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  Module 6  

 

APPLICATIONS  

NONLINEAR VIBRATION OF MECHANICAL SYSTEMS 

 

 

 

  6  
Applications  

31-42  SDOF Free and Forced Vibration: Duffing Equation, 
van der pol’s Equation:  Simple or primary resonance, 
sub-super harmonic resonance. 
 
Parametrically excited system- Mathieu-Hill’s 
equation, Floquet Theory, Instability regions; Multi-
DOF nonlinear systems and Continuous system, 
System with internal resonances  

6 A  
Free 

Vibration of 
nonlinear 
Systems  

 

1  Single degree of freedom Nonlinear conservative systems with Cubic 
nonlinearities.  

2  Single degree of freedom nonlinear conservative systems with quadratic 
and Cubic and nonlinearities.  

3  Single degree of freedom non-conservative systems: viscous damping, 
quadratic and Coulomb damping  

4  non-conservative systems: Negative damping, van der Pol oscillator, 
simple pendulum with quadratic damping 

6 B  
Forced 

nonlinear 
Vibration  

 

1  Single degree of freedom Nonlinear systems with Cubic nonlinearities:  
Primary Resonance  

2  Single degree of freedom nonlinear systems with Cubic nonlinearities: 
Nonresonant Hard excitation  

3  Single degree of freedom Nonlinear systems with Cubic and quadratic 
nonlinearities and self sustained oscillations 

4  Multi-degree of freedom nonlinear systems  

6 C  
nonlinear 
Vibration  

of 
Parametrically 

excited 
system  

1  Parametrically excited system: Floquet theory, Hill’s infinite determinant 

2  Parametric Instability region:  sandwich beam vibration 

3  Base excited magneto-elastic cantilever beam with tip mass 
4  System with internal resonance:  Two-mode interaction:  Base excited 

cantilever beam with tip mass at arbitrary position  
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Module 6 Lect 1 

Free Vibration of Nonlinear Conservative system 

In this lecture we will learn about the free vibration response of nonlinear conservative systems. 
Initially the qualitative analysis will be demonstrated and later by using one of the perturbation 
methods the free vibration response of the single degree of freedom system will be illustrated using 
different examples.  

Qualitative Analysis of Nonlinear Systems 

Consider the nonlinear conservative system given by the equation 

( ) 0u f u+ =                                                                                                                                      (6.1.1) 

Multiplying u  in Eq. (6.1.1) and integrating the resulting equation one can write  as  

( ) ( )
( ( ))

Or, ( )

Or, ( )

uu uf u dt h

d u d u
u dt f u dt h

dt dt
udu f u du h

+ =

+ =

+ =

∫

∫ ∫
∫ ∫

 





 

                                                                                          (6.1.2) 

Or., 
1 2 ( ) ,    where,  ( ) ( )
2

u F u h F u f u du+ = = ∫                                                                       (6.1.3) 

This represents that the sum of the kinetic energy and potential energy of the system is constant. Hence, 
for particular energy level h, the system will be under oscillation, if the potential energy ( )F u is less 
than the total energy h. From the above equation, one may plot the phase portrait or the trajectories for 
different energy level and study qualitatively about the response of the system using the following 
equation.   

( )2 ( )u h F u= −                                                                                                                      (6.1.4) 

It may be noted that velocity exists, or the body will move only when ( )h F u> . One will obtain 
equilibrium points corresponding to ( )h F u= or when ( ) ( ) 0F u f u′ = = . For minimum potential energy 
a center will be obtained and for maximum potential energy a saddle point will be obtained. The 
trajectory joining the two saddle points is known as homoclinic orbit.  The response is periodic near the 
center.    

Example 6.1.1 Perform qualitative analysis of spring-mass system with a soft spring. Take mass of the 
system as 1unit, linear stiffness 1 unit and stiffness corresponding to cubic nonlinear term as 0.1 unit.  
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Solution: In this case the equation of motion of the system can be given by 

30.1 0x x x+ − =                                                                                                                  (6.1.5)  

For this system 3 2 41 1( ) ( ) ( 0.1 )
2 40

F x f x dx x x dx x x= = − = −∫ ∫                                            (6.1.6) 

Figure 6.1.1 shows the variation of potential energy F(x) with x. It has its optimum values 
corresponding to ( )( ) ( ) 0F x f x′ = = 0 or 10x = ±  . While x equal to zero represents the system with 

minimum potential energy, the other two points represent the equilibrium points with maximum 
potential energy. Now by taking different energy level h , one may find the relation between the 

velocity v  and displacement x  as 2 42( ( )) 2( (0.5 0.025 ))v x h F x h x x= = − = − −  

 

Fig. 6.1.1:  Potential well (curve with blue colour) and phase portrait (red colour) showing saddle point 
(S) and center (C) corresponding to maximum and minimum potential energy. 

Now by plotting the phase portrait one may find the trajectory which clearly depicts that the 
equilibrium point corresponding to maximum potential energy is a saddle point (marked by point S) 
where the equilibrium point is unstable and the equilibrium point corresponding to the minimum 
potential energy is stable center type (marked by point C). Clearly the orbit joining the points S and S is 
homoclinic orbit. Depending on different initial conditions i.e the total energy of the system, near the 
center one will obtain periodic orbits. 

Example 6.1.2: Perform qualitative analysis for a simple pendulum. 

Solution: The governing equation of motion of the system is given by (Eq. 2.1.7) 

S C S 
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sin 0 or sin 0gml mg
l

θ θ θ θ+ = + =                                             (6.1.7) 

So, ( ) ( ) sin cosg gF f d d
l l

= = = −∫ ∫θ θ θ θ θ θ                                                                  (6.1.8) 

Hence, the potential function ( )F θ has a minima corresponding to θ equal to zero and maxima 
corresponding to θ equal to odd multiple of π . So, the equilibrium point near 0=θ is a center and near 

180= θ is a saddle point. The phase portrait for different energy level h is given in Figure 6.1.3 which 
is obtained by using the following relation. 

 2( ( )) 2 cosgv h F h
l

 = = − = + 
 

θ θ θ                                                                                       (6.1.9) 

 

Figure 6.1.3: Phase portrait for the motion of a simple pendulum 
 
 
 
Approximate solution method 

C C C C C 

S S S S 

Fig. 6.1.2: Simple pendulum 
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Let us consider the  Duffing equation with cubic nonlinear term for the free vibration study of a 
nonlinear system.           
 

2
2 3
02 0                                      d u u u

dt
ω ε+ + =                            (6.1.10)   

Using method of multiple scales, the solution of this equation can be given by 
 

2 3
0 1 2 ( )         u u u u oε ε ε= + + +                                                                                           (6.1.11) 

                                                
Taking the time scale  ε= n

nT t                                                                                             (6.1.12) 
2

0 1 2 ................, n
n

d D D D D
dt T

ε ε ∂
= + + + =

∂
                             (6.1.13) 

( )
2

2 2 2
0 0 1 1 0 22 2 2 ................d D D D D D D

dt
ε ε= + + + +                                                                (6.1.14) 

 
Substituting  Eqs. (6.1.11-6.1.14) in Eq. (6.1.10) and separating terms with different order of ε one 
obtains the following equations. 
 
Order of 0ε  

2 2
0 0 0 0 0D u uω+ =                                    (6.1.15) 

 
Order of 1ε  
 

2 2 3
0 1 0 1 0 1 0 02D u u D D u uω+ = − −                                     (6.1.16) 

Order of 2ε  
2 2 2 2
0 2 0 2 0 1 1 0 2 0 1 0 0 12 2 3D u u D D u D D u D u u uω+ = − − − −                                  (6.1.17) 

 
Solution of Eq. (6.1.15) can be given by 
 

0 0 0 0
0 1 2 1 2( , , ) ( , , )i T i Tu A T T e A T T eω ω−= +                                   (6.1.18) 

 
Substituting Eq.(6.1.18) in Eq. (6.1.16) one obtains 

0 0 0 02
0

32 2 3
10 1 0 1 2 3[ ] ω ωωω+ = − − ++ i T i Ti D A AD e AAu u e cc                                (6.1.19) 

To eliminate the secular term (coefficient of 0 0ωi Te ) term marked in pink colour should be equated to 
zero.  
 
