechasocaponents. They are designed to transmit power.
They should be designed and checked for defleeti@hrigidity as well as static and fatigue strerfgtha
given loading condition. Keyways, pins, splines diaineter changes introduce stress concentratiakeM
computer program for design of shafts. Look updslibr material etc. will be helpful to the designe



Chapter I

1. For the position vectors;[§1,1), g (3,1), g (4,2), p (2,3), that defines a 2D polygon, develop a single
transformation matrix that

(a) reflects about the line= 0,
(b) translates by —1 in both x and y directions, and
(c) rotates about the origin by 180

using the transformations, determine the transfdrpasition vectors. A viewing transformation maigxgiven
below. Find the Cartesian coordinates of the vamgshoints along the three principal directions

0866 —-0354 0 - 0141

0 0707 0 -0283

- 0500 -0612 0 - 0245
0 0 0 1

[ =

2. Develop an algorithm to find the set of verticesking a regular 2D polygon. You may use only
transformations on points. Input parameters arestéing pointp, (0, 0), number of edges and length of
edgel.

3. Prove that the transformation matrix

1-t2 2t 0

1+t% 1+t?

_ _ 42
R= 2t2 1 t2 0

1+t 1+t

0 0 1

produces a pure rotation. Find equivalént

4. Show that the reflection about an arbitrary lixet by + ¢ = 0 is given by

b?-a? -2ab 0
-2ab  a’-b? 0
1
—2ac -2bc ———
a? +b?

5. Consider two lines L1y = c and L2:y = mx+c. These two lines intersect at point Cyaxis. The angl&d
between these lines can be found easily. A poifi,Py,) is first reflected through L1 and subsequently
through L2. Show that this is equivalent to rotgtihe point P about the intersection point C By 2

6. A point P §, y) has been transformed to B*(y*) by a transformatioM. Find the matrixM.
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7. MatrixM =|c 1 O] shears an object by factarandb along theOx andOy axes respectively. Calculate
0 01

the matrix that shears the object by the same fgchut inOx; andOy; axes inclined at an angt to the
original axes.

8. Scaling of a point B(y) relative to a point §X, , Yo) is defined as
X* = XO + (X_ XO)SX = XSX + XO (1_ Sx)

yk = yO + (y_ yO)Sy = ySy + yO (1_Sy)
S 0 0

X

[x* y* 1'=| o0 s ofx y 1

y
X @1-s,) Yol-s) 1
Find the resulting matrix for two consecutive sogliransformations about point(®, y:) and B(xx, y») by

scaling factork; andk, respectively. Show that the product of two scalifgga third scaling; but about what
point?

9. Reflection through the origin (0, 0) in 2D is givien

-1 0 0
Ri,=|0 -1 0
0 0 1

Reflect a line PQ given by B( y1), Q(xx, ¥») through a point A4, b). Check the result for P (2, 4), Q (6, 2) and A
1, 3).

10. The corners of awedge shaped block are (002; 00 3; 02 3; 0-22 2;-1 2 3). A plane passes through (0
0 1) and its equation is given by 8 4y + z— 1 = 0. Find the reflection of the wedge throtigk plane.

11.Develop a computer program for reflecting a polygoabject through a given plane in 3D. Test your
program for Problem 10 above.

12. A prismatic solid S has a square base lying inythé plane as shown in Figure P2.2. The verticeBéag0,
-a), C(-a, 0,-a), D(-a, 0,a), E(@, 0,a). The apex of the solid is at By(b, b).The solidS is now linearly
translated t&* such that vertex C coincides with a poinpR{, r), wherep, g, andr are all greater tham

(a) If the observer's eye is situatedzat -z, find perspective projection of the solid o 0 plane. Repeat the
problem fory = -y, andx = —x. with the image plane as= 0 andx = 0 respectively. Assume your own values for
the required parameters. Show stepwise numerisaltsewith matrices at all the intermediate stepsigawith
projected images.

