Table of Contents | Module | Lecture
No. | Contents | |--------------------------------------|----------------|--| | Module I: Concept
Review | 1 | Intro, sound wave versus vibration, different types of waves, octave, music scales, sense of SPL | | | 2 | Review: Linearity, complex numbers, and spring mass system | | | 3 | Review: Poles and zeroes, phase and magnitude plots, transfer functions, Bode plots | | | 4 | Review: Transfer functions, and Bode plots | | ion | 5 | 1-D wave equation, and its solution | | Module II: 1-D Wave Equation | 6 | Solution for 1-D wave equation | | | 7 | Waveguides, transmission line equations, and standing waves | | Α̈́ | 8 | Waveguides, transmission line equations, and standing waves | | = + | 9 | Examples of 1-D waves in tubes, short tubes, Kundt's tube | | Module | 10 | Thermodynamic processes during sound transmission | | | 11 | Numerical examples | | Module III:
Sound
Transmission | 12 | Sound transmission through walls | | | 13 | Sound transmission through walls | | | 14 | Leakage in walls, STC Ratings, Octave bands | ## **Table of Contents** | Module | Lecture
No. | Contents | |-------------------------------------|----------------|---| | Module IV:
Monopoles and Dipoles | 15 | Instantaneous power flow | | | 16 | Radial propagation of sound, monopoles, and dipoles | | | 17 | Radial propagation of sound, monopoles, and dipoles | | | 18 | Radial propagation of sound, monopoles, and dipoles | | | 19 | Numerical examples | | | 20 | Numerical examples | | Module V:
Directivity | 21 | Directivity | | | 22 | Directivity | | | 23 | Directivity | | | 24 | Directivity | ## **Table of Contents** | Module | Lecture N | o. Contents | |--|-----------|--| | _ | 25 | Generalized elements | | nete
Irs | 26 | Examples of electromechanical systems | | aran
duce | 27 | Transformers, radiation impedance, and Helmholtz resonator | | ed Pa | 28 | Radiation impedance | | umpe
of Tr | 29 | Radiation impedance | | /I: Lt
ling | 30 | Models of electro-mechanical-acoustic systems | | Module VI: Lumped Parameter
Modelling of Transducers | 31 | Solution for a loudspeaker model | | Mod | 32 | Microphones | | _ | 33 | Vibro-meter, seismometer, accelerometer, shaker table | | in
Dise | 34 | Sound propagation in rooms, 1-D rooms, 2D rooms | | Sound in
and Noise
ment | 35 | Sound in 3-D rooms | | I: So
es an
eme | 36 | Absorption coefficient, and irregular rooms | | Module VII: Sound in
Public Spaces and Nois
Management | 37 | Room constant, and Sabine's coefficient | | odul
Ilic S
Ma | 38 | Design of a muffler | | Pub | 39 | Noise in machines, basics of noise management | ## References - Acoustics, Beranek Leo L., Acoustical Society of America, NY 11797, 1996. - Fundamentals of Acoustics, Frey Austin R., Coppens Alan B., and Sanders James V., John Wiley & Sons Inc., 2005. - Sound and Structural Vibration Radiation, Transmission and Response, Fahy Frank, and Gardonio Paolo, Elsevier, 2007.