Hence,  2

0 12 3 0i D A A Aω + =                                                       (6.1.20) 
From Eq. (6.1.19), the solution of 1u can be written as  
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0 0

3
3

1 2
08

i TAu e ccω

ω
= +                                                             (6.1.21) 

Now Substituting 1 exp( )
2

A a iβ= (where a and β  are real number) in Eq. (6.1.20) and separating the 

real and imaginary parts one obtains 

1

0,a
T
∂

=
∂

 and 3
0

1

3 0
8

a a
T
βω ∂

− + =
∂

                                   (6.1.22) 

 
Hence, a  is not a function of 0T and 1T . So up on integration Eq. (6.1.22) can be written as 

 2( ),a a T=  and 2
1 0 22

0

3 ( )
8

a T Tβ β
ω

= +                                                        (6.1.23) 

Substituting Eq. (6.1.18) and Eq. (6.1.21) in Eq. (6.1.17), one can write 

0 0 0 0 0 0

Secular t

3 52 2 4 5
0 2 0 2 2

e

3 2

0 2 2
0 00

m

2

r

21 3
8

12
8 8

5 i T i T i TD A Aiu u e A Ae A e cD A cω ω ωω
ω ω

ω
ω

 
+ = − + − + 

 
−



                (6.1.24) 

                    

For the secular term to be zero one can write 
3 2

0 2 2
0

152
8
A Ai D Aω
ω

−                                          (6.1.25) 

                                 
The solution of remaining part of Eq. (6.1.24)  can be written as 

0 0 0 0

5
5 34

2 4 4
0 0

21
64 64

i T i TAu e A Ae ccω ω

ω ω
= − + +                          (6.1.26) 

Now Substituting 1 exp( )
2

A a iβ= (where a and β  are real number) in Eq. (6.1.25) and separating the 

real and imaginary parts one obtains 

 

2

0,a
T
∂

=
∂

and 4
0 2

2 0

15
256

a
T
βω

ω
∂

− =
∂

                        (6.1.27) 

So, a  is a constant.  Now using Eqs. (6.1.23, 6.1.27) one can write 
4

0 23
0

15
256

a Tβ γ
ω

= − +                            (6.1.28) 

Hence, from Eq. (6.1.23)  

 2 4
1 23

0 0

3 15
8 256

a T a Tβ γ
ω ω

= − +                            (6.1.29) 

Hence the solution of the system can be written as 
23 2 5

3
22 4
00 0

211cos( ) cos3( ) cos5( ) ( )
3232 1024

aa au a t t t oε εεω γ ω γ ω γ ε
ωω ω

 
−= + + + + + + 

 
                    (6.1.30) 
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where, 
2 4

2 3
0 3

0 0

3 15 ( )
8 256

ω ω ε ε ε
ω ω

= + − +
a a o                                                (6.1.31) 

From Eq. (6.1.31) it may be noted that the frequency of oscillation is a function of amplitude 
oscillation. It may be recalled that in case of linear system frequency is independent of amplitude of 
oscillation. 
 
For, the simple pendulum taking 0 /g Lω = , where g is the acceleration due to gravity and L is the 
length of the pendulum (= 1 m) , the variation of frequency with amplitude is shown in Fig. 6.1.4. The 
phase portrait for the periodic response considering only the first order solution is shown in Fig. 6.1.5.  

 
 
 
 
 
 
Exercise Problems: 
 
1. Perform qualitative analysis for the following nonlinear systems. Using equation (6.1.30) plot the 
response of the system and compare both the results. 
 
(a) µ̈ +4µ+𝜇3 =0                (c) µ̈ +9µ+0.5 𝜇2+ 0.1𝜇3 =0 

(b) µ̈ +µ+𝜇2 =0                  (d) µ̈ +100µ+ 10𝜇3 =0 

(e) µ̈ +µ+0.1 𝜇3+ 0.05𝜇3 =0 

 

 

 

 

 

Fig. 6.1.4: Frequency amplitude 
relation for a simple pendulum 

Fig. 6.1.5: Phase portrait showing the periodic 
motion for a simple pendulum 
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Module 6 Lecture 2 

Free vibration of nonlinear single degree of freedom conservative systems with quadratic and 
cubic  nonlinearities. 
 
 In this lecture the free vibration response of a nonlinear single degree of freedom system with 
quadratic and cubic nonlinearities will be discussed with numerical examples. As studied in module 3, 
the equation of motion of a nonlinear single degree of freedom system with quadratic and cubic 
nonlinearities can be given by  
 

2 2 3
0 2 3 0x x x xω εα εα+ + + =                                                                                                     (6.2.1) 

Here  0ω  is the natural frequency of the system 2α and 3α  are the coefficient of the quadratic and cubic 
nonlinear terms. Also ε  is the book-keeping parameter which is less than 1. Using method of multiple 
scales the solution of this equation can be written as   

( ) ( ) ( ) ( ) .....,......,,,......,,,......,,; 2103
3

2102
2

2101 +++= TTTxTTTxTTTxtx εεεε                        (6.2.2) 

Using different time scales ,, 10 TT and 2T where n

nT tε= and Eq. (6.2.2) in Eq. (6.2.1) and separating the 
terms with different order of ε  one can write the following equations. 

 Order of 1ε  

2 2
0 1 0 1 0D x xω+ =                                                                                                                       (6.2.3) 

Order of 2ε    

2 2 2
0 2 0 2 0 1 1 2 12D x x D D x xω α+ = − −                                                                                               (6.2.4) 

Order of 3ε  

2 2 2 3
0 3 0 3 0 1 2 1 1 0 2 1 2 1 2 3 12 2 2D x x D D x D x D D x x x xω α α+ = − − − − −                                                      (6.2.5) 

The solution of (6.2.3) can be written as  

    1 1 2 0 0 0 0( , ) exp( ) exp( )x A T T i T A i Tω ω= + − .                                                                            (6.2.6) 
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Here A  is an unknown complex function and A  is the complex conjugate of A .  Substituting (6.2.3) 
into (6.2.4) leads to  

  
Secular term

2 2 2
0 2 0 2 2 0 00 1 0 0 exp(2( ) )2 expD x x A i T AA cci D A i Tω α ωω ω  + = − − + + 



                                      (6.2.7) 

Here cc denotes the complex conjugate of the preceding terms. To have a bounded solution one should 
eliminate the secular term and hence  

1
1

0dAD A
dT

= =                                                                                                                               (6.2.8) 

Therefore A  must be independent of  1T . With 1 0D A =  the particular solution of (6.2.7) can be written 
as 

   
2

2 2
2 0 02 2

0 0

exp(2 )
3

Ax i T AA ccα αω
ω ω

= − +                                                                                        (6.2.9) 

 Substituting the expression for 1x  and 2x  from equation (6.2.6) and (6.2.9) into (6.2.5) and recalling 

that 1 0D A =  we obtain 

( )
2 2

22 3 0
0 2 0 02

0

2 2
0 3 0 3

2 2
33 0 2

0 02
0

Secular Te
3 2 exp

10 92 exp
3

                      

rm

(3   )
3

i D A A A iD x x

A i

T

T cc

αω

α ω α

α ωω ω

ω

ω

ω


+ = −

+
− +

−
− 

 


                                                     (6.2.10) 

To eliminate the secular terms from 3x , we must put  

                             
2 2

23 0 2
0 2 2

0

9 102 0
3

i D A A Aα ω αω
ω
−

+ =                                                       (6.2.11)  

Using 
1 exp( )
2

A a iβ=  where a  and β  are real function of 2T in Eq. (6.2.11)  and separating the result 

into real and imaginary parts, one obtains 

                                             0aω ′ =  and 
2 2

32 3 0
0 2

0

10 9 0
24

a aα α ωω β
ω
−′+ =                                   (6.2.12) 
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where the prime denotes the derivative with respect to 2T . As 0a′ = , a  is a constant and    
2 2

32 3 0
2
0 0

10 9
24

a
a

α α ωβ
ω ω
−′ = −    or 

2 2
23 0 2

2 03
0

9 10
24

a Tα ω αβ β
ω
−

= +                                                           (6.2.13) 

 

 

 

Here 0β  is a constant. Now using 2
2T tε=  one may write  

                            
2 2

2 23 0 2
03

0

9 101 exp
2 24

A a i a t iα ω α ε β
ω

 −
= + 

 
                                                  (6.2.14) 

Substituting Eq. (6.2.14) in the expressions for 1x  and 2x  in Eqs. (6.2.6), (6.2.9) and (6.2.2), one 
obtains 

2 2
32

0 02
0

1cos( ) 1 cos(2 2 ) ( )
2 3
ax a t t Oε αε ω β ω β ε
ω

 = + − − + +  
                                                   (6.2.15) 

          Here 
2 2

2 2 33 0 2
0 4

0

9 101 ( )
24

a Oα ω αω ω ε ε
ω

 −
= + + 

 
                                                             (6.2.16) 

This solution is in good agreement with the solution obtained using the Lindstedt-poincare’ procedure. 
[ Nayfeh and Mook, 1979]. 