(b) The solidSis chopped off by a plane=d (d < b) and the right side along with the vert&xemoved. You can
calculate the coordinates of the rectangular seé¢t®HI thus created. This frustum is now translate&toas
before withC coinciding withP. If J is the center of the rectandgisHI, find the direction cosines of vector
O**J, O** is the center of the squaBCDE**. Rotate the frustum by an angte about a lineL throughO**,
whereL is parallel tox-axis in the plane dBCDE**. Show calculations and graphical results éer30° and 45.



A(b, b, b)

Y

C(-a, 0,-a)

B(a 0,-a)

Figure P2.2

13. A machine block is shown in the Figure P2.3. Usmgsformations, show the following graphical résul

Figure P2.3 Machine block.

(a) Orthographic projections.
(b) The object is rotated about y-axis by an agpghend then about-axis throughp. This is followed by a parallel
projection orz = 0 plane to get a trimetric projection. Fpe= 30 and 48, draw figures for trimetric projections

when | takes on the values 30, 45, 60 and 90 degreesul@t the foreshortening factors for each of the
positions.

14. For the component shown in Figure P2.3, Show theal@a and Cabinet projections far= 30, 0, and — 45
degrees.



Chapter Il

1. Find the parametric equation of an Archimedearakjuira polar form. The largest and the smallegii 1&f
the spiral are 100 mm and 20 mm respectively. Piralshas two convolutions to reduce the radiusiftbe
largest to the smallest value.

2. Derive the equation in a parametric form of a cigtldhe cycloid is obtained as the locus of a poimtthe
circumference of a circle when the circle rollsheitit slipping on a straight line for one compleatealution.
Assume the diameter of the circle to be 50 mm. Adimwive the parametric equation for the tangedttae
normal at any generic point on the curve. Furtheeméine the coordinates of the center of curvatfra
generic point on the curve.

3. Fine the curvature and torsion of the followingvas.
x=uy=u,z= U
x=u,y=(1+u)u,z=(1-udu
x=alu—-sinu),y=a(l —cosu), z=hbu

4. Find the biparametric equation of a plane boundea tsiangular region. The vertices of the triangfieA (a,
0, 0),B (0,b, 0),C (0, 0,c).

5. Derive the parametric equation of parabolic arclesehspan is 150 mm and rise is 65 mm.
6. Derive the parametric equation of an equilaterakenigola passing through a poi{15, 65).

7. Derive the parametric equation of an ellipse whasgor and minor diameters are 150 mm and 75 mm
respectively. Furthermore, the major and minor digars are conjugate diameters inclined to one andij
60 degrees. The major diameter is horizontal.

8. Find the parametric equation of a circle passimgubh three pointp,, p; andp,lying on XY plane. Discuss
under what conditions your equation will fail tcfide a circle.

9. Find the equation for the skew distance (shortessaigce) as well as the skew angle between a pakew
linesAB andCD.

10. For a lineAB, specified in space, find the angle of this lirenf theXQY plane. Also, find the angle that the
projection of this line in thXOY planes makes with respectXeaxis.

11. Find the equation of the dihedral angle betweenitwgrsecting plandBC andABD in terms of coordinates
of pointsA, B, C andD.

12. Find the osculating, tangent and normal planeghi®ifollowing curves
a) x(u) = 3u, y(u) = 34 Z(u) = °
b) x(u) =acosu, y(u) =asinu, zZ(u) =bu
Plotx(u), y(u), z(u) versusu for —1< u< 1 and the curve(u) =x(u) i +y(u) j +z(u) k for both curves.

13.If r(s) is an arc length parametrized curve such thatdonr=0, and curvature is a constant, show thafs)
is a circle.

14. Calculate the moving trihedron values as functiois and plot the curvature and torsion f¢u) = (3u — U,
3u?, 3u + %) shown in the Figure P3.1 below.