Example 6.2.1: Taking α𝟏 = ω𝟎𝟎 = k=100, 2 1α = and 3 1.5α =  in eqn 6.2.1find the response of the 
system. 
Using Eq. (6.2.16) the variation of frequency with amplitude is shown in figure (6.2.1). Taking two 
values of a (viz., a=0.009 and a=.029) the time response has been plotted in figure (6.2.2). It may be 
noted  
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Figure 6.2.1: Variation of amplitude with frequency for  

 

Figure 6.2.2.(a): Time response (b) Phase portrait corresponding to initial amplitude a=0.009 and 
a=.029   

By changing the quadratic nonlinear terms 2α  from .5 to 2.5 and keeping all other parameter same 
figure (6.2.3) shows the variation of the frequency with amplitude of oscillation. 
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Figure 6.2.3: Variation of frequency with amplitude for different values of 2α  

 

Figure 6.2.4: Variation of frequency with amplitude for different values of 3α  

2 .5α =

2 1.5α = 2 1α =2 2.5α = 2 2α =

3 .5α =
3 1α = 3 1.5α = 3 2α = 3 2.5α =
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In Figure 6.2.3, by varying the amplitude form -1 to +1 , the frequency of the system changes and it 
decreases from 1.005 to .98 by increasing 2α  from .5 to 2.5. One may observe the reverse phenomenon 

by increasing 3α . Also the orientation of the frequency response curve changes from left to right when 

3α  is greater than 1 or 2 1α ≤ . It may be noted that for a linear system the response frequency of the 
system does not depend on the amplitude of the response. But in case of the nonlinear system it 
depends on the response amplitude. A Matlab code is given below which may be used to obtain the 
frequency response, time response, and phase portrait for different system parameters. 

%NPTEL WEB MODULE6 L2--Free Vibration: Duffing Oscillator 
% Response plot using the method of multiple scales 
clear all 
clc 
omega=1; 
alpha1=omega^2; 
alpha2=1; 
alpha3=1.5; 
ep=0.1; 
p1=(9*alpha3*alpha1-10*alpha2^2)/(24*alpha1^2) 
i=1 
for a=0:0.001:1 
om=sqrt(alpha1)*(1+p1*ep^2*a.^2) 
s(i,1)=a; 
s(i,2)=om; 
i=i+1; 
end 
figure(1) 
plot(s(:,2),s(:,1),s(:,2),-s(:,1),'linewidth',2) 
grid on 
set(gca,'FontSize',15) % For changing fontsize of tick no 
xlabel('\bf frequency','Fontsize',15) 
ylabel('\bf amplitude','Fontsize',15) 
n1=length(s) 
bt0=0; 
for ii=10:20:40 
    om1=s(ii,2) 
    a1=s(ii,1) 
    T=2*pi/om1; 
    jj=1; 
for t=0:T/1000:10*T 
p2=ep^2*a1^2*alpha2/(2*alpha1); 
p3=1-(1/3)*cos(2*om1*t+2*bt0); 
x(jj)=ep*a1*cos(om1*t+bt0)-p2*p3; 
tt(jj)=t; 
jj=jj+1; 
end 
n2=jj-1 
for k=2:n2 
xt(k-1)=(x(k)-x(k-1))/(tt(k)-tt(k-1)); 
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end 
figure(2) 
plot(tt,x,'linewidth',2) 
hold on 
grid on 
set(gca,'FontSize',15) % For changing fontsize of tick no 
xlabel('\bf Time','Fontsize',15) 
ylabel('\bfx','Fontsize',15) 
figure(3) 
plot(x(1:n2-1),xt,'linewidth',2) 
hold on 
end 
grid on 
set(gca,'FontSize',15) % For changing fontsize of tick no 
xlabel('\bf displacement','Fontsize',15) 
ylabel('\bf velocity','Fontsize',15) 
 
Exercise problem 6.2.1: 

Find the frequency response of a single degree of freedom system with mass=1 kg, stiffness=100 N/m, 
nonlinear quadratic and cubic stiffness parameter equal to 20 N/m2 and 10 N/m3 respectively. Vary the 
book-keeping parameter and study the variation of frequency with amplitude. 

 
 
 
 

Module 6 Lecture 3 

FREE VIBRATION OF NONLINEAR SINGLE DEGREE OF FREEDOM 
NONCONSERVATIVE SYSTEMS  
 
In this lecture discussion on the vibration of a linear single degree of freedom system with viscous, 
Coulomb damping, quadratic dumping and will be carried out using method of averaging.  
 
System with viscous damping 
 
Let us consider a single degree of freedom system with viscous damping. The equation of motion of 
this system with mass m , stiffness k and damping  c  can be written as 
 

0mu ku cu+ + =  .                                                                                   (6.3.1) 
The same system can be written using the term natural frequency nω  , damping ratioζ  as   

2 2 0n nu u uω ζω+ + =                        (6.3.2)

( )2Or, , 2 2n nu u f u u u uω ζω εµ+ = = − = −                      (6.3.3) 
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By using Krylov-Bogoliubov method of averaging for an under damped system ( 1ζ < ) the solution can 
be written as 

sin( )nu a tω β= +                                                                                                                               (6.3.4) 
where 

( )( )
2

0

sin cos , sin
2 n

n

a f a a d
πε φ φ ω φ φ

πω
= − −∫                                                                                (6.3.5)

( )( )
2

0

cos cos , sin
2 n

n

f a a d
a

πεβ φ φ ω φ φ
πω

= − −∫                                                                     (6.3.6) 

Substituting expression for ( ),f u u from Eq. (6.3.3) in Eq. (6.3.5) and Eq. (6.3.6), one obtains 
2

2

0

sinaa d a
πεµ φ φ εµ

π
= − = −∫                          (6.3.7) 

and sin cos 0dεµβ φ φ φ
π

= − =∫ .                       (6.3.8) 

Solving Eq. (6.3.7) and Eq. (6.3.8) yields 

( ) ( )0 0 0exp exp ,na a t a tεµ ζω β β= − = − =                   (6.3.9) 

Here 0a and 0β  are the initial displacement and phase of the response. Substituting Eq. (6.3.9) in Eq. 

(6.3.4) one obtains the following equation. 

( ) ( ) ( )0 0exp cosn nu a t t Oζω ω β ε= − + +                            (6.3.10) 

 
This equation is same as the expression one may obtain by finding the complementary function of the 
differential equation (6.3.2). Using the 0u  and 0u  as the initial displacement and velocity respectively, 
one may write Eq. (6.3.10) as  

( ) ( )( )0 0 0 sexp cos i/ nn d n d du t u t u u tζω ω ζω ω ω = − + +                (6.3.11) 

Where the damped natural frequency 21d nω ω ζ= −  

 For over damped ( 1ζ > ) system one may use the following expressions for the response. 

( )( ) ( ) ( )
( )( ) ( ) ( )

2 2 2

0 0

2 2 2

0 0

/ 2 exp

/ 2 ex

1 1 1

1 p1 1
n n n

n n n

u u u t

u u t

ζ ζ ω ω ζ ζ ζ ω

ζ ζ ω ω ζ ζ ζ ω

= ++ + − − − +

− +

−

− + − − − − −





               (6.3.12) 

For critically damped   ( 1ζ = ) system one may write the response as follows.  

( )( ) ( )0 0 0 expn nu u u u t tω ω= + + −                    (6.3.13) 
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A Matlab code is given below to plot the under damped, critically damped and over damped response 
of a system as shown in figure 6.3.1. 

 

Figure 6.3.1(a): Time response of a linear single degree of freedom with viscous damping. 
 

 
 
 

Figure 6.3.1(b): Time response of the system with linear damping. ( )0 03, 1, 0.5, 0.09, 3.15na ω ε µ β= = = = = −  
 
Using Eq. (6.3.10) the time response is shown in Fig. 6.3.1(b). It may be noted that the response decreases exponentially. 
The corresponding Matlab code is given below 
 

Under damped 

Critically  damped 

Over damped 
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Matlab code 6.3.1: 
%Free Vibration response of a linear single degree of freedom system  
  
x0=0.1; 
xt0=0.001; 
wn=2; 
zeta=1.5; 
t=0:0.001:20; 
 
%overdamped 
 
z1=-zeta+sqrt(zeta^2-1); 
z2=-zeta-sqrt(zeta^2-1); 
z3=2*wn*sqrt(zeta^2-1); 
A=(xt0-z2*wn*x0)/z3; 
B=(-xt0+z1*wn*x0)/z3; 
x1=A*exp(z1*wn*t)+B*exp(z2*wn*t); 
 
%critically damped  
  
x2=(x0+(xt0+wn*x0)*t).*exp(-wn*t) 
  
%underdamped 
  
zt=0.2  %Damping factor 
wd=wn*sqrt(1-zt^2); 
x3=exp(-zt*wn*t).*(((xt0+zt*wn*x0)/wd).*sin(wd*t)+x0*cos(wd*t)); 
  
plot(t,x1,'r',t,x2,'b',t,x3,'g','linewidth',2) 
grid on 
 
set(gca,'FontSize',15) % For changing fontsize of tick no 
xlabel('\bf Time','Fontsize',15) 
ylabel('\bf x','Fontsize',15) 
 
Matlab code 6.3.2: 
% plotting of linear damping (Eq. 6.3.10). 
clc 
clear all 
a0=3; 
ep=.5; 
mu=.09; 
t=0:0.1:100; 
omega=1; 
beta=-3.15; 
a=a0*exp(-ep*mu*t); 
u=a0*exp(-ep*mu*t).*cos(omega*t+beta); 
plot(t,u,t,a,'--',t,-a,'--') 
% title('SYSTEM WITH LINEAR DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('u','fontsize',14,'fontweight','b'); 
grid on 
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Single degree of freedom system with quadratic damping. 

Here, the equation of motion of the system can be written as 

( )2 , | |nu u f u u u uω ε+ = = −                     (6.3.14) 

Similar to viscous damping here also using KB method the solution can be written as 

sin( )nu a tω β= +                                                                                                                                             (6.3.15) 

Here, a  and β can be given by Eq. (6.3.5) and (6.3.6). Now using the expression for ( ),f u u in Eq. 
(6.3.5) and (6.3.6), one may write 
 
                                                                     

( )( )
2 22

2

0 0

sin cos , sin sin sin
2 2

n
n

n

aa f a a d d
π πε ωε φ φ ω φ φ φ φ φ

πω π
= − − = −∫ ∫  

   =
2 2

3 3 2

0

4sin sin
2 3

n
n

a d d a
π π

π

ε ω φ φ φ φ ε ω
π π

 − − = −  ∫ ∫                        (6.3.16) 

and ( )( )
2 2

0 0

cos cos , sin sin cos sin 0
2 2

n
n

n

af a a d d
a

π πεωεβ φ φ ω φ φ φ φ φ φ
πω π

= − − = − =∫ ∫            (6.3.17) 

Solving Eq. (6.3.16)  and Eq. (6.3.17) one may write Eq. (6.3.15) as     
     ( ) ( )0

0
0

cos41
3

n
n

au t Oa t
ω β εεω

π

= + +
+

                   (6.3.18) 

 
Figure 6.3.2: Time response of the system with quadratic damping. ( )0 02, 1, 0.1, 3.15na ω ε β= = = = −  
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Using Eq. (6.3.18) the time response is shown in Fig. 6.3.2.  It may be noted that unlike the linear system the response does 
not decreases exponentially but decreases algebraically.  The corresponding Matlab code is given in Matlab code 6.3.3. 
 
Matlab code 6.3.3: 
% plotting of quadratic damping. (Eq. 6.3.18) 
clc 
clear all 
a0=2; 
ep=.1; 
t=0:0.1:80; 
omega=1; 
beta=-3.15; 
a=a0./(1+(4*ep*omega*a0*t)/(3*pi)); 
u=a.*cos(omega*t+beta); 
plot(t,u,t,a,'--',t,-a,'--') 
% title('SYSTEM WITH QUADRATIC DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('u','fontsize',14,'fontweight','b'); 
grid on  
 
System with Coulomb damping 
 
In this case the equation of motion of the system can be given by 
 

0
 for 0

sgn( )
 for 0

c

c

mx kx F
N x

F N x
N x

µ
µ

µ

+ + =

>
= = − <









                   (6.3.19) 

 
Using method of averaging this equation can be written as 

2
0

 for 0
/

 for 0c

g x
x x f F m

g x
µ

ω
µ
− >

+ = = − =  <







                  (6.3.20) 

The solution of the above equation  can be written as  
0cos( )x a tω β= +  

where 

( )( )
2 2

0 0

2sin cos , sin sin sin
2 2n

n n n

g ga f a a d d d
π π π

π

ε εµ εµφ φ ω φ φ φ φ φ φ
πω πω πω

 = − − = − − = −  ∫ ∫ ∫           (6.3.21) 

( )( )
2 2

0 0

cos cos , sin cos cos 0
2 2n

n n

gf a a d d d
a

π π π

π

ε εµβ φ φ ω φ φ φ φ φ φ
πω πω

 = − − = − − =  ∫ ∫ ∫          (6.3.22) 

Integrating Eq. (6.3.21) and Eq. (6.3.22) one may obtain   
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0 0

2 ,
n

ga a tπµ β β
πω

= − =                       (6.3.23) 

Substituting Eq. (6.3.23) in Eq. (6.3.20) the response of the system can be written as  

( ) ( )0 0

2 cos n

n

gx a t t Oπµ ω β ε
πω

 
= − + + 
 

                      (6.3.24) 

 
 

Figure 6.3.3: Time response of the system with Coulomb damping. 
( )0 02, 1.3, .1, 0.4, 3.15na gω ε µ β= = = = = −  

 
Here it may be noted that the response of the system decreases linearly. A Matlab code is given below. 
 
 
Matlab code 6.3.4: 
% plotting of time response for system with Coulomb damping.  (Eq.6.3.24) 
clc 
clear all 
a0=2; 
ep=.1; 
mug=.4; 
t=0:0.1:100; 
omega=1.3; 
phi=omega; 
beta=-3.15; 
a=a0-((2*ep*mug*t)/(pi*omega)); 
u=a.*cos(omega*t+phi); 
plot(t,u,t,a,'--',t,-a,'--') 
% title('SYSTEM WITH COULOMB DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('u','fontsize',14,'fontweight','b'); 
grid on 
 



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 21 of 104 
 
 

Exercise problem : 
 
1. Find the response of a single degree of freedom system with mass 1 kg, stiffness 100 N/m and 
damping factor 10 N.s/m. Plot the time response and phase portrait.  Also plot the phase portrait 
considering coulomb damping and quadratic damping. Develop a Matlab code for finding the time 
response and phase portrait by using second order governing differential equation of motion (Use 
Runge-Kutta method). 
Hints-The Matlab code for the system with viscous damping is given below 
Matlab code 6.3.5: 
 
%Use Runge-Kutta method to obtain the response of a sdof vibrating system 
 
m=input( ‘mass of the system in kg =  ’ ) 
k=input( ‘Stiffness of the system in N/m =  ’ ) 
c=input( ‘damping  factor of the system  in N.S/m=  ’ ) 
u0=input(‘initial Displacement  in  m= ’ 
v0=input(‘initial velocity  in  m= ’ 
omega_n=sqrt(k/m), 
zeta=c/(2*m*omega_n); 
 
if (zeta>1) 
display(over damp system) 
u= 
  end 
if(zeta==1) 
display(‘critically damped system’) 
 
u= 
end 
 
if(zeta<1)  
display(‘under damped system’) 
u=u0*sin(omega_n*t)+(v0/omega_n)*cos(omega_n*t) 
end 
 
plot(t,u) 
 
[T,u]=ode45(@ex631f,[0,20],[0.1,0.01] 
 
Xlabel 
Ylabel 
Title 
function 
Ex631f 
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2. Find the response of a single degree of freedom system with Hysteretic damping. The equation of 
motion in this case is given by. 
 
 

2

0x x fω ε+ =  
 

2 and 2

s b b c

s c d

s d a d

s d a

c b s a d s

x x x x x x
x x x xf x x x x x x

x x x x

x x x x x x

+ − ≥ ≥ 
 − ≥ ≥− =  − − ≥ ≥
 ≥ ≥ 

= − = +
 

 

3. Find the response of a single degree of freedom system with material damping by considering (a) 
Maxwell model (spring and dashpot) in series, (b) Kelvin-Viogot Model (spring and dashpot) in 
parallel. Consider soft spring with cubic nonlinearity in both the cases. 
 