Figure P3.1
15. Plot the curvature and torsion of the Viviani's\wai(intersection of a cylinder and a sphere).

16. Write a procedure to create Frenet Frame at argngdoint of a 3-D curve.

17. Write a procedure to calculate curvature and tarsioca 3 dimensional curve at a given point and als
procedure to plot these shape parameters.



Chapter IV
1. Consider a parametric cubic cumg) where

r(uy) =RP+RP+KP+FKP, O<su< 1
where F=1-3+20° K, =3 - 2% FR=u-20¥ + U, F, = -u* +

In some situations, data abd®it, andP’; is not available, Instead, vectd®s , andP” ; are known. In such
cases, derive the expressions for all elemerisfof the parametric equation to be written in ttvarf

r(u) =U K C where
U=[uu?ul],C" =[P, P.P"qP”,] andK is the &4 matrix.

2. Given a parametric cubic curve whose geometricfimberiits are Py P, P’y P’4] snip or trim the curve at =
0.7 and reparametrize this segment so tlat& 1. Find the relationship between the geometraffaents
of the sniped and original curves.

3. Derive the cubic Bézier curve in the matrix forrdhstrating the control points, the curve shape] tre
blending functions through sketches. Derive als® éRpression for the tangent at any given pointhen
curve. Write a computer code to display a 3D cubézier curve. The input shall be the control point
coordinates. Shift any one of the given controh®ito a new location and show the change in sbape
plot. Output also the tangent value at any spetifigalue given.

4. Consider a Bézier cubic curve obtained by a s@toaitsP,, P;, P, andPs. Assume that it is not possible to
specifyP; andP, but one can specify-, the point of intersection d¢%,P; andP,Ps;. The Bezier curve faP,,
P., P, will be quadratic one. What will be the relatiostlweenP:, Py, P;, P, andP; so that the cubic as well
the quadratic Bézier curves are identical ones.

5. A parametric cubic curve is to be fitted to passtigh four point®,, P, P,, Ps. The first and last point3,,
P; are to be att = 0 andu = 1 respectively. Point®; andP, are atu = 1/3 andu = 2/3 respectively. The
equation of the curve is to be written in the form

m, m, mg; my,|P,

P

r(u):UMpP:[u3 W2 U 1] My My My My, |
My My, My My, | P,

My M, Mg My, | Py

Show that the basis matiisx given by
-45 135 -135 45

M, = 90 -225 18 -45
-55 90 -45 10
1.0 0 0 0

(a) Plot the curve passing through (0, 0), (1, 0)1§1(0, 1)

(b) A circular arc of radius 2 lies in the first quadirawWrite the co-ordinates of the 4 points thategaally
spaced on this arc. Calculate the point on theatuc %2 . How far does it deviate from the midpoint of
the true quarter circle?

6. In the above example, IBb andP; be atu = g andu = £ (a < f< 1). Re-derive the expression for the basis
matrix.
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11.

12.

13.

14.

15.

16.

A 3-D parametric cubic curve has the start andmmidts atP, (0, 0, 0) andP; (1, 1, 1) and the end tangents

are (1, 0, 0) and (0, 1, 0).

() Find and draw the parametric equation of the caegment.

(b) If the end tangents have the magnitudeend S, show some results of the variation in curve stthpeto
changes im, S.

The geometric matri of a parametric cubic curve defines a straight-iegment if
G=[P, P, a(Pi—Po) B P.—Po)]"

Express the equation of the straight line as accfuliction inu. Tabulate and draw the points on the straight
lines at intervals ofu = 0.01 fromu = 0 tou = 1 in the following cases.

(@ a=p=1
(b) a=p=-1
©0a=2,=4

(dya=-2,=-4
At what values ofi the trace of the line changes directions in edt¢heocases?

Show that a linear relationship= au + b preserves the cubic form of the equations asagethe directions of
tangent lines while reparametrizing. (b) lor -1, b = 1, show that the direction of parametrizatiom (0f is
reversed.