 

 

 

 

 

 

Module 6 Lecture 4 

FREE VIBRATION OF SYSTEMS WITH NEGATIVE DAMPING  
 
In this lecture initially the system with negative damping will be discussed. Then the free vibration 
response of systems similar to van der Pol type of oscillator will be discussed with the help of 
numerical examples. Finally the nonlinear response of a simple pendulum with viscous damping will be 
illustrated. 
There are many systems which can be modeled as a system with negative damping. This type of system 
particularly occurs in control system where the derivative gains if not properly adjusted will give rise to 
negative damping. Also this type of damping can be found in the high voltage transmission lines. The 
equation of motion for this type of system for example that of a Rayleigh oscillator can be given by 

( )2 3

0u u f u uω ε ε+ = = −                            (6.4.1) 
There are many systems which can be modeled as a system similar Rayleigh oscillator. 
Using KB method the response amplitude a and phase β of the system can be given by  
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( )( ) ( )
2 2

2 2 2 4

0 0

sin cos , sin sin sin
2 2n n

n

aa f a a d a d
π πε εφ φ ω φ φ φω φ φ

πω π
= − − = −∫ ∫   

2 21 31
2 4 na aε ω = − − 

 
                        (6.4.2)        

( )( ) ( )
2 2

2 2 2

0
0 0

cos cos , sin 1 sin sin cos 0
2 2n

n

f a a d a d
a

π πε εβ φ φ ω φ φ ω φ φ φ φ
πω π

 = − − = − − =  ∫ ∫         (6.4.3) 

Solving Eq. (6.4.2) one can write 

( )

2
2 0

2 2 2 2

0 0 0 0

3 31 exp
4 4

aa
a a tω ω ε

=
 + − − 
 

                      (6.4.4) 

The time responses obtained by using Eq. (6.4.4) are shown in figure 6.4.1 for large and small initial 
disturbance condition. It is observed that while with large initial disturbance the response decreases to  

 
Figure 6.4.1: Time response of the system with Rayleigh damping. (a) Large initial disturbance ( 0 2a = ) 

(b) Small initial disturbance ( 0 0.2a = ); ( )01.3, .1, 0.4, 3.15n gω ε µ β= = = = −   

attain the steady state periodic response, and in case of small initial disturbance the response grows to 
attain the steady state periodic response. Matlab code 6.4.1 may be used for plotting the time response 
of the system with Rayleigh damping. 
 
 
Matlab code 6.4.1: 
 
% plotting of time response of the system with Rayleigh damping.Equation no-6.4.4. 
clc 
clear all 
a0=2; 
%a0=.2; 
ep=.1; 
t=0:0.1:80; 
omega=1; 
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beta=-3.15; 
a1=0.75*(omega*a0)^2; 
a2=a0.^2./(a1+(1-a1)*exp(-ep*t)); 
a=sqrt(a2); 
u=a.*cos(omega*t+beta); 
plot(t,u,t,a,'--',t,-a,'--') 
% title('SYSTEM WITH Rayleigh DAMPING') 
set(findobj(gca,'Type','line'),'Color','b','LineWidth',2); 
set(gca,'FontSize',14) 
xlabel('t','fontsize',14,'fontweight','b');      
ylabel('u','fontsize',14,'fontweight','b'); 
grid on  
 
THE VAN DER POL OSCILLATOR 
 
There are many systems which can be modeled as a system similar to van der Pol’s oscillator which is 

named after the Dutch physicist Balthasar van der Pol (27 January 1889 – 6 October 1959). Mostly this 

equation is used in electrical circuits but it can also be used in some mechanical system where self 

oscillation takes place due to negative damping. 

The van der Pol’s equation can be written as 
2

2
2 (1 )  d u duu u

dt dt
ε+ = −                                 (6.4.5) 

Using method of multiple scales the solution of this equation can be given by 

( ) ( ) ( )0 0 1 1 0 1; , , .......u t u T T u T Tε ε= + +                    (6.4.6) 

Where , 0,1, 2,n
nT t nε= =  . Using Eq. (6.4.6) in Eq. (6.4.5) and separating the terms with different 

order of ε , one obtains the following equations. 

2
0 0 0 0D u u+ =                       (6.4.7) 
2 2
0 1 1 0 1 0 0 0 02 (1 )D u u D D u u D u+ = − + −                       (6.4.8) 

 
2 2 2 2
0 2 2 0 1 1 1 0 0 2 0 0 0 1 0 1 0 0 1 0 02 2 (1 ) (1 ) 2D u u D D u D u D D u u D u u D u u u D u+ = − − − + − + − −               (6.4.9)  

The solution of Eq.(6.4.7) can be written as  
0 0

0 1 2 1 2( , , ) ( , , )iT iTu A T T e A T T e−= +                     (6.4.10) 

Substituting Eq. (6.4.10) in Eq. (6.4.8) 
0 032 2 3

0 1 1 1

secular term
(2 ] iT iTD u u i D A A A A e iA e cc+ = − − + − +


                (6.4.11) 

Eliminating the secular term marked in Eq. (6.4.11) one can write  
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2
12D A A A A= −                    (6.4.12) 

Now the solution of Eq.(6.4.11) can be written as  

0 033
1 1 2

1( , )
8

iT iTu B T T e iA e cc= + +
                 

(6.4.13)
 

( )1 2 1 2
1 ( , ) exp ( , )
2

A a T T i T Tφ=                   (6.4.14) 

Substituting Eq. (6.4.14) in Eq. (6.4.12) one can write  

( ) ( ) ( ) ( ) ( )
2

1 1

1 1 1 1 12 exp exp exp exp exp
2 2 2 2 2

a i ia i a i a i a i
T T

φφ φ φ φ φ
 ∂ ∂  + = − −   ∂ ∂   

           (6.4.15) 

Separating the real and imaginary terms one can write  

 
2

1 1

1 10,  1  
2 4

a a a
T T
φ∂ ∂  = = − ∂ ∂  

                   (6.4.16) 

Hence, 
1

2
2

2

4( ), and 
1 ( ) TT a

c T e
φ φ −= =

+
                (6.4.17) 

So the first order solution of the system can be given by   

cos ( )u a t o ε= +                    (6.4.18)
 Where  

( )
2

2
0

4
41 1 exp

a
t

a
ε

=
 

+ − − 
 

                  (6.4.19) 

To obtain the second or higher order solution one may use the expression for 0 1 and u u  in Eq. (6.4.9) 
which yields the following equation. 

0 02
0 2 2 1 2 1 2( , , ) ( , , ) NSTiT iTD u u Q T T e Q T T e+ = + +                (6.4.20)

 
Where NST contains non-secular terms. 

3 2
2 2 2

1 2 1 1 12 (1 2 ) 2 (1 2 )
8

A AQ iD B i AA B iA B iD A D A AA D A A D A= − + − − − − + − − +            (6.4.21) 

Now again substituting Eq. (6.4.14) in the secular term of Eq. (6.4.20) and separating the real and 

imaginary parts of the resulting equation one obtains the following equation.
 

3
2

0, ( )∂
= =

∂
a a a T
T

                   (6.4.22) 
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2

1 1 2 1

2 1 7 12 2
16 16 4

b da d dab a a
T a dT dT dT

φ ∂  − = − + + −   ∂   
                (6.4.23) 

1
2

1 7 1
16 32 8

b dd dT a da
a dT a

φ    = − + + −    
    

                  (6.4.24) 

Integrating one obtains 

3
1 0 2

2

1 7 1 ln ( )
16 64 8

db a T a a a ab T
dT
φ 

= − + + − + 
 

               (6.4.25) 

In order that the solution to be bounded for all 1T , the coefficient of 1T  in the above equation for b  must 

vanish. Hence one obtains 
2

1 0
16

d
dT
φ 
+ = 

 
.  

So , 2 0
1

16
Tφ φ= − +                    (6.4.26) 

Here 0φ  is a constant. Now using the expression for 0 1 and u u  the second order solution can be given by
 

2 2
0 0

2 2
0

3 2
0

7 1 1ln sin 1
64 8 161cos 1 ( )

16 1 1sin 3 1
32 16

a a ab t
u a t o

a t

ε φ
ε φ ε ε

ε φ

     − + − +             = − + − +          + − +      

          (6.4.27) 

Here a  can be given by the Eq. (6.4.19). Equation (6.4.27) can also be written as 
  

3 21cos( ) sin 3( ) ( )
32

u a t a t oθ ε θ ε= − − − +                 (6.4.28) 

where 2 2
0

1 1 7ln
16 8 64

t a aθ ε ε ε θ= + − +                 (6.4.29)
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Figure 6.4.2: Time response of the system with van der Pol’s equation ( )01, .1, 3.15nω ε θ= = = −  

                     (a) Small initial disturbance ( 0 0.2a = )  (b) Large initial disturbance ( 0 3.5a = ). 