Write a procedure to truncate a parametric cubitvecwat two specified values af and subsequently
reparametrize it. Test your program for a parameubic curve with a given set of end poiRgg1, 1, 1) and
P1(4, 2, 4) and the end tangentf0) = (1, 1, 0) and"(1) = (1, 1, 1) truncated at (a)= 0.25, andi= 0.75 (b)
u=0.333 andi = 0.667.

Write a procedure for blending a parametric cuhicve between two given such curves. Create a 2-D
numerical example to test your algorithm. Showsfiect of changing the magnitudes of the tangentors
at curve joints.

Find the expressions for the curvature at a paira @arametric cubic curve and a Bézier curve. ({ate the
curvatures at the end points of a Bézier curverpttie control points (1, 1), (2, 3), (4, 6), (7, Blot the
Bézier curve along with its convex polygon.

A composite Bézier curve is to be obtained by jujniwo Bézier curves with control pointsRy Py, P,, P;
and Qo, Q1, Q,, Q3. Develop a procedure and check your results bingal 2-D example. Modify your
results by takingQo, Qi1, Q2 Qs Q. as control polygon for the second curve. (Hintcéndition for C°
continuity isQo= P3 and forC' continuity isQ; = (1 —A)P, + AP35, A > 1).

Develop an algorithm for closed Bézier curves. Destiate through numerical 2-D examples.

Write a computer program implementidg Casteljau algorithm for cubic curves, over sonteriral u; and

u,. Test your program with the poirfeg = (6,- 5), P, = (-6, 12),P, = (-6, -14), P;= (6, 5). Usale Casteljau
algorithm to find the coordinates of points on theve atu = 0.25, 1/3, 0.5, 2/3, 0.75, and 1. Plot the cubic
curve.

Show, through an example that a Bézier curve isaffinder both translation and rotation. You caoose
the above control points and rotate the axes kgeffsees or translate the origin +@(-2).
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17. Given a set of control pointBy, P;, P2, Ps explain what happens when two of the control poiate
coincident. Give an example. Does the degree o€tinee drop? Does the curve have a cusp at sontemkon
point? Does the curve have an inflexion at somérobpoint?

18. Develop programs for drawing closed Bézier curvéth \€° and C' continuities. Give some illustrative
examples.

19. Show that the curvature of a planar curve is inddpat of the parametrization. That isr () = [x(u) y(u)]
is the curve, then a change of variahlesd(v), where@(v) # 0 does not affect the curvature.

20. Let Py, P4, P,, P3 be given control points. Let us construct two ga#d curve segmeni®,Q, (r,(u)) and
Q2Qz (r(u)) such that, foud[0, 1] as shown in Figure P4.1.

a, b, ¢ |R
rl(u):[uz ula b c¢|P
13 by ¢ | P,
[a, b, c,|[P]
rz(U)z[U2 ulja b c¢|P,
13 by ¢ | P
a, b ¢
[u2 u 1]31 b ¢ :(a2u2+ailJ+ao'b2u2+b1U+b0'C2u2+01U+Co):{a(u)1b(u)1c(u)}
a by ¢
P,
Py
Q2
Qs Ps
Po Q1

Figure P4.1 for the Problem 20
The nine elements of the matrix are unknowns aedabe calculated from the following conditions:

(a) The two tangents are to meet at the common @intith C* continuity, that is
r,(u=2=r,(u=0)
r,(u=2=r,(u=0)
(b) The entire curve should be independent of the ¢oarel system used. This means that the weight

function should be barycentrice. a(u) + b(u) + c(u) = 1.
Show that the matrix is given by

1 -21
%—2 2 0
1 1 0

Calculate the start and end poifts Q,, Qs. Draw the curve with the control points given 8s2), (3,
6), (7, 10), 12, 3).
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Chapter V

1.

(b)

10.

11.

Compute a quadratic B-spline basis function udiegptolynomial splinesoncept. Take the knot vector as [0,
1,2, 3].

Verify the result obtained above using the dividgterencegable for truncated power series functig t]

= (ti _t)i

A B-spline curve is defined as
b(t) = z N p, p+i (t)bl
i=0

Explain and provide th&ll support interval forb(t). (b) Demonstrate algebraically the local shapetrob
property ifb; is relocated td; + v. For what values dfwould the curve change in shape.

A first order basis function is defined as

Ml.i (t)=

fortO ti-,
P— [ti-1, 1)

i i-1

or N, (t) =1for t O [t_s, t)

How should one definé,; (t) or M ; (t) whent;_, =t;. Support your arguments.

Compute and plot all B-spline basis functions updgree 2 for knot vectdd = {0, 1, 2, 3, 3, 3, 4, 5, 6}.
The control points of an open third ordk«3) 2DB-spline curve are given by

I‘0=[0 O] I‘1=[5 O] I‘2=[10 10] I‘3=[64] I‘4=[0 O]
Calculate and determine the equation ofBkspline curve. Sketch the approximate shape of the curmegy
the co-ordinates fan [L1[0, 0.25, 0.5, 0.75, 1]. If the control pointis moved to [6 10] find the new shape of
the curve and sketch the same.

Find the Bézier control points of a clodgapline curve of degree four whose control polygon cossi$tthe
edges of a square and have uniform knot spacinglakdots with multiplicity two.

Consider a cubic B-spline curve defined by sevarirobpointsP,, ...,Ps and knot vectod = {0, 0, 0, 0, 2/5,
3/5, 3/5, 1, 1, 1, 1 }. Find its derivatispline curve, its new control points and knot vector. tHsee
Problem 7.

Use B-spline curves of degree 2 and 3 to verify deaBoor's algorithm reducesde Casteljau's algorithm.
The recursion relation for a normalized B-splingigdunction is given as

Ny i(t) = d such thaty = 1 fort O [ti- 1, t;)
=0, elsewhere

t-t._ t -t

N, (t) = _tk Niga(8) +

o —t i Y-k+

Nk—l,i (t)

wherek is the order (degree+1) of the spline aridl the last knot over whicNy; (t) is defined. Show in a
general case that the sum of all non-zero B-syilasss functions over a knot spant.,) is 1.

Show that the derivative of a B-spline basis funrciof ordelk is given as



12.

13.

14.

15.

12

d k-1 k-1

—N, t)=N',. () =——N, .. ——— N, ,.

dt K, j ( ) Kk, j ( ) tj_l _tj_k k-1,j-1 tj _tj_k+1 k-1,
and thus the derivative of a B-spline cub(® = z N, i (t)b;is

i=0
n-1 _
E b(t) = Z Np—Lp+iqi where q; = (P-1) (b, —by)
dt i=0 tp+i _ti+l

Write a generic code to compute the normalized IBwspbasis functiorlN, i(t). Device ways to make the
computations robust. Hint: Note thisi i(t) = O fort O [t t). Further, fort O [t ti), computingNg, ()
requiresNmy j-1(t) andNmp.1 ;(t), m=1, ...,k j =i—k+1, ...,i, which form a triangular pattern shown in Table
5.2. Judge if all basis functions are needed farmaations, or some are known to be zepiori.

Exploreknot insertion andblossoming as alternative methods to compute B-spline basistions.

How would one get a Bernstein polynomial functi@éZier curve) from a B-spline basis function (aftire
curve)? Explain and illustrate.