 
Example: 6.4.2 Simple pendulum with quadratic damping 

The equation of motion of a simple pendulum with quadratic damping can be given by 

2 2 3
0 0

12 sin 2 0
6

θ εµθ θ ω θ θ εµθ θ ω θ θ + + = + + − = 
 

                                                            (6.4.30) 

Using method of multiple scales with different time scales , 0,1, 2,n
nT t nε= = and writing the motion 

of the pendulum θ  as follows                  
( ) ( ) ( ) ( ) ...,,,,,,; 2103

3
2102

2
2101 +++= TTTTTTTTTt θεθεεθεθ                             (6.4.31) 

and substituting Eq. (6.4.31) in (6.4.29) and separating the terms with different order of  ε  one obtains 
the following equations.         

01
2
01

2
0 =+ θωθD                              (6.4.32) 

1102
2
02

2
0 2 θθωθ DDD −=+                      (6.4.33) 

3
110101

2
11202103

2
03

2
0 6

1222 θθθµθθθθωθ +−−−−=+ DDDDDDDD                 (6.4.34) 

The solution of Eq. (6.4.32) can be written as 

( ) ( ) ccTiTTA += 00211 exp, ωθ                                                                                         (6.4.35) 

Using Eq. (6.4.35) in (6.4.33) it can be written as 
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( )( )2 2

0 2 0 2 0 1 1 0 1 0 02 2 expD D D i D A i T ccθ ω θ θ ω ω+ = − = − +                                                           (6.4.36) 

As the terms in the right hand sides are secular terms, it will be eliminated if 1 0D A = . Hence, A is not a 

function of 1T . After eliminating the secular term, the solution of Eq. (6.4.36) will contain only 

auxiliary part and hence, 2θ may be dropped.  So one can write  

( ) ( )1 2 0 0expA T i T ccθ ω= +                                                                                                       (6.4.37) 

Now substituting (6.4.37) in (6.4.34) one obtains 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

' '

0 0 0 0 0 0 0 0 0 0 0

2 2

0 0 0 0 0

2 2

0 3 0 3

3 3

0 0 0 0

0 0 0 0 0

2 exp exp 2 exp exp
1 1.exp exp ex

non secular

p exp
1 1exp 3 exp 3       

2 2
 

6 6
 terms

D

A i T

i A i T A i T i A i T i A i T

i A i T i A i T A A i T AA i T

A i T

ω ω ω µ ω ω ω ω

ω ω ω ω ω

θ ω θ

ω ω

ω

   − − − − −   + = −

+ +−

+ −

− − +



                                                                                  (6.4.38)

 

Now substituting ( )βiaA exp
2
1

= in Eq. (6.4.38) one can write
     

 

2 2 ' ' 3 3 2 2

0 3 0 3 0 0 0

1 12 sin 2 cos cos cos3 2 sin sin
8 24

D a a a a aθ ω θ ω γ ω β γ γ γ µω γ γ+ = + + + +  (6.4.39) 

where 0tγ ω β= + . It may be noted that the damping term is periodic and can be expanded in Fourier 
series as        

1
sin sin sinn

n
f nγ γ γ

∞

=

=∑                       (6.4.40) 

Where 
8

3nf π
= . The secular terms will be eliminated from () if  

0
16

,0
3

8

0

2
'20' =+=+

ω
β

π
µω aaa                      (6.4.41) 

Solving Eq. (6.4.41) one may write 

( ) 0
200

2
0

0
2

200

0

83128
9

,
83
3

β
µωπµω

π
β

µωπ
π

+
+

=
+

=
Ta

a
Ta

a
a          (6.4.42) 

Hence, the response of the system can be given by 
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( )
( )3

2
0

0

00
2
0

0
2

0
00

0

ˆ128
3

ˆ83ˆ128
9

cos
ˆ83

3
ε

µω
πθ

θωµπµω
θπ

ω
θωµπ

πθ
θ O

t
t

t
+








−

+
+

+
=      (6.4.43) 

 
EXERCISE PROBLEM: 
1. Obtain the response of a simple pendulum with quadratic damping. The equation of motion for this 
system can be written as follows. 
(a) ( ) 2

02 sin 0θ µ θ θ θ ω θ− − + =    , (b) ( ) 2
02 sin 0θ µ θ θ θ ω θ+ − + =   

 
Plot the phase portrait and discuss about the equilibrium solution. 
2.  Obtain the response of a simple pendulum with viscous damping. The equation of motion for this 
system can be written as  

2 2 3
0 0

12 sin 2 0
6

θ µθ ω θ θ µθ ω θ θ + + = + + − = 
 

   

 
Plot the phase portrait and discuss about the equilibrium solution. Compare the results with that 
obtained in problem 6.4.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Module 6 Lecture 5 

Forced Vibration of single degree of freedom system with cubic nonlinearities 
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In this lecture, the response of a nonlinear single degree of freedom system with cubic nonlinearies will 
be discussed considering a weak forcing function. The simplest form of this equation can be given by 
the forced Duffing equation as follows. 

2 3
0 2 cosu u u u f tω εµ εα ε+ + + = Ω                                                                      (6.5.1)   

As discussed in the previous lectures, in the absence of external force, the free vibration response 
amplitude of such system is a function of the natural frequency 0ω of the system. Similar to linear 
vibration of the system here we may consider the behaviour of the system near the resonance condition, 
i.e., when the external frequency is equal to the natural frequency of the system. This condition is 
known as the primary resonance condition ( 0ωΩ ≈ ). In case of multi-degree of freedom system one 
may reduce the system into a number of single degree of freedom system and follow a procedure as 
outlined here.                                                                   

To study the behaviour of the system near the primary resonance condition, one may use the detuning 
parameter which represents the nearness of the external frequency to that of the natural frequency. 
Hence one may write   

0ω εσΩ = +                                                                                                                                      (6.5.2)    

Using method of multiple scales the solution of Eq. (6.5.1) can be written as  

( ) ( ) ( )0 0 1 1 0 1; , , .......u t u T T u T Tε ε= + +                                                                                             (6.5.3) 

Where n
nT tε= . Substituting Eq. (6.5.3) in Eq. (6.5.1) and separating terms with different order of ε , 

one obtains the following equations. 

2 2
0 0 0 0D u ω+ =           (6.5.4) 

2 2 3
0 1 0 1 0 1 0 0 0 0 0 0 12 2 cos( )D u u D D u D u u f T Tω µ α ω σ+ = − − − + +     (6.5.5) 

The solution of Eq. (6.5.4) can be written as 

( ) ( ) ( ) ( )0 1 0 0 1 0 0exp expu A T i T A T i Tω ω= + −       (6.5.6) 

Substituting Eq. (6.5.6) in Eq. (6.5.5) one obtains the following equation. 

( ) ( ) ( ) ( )2 2 ' 2 3
0 1 0 1 0 0 0 0 0 0 0 1

Secular term Mixed Secular term

12 3 exp exp 3 exp
2

D u u i A A A A i T A i T f i T T ccω ω µ α ω α ω ω σ + = − + + − + + +   




           
(6.5.7) 
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To eliminate the secular and near secular terms from Eq. (6.5.7), one can write 

( ) ( )2
0 1

12 ' 3 exp 0
2

ω µ α σ+ + − =i A A A A f i T .
      

(6.5.8) 

Now substituting ( )1 exp
2

A a iβ= in Eq.(6.5.8) and separating the real and imaginary parts following 

reduced equations are obtained. 
  

( )1
0

1' sin  
2

µ σ β
ω

= − + −
fa a T

        
(6.5.9) 

( )3
1

0 0

3 1' cos
8 2
αβ σ β
ω ω

= − −
fa a T

                 
(6.5.10) 

To write these two equations in its autonomous form one may use 1Tγ σ β= −  and obtained the 
following equations. 