Givende Boor points (control polyline) for a B-spline curve,iigpossible to (graphically) obtain the Bézier
control points for the same curve? If so, undertvebaditions? (One may want to work out an example)
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Chapter VI
1. For the surfaces shown in Figure 6.1, deterrtieetangents, normal, coefficients of the first astond

fundamental forms, Gaussian Curvature, mean cue/atnd surface area (use numerical integrationogec
form integration is not possible). Evaluate the sahj = 0.5,v = 0.5] (incase the parametric range is not [0, 1],
then evaluate at the middle of the parametric ramgeif the range is [0, 2] then evaluate at):

Figure P6.1

The equations of the surfaces are given by
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(a): r(u,v) = (u®-13u® +6)i + (-7u® +8u® +5u)j + 6vk ; u0d[0,1],v[0,1]

(b): r(u,v) =ucosvi +usinvj +u’k; u[0, 2],vO[0,2x]

(c): r(u,v) ={(2+ Q5sin2u)cosv, (2+ Q5sin2u)sinv, u}; ul[0,z], vI[0,2x]
(d): r(u,v) ={(ZCOS|’%U) COSV,(ZCOSh%U)SinV, u};  ul[-3,3],vU[0,2x]

(e): r (u,v) = {2sinucosv,2sinusinv,2cosu + 2In( tan% }; u D[%,B—;],VD[O,ZJI]

(f):  r(uv)={1-v)costco-u) +(2u —-1)v,—~(1-Vv)sintu — 2u(1-u)v, v}; ul[0,1],vO[0,1]

2. Figure P6.2 shows a Mobius strip. Find the tatgyand normal for the surface. Show that the nbatn@, 0)
has two different values at the same point, thains n(u, 0) = (0, 051) and lim n(u, 0) = (0, 0,1) depending

upon whether we move alorg= 0 in the CCW direction or clockwise directiorhélequation of the surface is
given to be:

F(u,v) = {cosu + vsin( % )cosu, sinu + vsin( % )sinu, vcos( % }, uO[-n,7], vO[-0.5,0.5]

Figure P6.2 Mobius stri

3. Develop a program for viewing surface geometigur program should display a parametric surface by
drawing iso-parametric curves and surface geormetrying along any such curve picked by the user. The
following geometric entities should be displayafd)el' he two partial derivatives (ii) The unit sucEanormal (iii)

The tangent plane at the point.

4. Given a hi-cubic patch whose geometric coeffitieare

1 20 [1 44 [024 [0 2 4
[4 6 2] [486] [0 2 4 [0 2 4
5 2 -2] 5 2 -2] 0 0
342 [B34 2 0 0

Determine whether it is a plane surface and deadliep
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5. A bi-cubic patch has the geometric coefficients

[0 0 100 [0 0 0] 16 0 O] [0 O -16]
[0 10 8] [18 10 0] [24 0 0] [0 O -14]
[0 10 -2] [8 10 0] [8 0 0] [0 O 2]
[0 10 -2] [8 10 0] [8 0 0] [0 O 2]

Determine
* The coordinates on the surfacePgD.5, 0.5)
* The unit normal alP
e The unit tangent &
» Equation of the tangent planerat
e The Gaussian quadraturefat

6. Prove the Weingarten relations
(FM -GL), +(FL-EM)r,
(FN-GM)r, +(FM - EN)r,

H?n,
H2n

and show that
H(n,*n,)=(LN-M2)

Hint: One may expresg, and n, as respective linear combinationsrgfandr,,, that is,
I’lu = C]_ru + Czrv

n, =dir, +dr,

wherec, c,, dh andd, are scalars. Taking dot product of the above wjtlandr, would yield the values af c,,

d;andd; in terms ofL, M andN. Elimination of the scalars leads to the Weingagguations. To get the third
relation, consider the vector product of Weingareations and simplify.

7. Show that(nu Xnv) =K r, xr, whereK is the Gaussian curvature
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Chapter VI

1.

10.

A bi-linear surface (u, v) is defined by the pointg0, 0) = {0, 0, 1},r(0, 1) = {1, 1, 1},r(1, 0) = {1, O, 0}
andr(1, 1) = {0, 1, 0}. Show the plot of the surfaceetBrmine the unit normal to the surfacewt(0.5,v =
0.5).

A bi-cubic surface patch is defined by the follogi

Corner Pointg (0, 0) = {~100, 0, 100},r(0, 1) = {100,-100, 100},r(1, 1) = {100, 0,-100}, r(1, 0) ={
-100,-100,-10}, u—tangent vectors,(0, 0) = {10, 10, 0},ry(0, 1) = {-1,-1, 0}, ry(1, 1) ={-1, 1, O}, ryu(1,
0) = {1, -1, 0}; v-tangent vectors,(0, 0) = {0,-10,-10}, r(0, 1) = {0, 1,-1}, r(1, 1) ={0, 1, 1},r«(1, 0) =
{0, 1, 1}; twist vectorsr,(0, 0) = {0, 0, 0},r,(0, 1) ={0.1, 0.1, 0.1}r,(1, 1) ={ 0, O, 0},r,(1, 0) = {-0.1,
-0.1,-0.1}.

Generate the surface and find tangents, normatamnatures for the surface at (0.5, 0.5).

A Coon'’s patch is generated using quadratic Bézieres ¢ (u), ¢1(u) and ¢q (v),¢1(v) having control points

[{0, 0, 0}, {1, O, 3}.{3, 0, 2}]; [{O, 3, 0},{1, 3, 3}.{3, 3, 2}] and [{O, O, 0},{0, 1, 3},{0, 3, 2}]; [{3, 0, 2},{3, 2,
31{3, 3, 2}]. Show the complete analysis, indivaldofted surfaces and the final Coon’s patch.

We would like to create a closed tubular Béziefamg by using 5 control points (last control pdietng the
same as the first) at each section, and the coptinit net created by using 5 such sections. Whige
program and demonstrate using an example.

Write a procedure to compute the coordinates obiatpn a Bézier surface patch. Use this to comput
rectangular array of points to create display okiBe€ surface. The program should be generic and not
restricted to cubic.

Develop and discuss the conditions required@bmand C' continuity between two Bézier patches along a
common boundary.

Write a procedure to compute the coordinates obiatn a cubic B-Spline (¢ no of control points 6)
surface patch. Display the surface using the cdedeloped.

Use the code developed to compute an approximéiéicsoto the minimum distance between two given
parametricB-spline surfaces. First calculate a rectangular arrayoirfitp of givenu, v interval on both the
surface and then proceed. Show that by reducinmteesal distance the approximation is better.

Write a procedure to compute the intersection betwe straight line and a bi-cubic patch. Simplibuy
solution by first performing a transformation orttbéine and surface so that the line is colline@&hw-axis.
Find the intersection and do an inverse transfdonat

(a) Write a code to create a unifoBrspline surface patch. Generate a closed tubular surfate msing
closed periodiB-Splines. The fundamental aspect is in first having expexein creating a closed periodic
B-spline curve by taking the vertices (for 8 unique congolnts)P,, P,, P, P4, Ps, Ps, P, Ps, Py, Py, Pa.
Uniform knot vector [0 123456 7 89 10 11 121M] is to be used. For a fourth ordker=(4) closedB-
spline curve defined by the above polygon, the equatfdhecurve segment for each unit intervad 0<1, a
point on the curve is calculated from the matrisofalation

-1 3 -3 1 I:)(jmod8)+1
3 -6 3 0 Pgymoms:
I’j+1(u)=}[u3 u® u 1] ((+1)modg)+1
© -3 0 30 P((J+2)mod8)+1
1 4 1 0 I:)((j +3)modd)+1
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wherej mod 8 is the remainder whéis divided by 8 (for example, 10 mod 8 = 2). Lsttake the case of a
tubular surface above with 5 axial cross secti@ash cross section having the number of contrahtpoi

mentioned above. Show the effect of changing the sif different cross sections and also the eftéct
changing any of the intermediate control points.
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Chapter VIII

1. Verify the Euler characteristic for the followinglghedrons:
i. a block with a through block void

i. atetrahedron

iii. an open cylinder

iv. atorus

2. Construct the edge and vertex tables for a culbevdseframe.
3. Construct the winged edge data structure for a estseB-rep solid.
4. From a cube, construct a tetrahedron using Eulerabprs.