0

1' sin
2

µ γ
ω

= − +
fa a

                (6.5.11) 
3

0 0

3 1' cos
8 2
αγ σ γ
ω ω

= − +
fa a a

            
(6.5.12) 

One should solve these two equations to obtain a and γ and can write the first order solution of the 
system in the following form 

( ) ( )
( ) ( )

0 0 1

0

cos ( ) cos ( )

  cos ( ) cos ( )

u a t O a t T O

a t t O a t O

ω β ε ω σ γ ε

ω εσ γ ε γ ε

= + + = + − +

= + − + = Ω − +      (6.5.13) 

Now for steady state as  and a γ′ ′equals to 0, one can write Eq. (6.5.11-12) as    

0

1 sin
2

faµ γ
ω

=
         

(6.5.14) 

3

0 0

3 1 cos
8 2

fa aασ γ
ω ω

− = −
        

(6.5.15) 

Now eliminating γ  from the above equations, one obtains 

2 2
2 2 2

2
0 0

3
8 4

fa aαµ σ
ω ω

  
 + − = 
           

(6.5.16) 
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Eq. (6.5.16) is a 6th order Polynomial  in a , but quadratic Polynomial  in σ . Hence, by solving this 
quadratic equation, one can write the expression for the frequency response curve as follows. 

1
2 2

2 2
2 2

0 0

3
8 4

fa
a

ασ µ
ω ω

 
= ± − 

          
(6.5.17) 

Hence, for a particular value of detuning parameter one can get different amplitude of the response and 

the phase. Now to check the stability of the obtained steady state response, one can perturb the Eq. 

(6.5.11) and (6.5.12) to obtain the following Jacobian matrix.  

2
0

0
0

2
0

0 0

3
8

91
8

aa
J

a
a

αµ σ
ω

ασ µ
ω

 
− − − 

 =
 

− − 
 

                                                                         (6.5.18) 

Now to find the stability of the steady state response one can find the eigenvalues by finding the 
determinant of the J Iλ− matrix. This leads to expression 

2 2
2 2 0 0

0 0

3 92 0
8 8

a aα αλ µλ µ σ σ
ω ω

  
+ + + − − =  

  
                                                                      (6.5.19) 

The system will be unstable when the real part of at least one of the eigenvalue becomes positive. This 
gives rise to the following relation. 

2 2
20 0

0 0

3 9 0
8 8

a aα ασ σ µ
ω ω

  
Γ = − − + <  

  
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Fig:6.5.1 Frequency response curves for ω=1,f=10, α=10,µ=0.1 

 

 

Fig:6.5.2 Frequency response curves with different values of α 
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Module 6 Lect 6 

System with non resonant hard excitations  

In the previous lecture a single degree of freedom nonlinear system is considered when the amplit 

ude of the external excitation (f) is one order less than the linear term (i.e. 2
0ω ). In the present lecture 

the forcing term is assumed to be of same the order as that of the linear term. So the equation of motion 

considered in this case is 
2 3
0 2 cosu u u u f tω εµ εα+ + + = Ω                                                                                            (6.6.1)                                                                                          

Following similar procedure of method of multiple scales, one may write 
( ) ( ) ( )0 0 1 1 0 1; , , ...u t u T T u T Tε ε= + +         (6.6.2)  

Now separating the terms with different order of ε one obtains the following equations. 
2 2
0 0 0 0 0cosD u u f Tω+ = Ω          (6.6.3) 
2 2 3
0 1 0 1 0 1 0 0 0 02 2D u u D D u D u uω µ α+ = − − −        (6.6.4) 

The solution of Eq. (6.6.3) can be written as 

( ) ( ) ( )0 1 0 0 0exp expu A T i T i T ccω= + Λ Ω +        (6.6.5) 

 Where ( )2 2
02

f
ω

Λ =
−Ω

       

It may be noted that unlike the previous lecture, where only the complementary part of the solution was 

present, in this case both complimentary and particular integral parts are present in the solution of 0u . 

Now substituting Eq. (6.6.5) in Eq. (6.6.4) one obtains the following equation.   
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( ) ( )

( ) ( ) ( )

( )

2 2 ' 2 2
0 1 0 1 0 0 0

3 3 2
0 0 0 0 0

2
0 0

Secular term

Mixed Secular term 1

Mixed 

2 6 3 exp

exp 3 ex

Secular ter

p 3 3 exp 2

3 exp

m

2

 2

D u u i A A A A A i T

A i T i T A i T

A i T

ω ω µ α α ω

ω ω

α
ω

 + = − + + Λ + 

+ Λ Ω + Λ +Ω  

−
+ Λ Ω −  





 

( ) ( )

( )

2 2
0 0 0 0

2
0

Mixed Secular term 3

Mixed Secular t

3 exp 2 3 exp 2

2 3 6 ex

 4

p

erm

A i T A i T

i AA i T cc

ω ω

µ α α

 
 
 
 

+ Λ + Ω + Λ − Ω       
  
 −Λ Ω + Λ + Ω + 

 



(6.6.6)
 

                            

                          

It may be noted from Eq. (6.6.6) that when the exponent terms of the marked mixed secular terms are 
equal to 0ω  a resonance condition will occur. Hence, resonance will be observed in the system when  

    

0

0 0 0

0 0

0 0

(Primary resonance)
(Sub harmonic resonan

                             
2 3  

13

ce)

(Super harmonic resonance) 
3

2 0

ω
ω ω ω

ω ω

ω ω

Ω =
Ω − = ⇒Ω =

Ω = ⇒Ω =

− Ω = ⇒Ω =

  
     

 

For the non resonant case, i.e., when the external frequency is away from 0, 0ω , 0
1
3
ω or 3 0ω , from Eq. 

(6.6.6) eliminating the secular terms yield the following equation. 

( )' 2 2
02 6 3 0i A A A A Aω µ α α+ + Λ + =

       (6.6.7) 

Now using ( )1 exp
2

A a iβ= in Eq.(6.6.7) and separating the real and imaginary parts following reduced 

equations are obtained.  

1 0 1 0exp( ) exp( )D a a a a T a tµ µ εµ= − ⇒ = − = −                                                                       (6.6.8)  

and 2 2 2 2 2 2
0 1 1 0 0

1 1 13  3 3
8 8 8

aD a a a T a tω β α β α β εα β     = Λ + ⇒ = Λ + + = Λ + +     
     

       (6.6.9)                                                                            
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( ) ( ) ( )

( ) ( )

0 2 2
0

2 2
0 0 0 2 2

0

cos cos

1  exp( )cos 3 cos
8

fu a t t O

fa t a t t O

ω β ε
ω

εµ ω εα β ε
ω

= + + Ω +
−Ω

   = − + Λ + + + Ω +    −Ω   

                 (6.6.10) 

The free oscillation solution decays with time and hence the steady state response consists of forced 
solution only similar to the linear case.     

Superharmonic Resonance    ( 0
1
3
ωΩ ≈ ) 

To express the nearness of the external excitation frequency to one third of the natural frequency one 
may use the detuning parameter (σ ) as follows. 

03 ω εσΩ = +            (6.6.11) 

Now to include the mixed secular (or nearly secular or small divisor) term 1in Eq. (6.6.6) in this 
resonance condition one may write 

( )0 0 0 0 0 0 0 0 13   T T T T T Tω εσ ω εσ ω σΩ = + = + = +                                                                (6.6.12)   

Now to eliminate the secular and near secular terms from Eq. (6.6.6) one can write         

( ) ( )' 2 2 3
0 12 6 3 exp 0i A A A A A i Tω µ α α α σ+ + Λ + + Λ =      (6.6.13)

 

Using ( )1 exp
2

A a iβ= in Eq.(6.6.13) and separating the real and imaginary parts following reduced 

equations are obtained.  

( )
3

1
0

sin  a a Tαµ σ β
ω
Λ′ = − − −                                                                                              (6.6.14)

 
 

( )
3

2 2
1

0 0

3 1 cos
8

a a a Tα αβ σ β
ω ω

Λ ′ = Λ + + − 
         

(6.6.15) 

Now to express the above equations in their autonomous form one may use the following 
transformation. 

1Tγ σ β= −            (6.6.16) 

Hence, Eq. (6.6.14-15) can be written as 
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3

0

' sina a αµ γ
ω
Λ

= − −
          (6.6.17)

 

2 3
' 3

0 0 0

3 3 cos
8

a a aα α αγ σ γ
ω ω ω

 Λ Λ
= − − − 
         (6.6.18) 

By solving the above two equations, one can obtain a  and γ ,  and then can write the solution of the 
system as 

( ) ( ) ( )0 2 2
0

cos 3 cosfu u a t t Oγ ε
ω

= = Ω − + Ω +
−Ω       (6.6.19) 

For steady state as the time derivative terms vanish, Eq. (6.6.17) and (6.6.18) can be written as 

3

0

sina αµ γ
ω
Λ

− =
          (6.6.20)

 

2 3
3

0 0 0

33 cos
8

a aα α ασ γ
ω ω ω

 Λ Λ
− − = 

          (6.6.21) 

Now eliminating  γ from the above two equations, one can obtain a closed form equation which can be 

used for finding the frequency response of the system. 
22 2 6

2 2 2
2

0 0 0

33
8

a aα α αµ σ
ω ω ω

  Λ Λ + − − = 
           (6.6.22)

 

Solving Eq. (6.6.22) one may write the relation between the detuning parameter and amplitude of the 
response as follows. 