5. A Mechanical component made by assembly of threms pa shown in the Figure P8.1 along with
dimensions.

Figure P8.1 A Mechanical component

A CSG Representation is to be made. Define thermimi basic primitives to be used for constructirey th
component. Give Details of the CSG tree for thegizomponent. Include details of primitives,
transformation involved (scaling, translation, tim@a) and the Boolean operations. Model the comptmne
shown in Figure P8.1 using any of the availabl@suolbodelers.

6. Choose two machine parts (one component and oeenblg from any of the drawing books of reasonable
complexity.
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Discuss the topological and geometrical aspecteeofomponents in a coherent manner
(point wise).

Discuss steps to create the component by B-repateth

Discuss steps to create the components by CSG.

Use any of the available solid modelers to crdaecbmponents.
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Chapter IX

1. Given a lineA+td and a plane with base poiatand normal vecton, what is the condition for the
line to be perpendicular to the plane? What isctraition for the line to be parallel to the plane?

2. Find the proximity of the points (0, 0), (1, 5) afid 0) with respect to the line whose end poimnés a
A (1, 1) andB (1, 8).

3. Givenn line segments in a plane, write an algorithm tewaer the following query. For a poiR
find the first line segment hit by a ray shot frtime point towards right parallel teaxis. (Hint: Find
the point of intersection and order them in inciregsnagnitude ok.)

4. Consider the line segments whose end point@\Bré0, 0) (5, 0);BC (5, 0) (5, 5),CD (5, 5) (0, 5)
andDA (0, 5) (0, 0). Find the positioning of the poi(1, 1) with respect to these lines. Comment
on the membership (inside/outside/onPah polygonABCD.

5. A quadrilateral is represented by the vertide&, -2), B (0, 15),C (-2, -2) andD (0, 4). Determine
if point E (0, —2) lies within this polygon. (Hint: For crossingstethe ray passes through the vertex
A, thus infinitesimally shift thg coordinate of the ray and do the crossings test).

6. Givenn points in a plane, devise an algorithm to consteuoon self intersecting polygon. (Hint:
Chose an extreme point and start connecting theettmate neighbors, keeping track of already
connected vertices. There may be many possible¢icadu)

7. Given a concave polygon and two poiAt&ndB inside the polygon, find the shortest path between
the points. Consider all possibilities of héwandB are placed inside the polygon.

8. Consider a unit cube placed in the first octanthaf coordinate frame. Find separately using the
point in polyhedron algorithm the membership statuhe points {2, 0), (0.5, 5), (0.6, 0.8).

9. Consider a unit square placed in the first quadnaiit two edges as theandy axes. Also, consider
an inscribing circle. Generate a quadtree datatstrel for the inscribed circle using the unit sguar
as the root square. Generate to a depth of thuedsleThe quadtree thus generated can be used to
find the membership of a point with respect tochele. (Hint: Say for example a point is inside th
circle, if it is inside/on any one of the node edts (squares) of the quadtree that are marked “in”
Thus, the computation of intersection reduces froag tracing to searching the quadtree).
Specifically, comment with the help of the quadtregresentation of the circle about the placement
of the points, (0.6, 0.6), (0.98, 0.98) and (2, Ao give the node number of the quadrant (e.qg.,
Figure 9.15) in case the point is ‘inside’ the l@r&Solve using graph paper.

10. Schematically, using the method presented in se&id, find the intersection (A" B), union (A

U B) and negation (A&~ B) for the arrangements of polygons A and B aswhio Figures P9.1.

= —=——=1
T

@ (b) © | (d)
Figure P9.1 Polygon& andB