1/22 2 6
2 2

2 2
0 0 0

33
8

a
a

α α ασ µ
ω ω ω

 Λ Λ
= + ± − 

         (6.6.23) 

Hence, in this resonance condition, the free oscillation term does not decay to zero inspite of the 
presence of damping. Moreover, the nonlinearity adjusts the frequency of the free oscillation term to 
exactly three times the frequency of the excitations so that the response is periodic. Since the frequency 
of the free oscillation term is 3 times the frequency of excitation, such resonances are called super 
harmonic resonances or overtones.  

From Eq. (6.6.20) the peak amplitude of the free oscillation term is given by 
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3

0
pa α

µω
Λ

= (6.6.24)
           

 

2 2 4

2 2
0 0

3 1
8p

α ασ
ω µ ω

 Λ Λ
= + 

 
  (6.6.25)

 

Subharmonic Resonance      03ωΩ =  

When the external frequency is nearly 3 times the natural frequency of the system, using detuning 

parameter one can write 

03 ,ω εσΩ = +           (6.6.26) 

Or, ( )0 0 0 0 02 T T Tω ω εσΩ − = +        (6.6.27) 

Using a similar procedure of method of multiple scales, to eliminate the secular terms from Eq. (6.6.6) 
one can write  

( ) ( )' 2 2 2
0 12 6 3 exp 0i A A A A A A i Tω µ α α α σ+ + Λ + + Λ = .

     (6.6.28) 

Using ( )1 exp
2

A a iβ= in Eq.(6.6.13) and separating the real and imaginary parts following reduced 

equations are obtained.  

( )2
1

0

3' sin 3
4

a a a Tαµ σ β
ω
Λ

= − − −
        (6.6.29)

 

( )' 2 2 2
1

0 0

3 1 3 cos 3
8 4

a a a a Tα αβ σ β
ω ω

Λ = Λ + + − 
        (6.6.30) 

Now to express the above equations in their autonomous form one may use the following 
transformation. 

1 3Tγ σ β= −            (6.6.31) 

2

0

3' sin
4

a a aαµ γ
ω
Λ

= − −
         (6.6.32)
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2
' 3 2

0 0 0

9 9 9 cos
8 8

a a a aα α αγ σ γ
ω ω ω

 Λ Λ
= − − − 
         (6.6.33)

 

( ) ( ) ( )12 2
0

1cos cos
3

γ ω
− = Ω − + −Ω Ω + ∈  

u a t f t O
     (6.6.34) 

For steady state one can write
 

2

0

3 sin
4

a aαµ γ
ω
Λ

− =
          (6.6.35) 

2
3 2

0 0 0

9 9 9 cos
8 4

a a aα α ασ γ
ω ω ω

 Λ Λ
− − = 

         (6.6.36) 

Now eliminating  γ from the above two equations, one can obtain a closed form equation which can be 

used for finding the frequency response of the system. 

 

22 2 2
2 2 2 4

2
0 0 0

9 9 819
8 16

a a aα α αµ σ
ω ω ω

  Λ Λ + − − = 
          (6.6.37) 

This shows either the system will have a trivial state response (i.e., a =0) and a non trivial response 
which can be obtained by solving the following equation. 

22 2 2
2 2 2

2
0 0 0

9 9 819
8 16

a aα α αµ σ
ω ω ω

  Λ Λ + − − = 
                     (6.6.38) 
This equation is quadratic in 2a and hence the solution can be written as 

( )1/22 2a p p q= ± −
          (6.6.39)

 

Where 208 6
9

p ω σ
α

= − Λ
                  (6.6.40)

 

and 
22 2

20
2

0

64 99  
81

q ω αµ σ
α ω

  Λ = + − 
                      (6.6.41) 
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As q is always positive, so the nontrivial free oscillation amplitudes occur when 20 and p p q> ≥ . For 
these conditions one should have 

2 2
2 20

0 0

4 63  and 2 0
27 8
ω σ α ασ µ
α ω ω

 Λ Λ
Λ < − − ≥ 

                       (6.6.42) 

So σ and α  should have same sign. From Eq. (6.6.42), for a given Λ nontrivial solutions can exist only 
if  

2 2 2
0

2
0

2 63
8

µ ω αασ
ω
Λ

≥ +
Λ          (6.6.43) 

Similarly for a given σ , nontrivial solution can exist only if 

1/2 1/22 2 2

2 2
0

6363 63
4

σ σ α σ σ
µ µ ω µ µ µ

   Λ
− − ≤ ≤ + −   
          (6.6.44) 

In the σΛ plane the boundary of the region where nontrivial solutions can exist can be given by 

1/ 22 2

2
0

63 63
4
α σ σ
ω µ µ µ

 Λ
= ± − 

 
                                                                                                                                 (6.6.45) 

Exercise Problems 

1. Study the response of the single degree of freedom system with both quadratic and cubic 
nonlinearities. Consider primary, subharmonic and superharmonic resonance conditions. Use either 
method of multiple scales or the method of normal forms. 

References:  

1. A. H. Nayfeh and D. T. Mook:  Nonlinear Oscillations, Wiley, 1979 

2. A. H. Nayfeh, Method of Normal Forms, Wiley,1993  

Exercise problems 

1. 1. Using numerical techniques plot the time response of the system given by Eq. (6.6.1) with 
primary, subharmonic and superharmonic resonance. Compare the results with those obtained 
from the perturbation method. 

2. Study different resonance conditions for the Duffing equation with two frequency excitation 
terms  as given by the following equation. 
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( ) ( )2 3
0 1 1 1 2 2 22 cos  cos  u u u u f t f tω εµ εα θ θ+ + + = Ω + + Ω + 

 

Ans: One may observe following resonance conditions 

 

 

 

 

 

 

 

Q No. 3 Plot the frequency response curves for the system with sub harmonic and super harmonic 
resonance condition using equation 6.6.25 and 6.6.45. 

 

 

Module 6 Lecture 7 

Forced vibration Single-Degree of freedom system 

In this lecture briefly following analysis will be carried out 

• Forced vibration of Single-Degree of freedom system with cubic and quadratic nonlinearies 
• System with self sustained oscillation 
 

System with cubic and quadratic nonlinearies 

In this case considering damping, cubic nonlinearity and  the forcing parameters to be one order less than 
quadratic nonlinearity which is one order less than the linear term,  the equation of motion can be written as  

2 2 2 2 3 2
0 2 32 cosu u u u u f t+ + + + = Ω ω ε µ εα ε α ε                                                                           (6.7.1) 

Following similar procedure as in the previous two lectures one may study the primary, super harmonic 
and sub harmonic resonance conditions. 

( )

( )

0 0 0 0

0 1 2 0 1 0 2

0 2 1 1 2 0 2 1 0 2 1

2 1 0 2 1 0

2 1 0 2 1

2 1 0 2 1 0

2 1 0 2 1 0

1 13 , , , 1 2
3 2

1 13 3 ,  
3 3

12 2 , 2 ,
2

9 3 , 3
1 5, 5
3 3

7 27 , 2
3 3

7 57 , 5
3 3

n n m n m n

or or

or

ω ω ω ω

ω ω ω

ω ω ω
ω ω

ω ω

ω ω

ω ω

≈ Ω ≈ Ω ≈ + ± Ω ±Ω ≈ Ω ±Ω

≈ Ω Ω ≈ Ω ≈ Ω

≈ Ω ± Ω Ω −Ω ≈ Ω ±Ω ≈ Ω ±Ω

Ω ≈ Ω ≈ Ω ≈ Ω ≈

Ω ≈ Ω ≈ Ω ≈ Ω ≈

Ω ≈ Ω ≈ Ω ≈ Ω ≈

Ω ≈ Ω ≈ Ω ≈ Ω ≈
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In case of primary resonance, taking 2
0Ω = +ω ε σ and 

( ) ( ) ( ) ( ),    , , , , , ,2
0 0 1 2 1 0 1 2 2 0 1 2u t u T T T u T T T u T T T= + +ε ε ε                                                                       (6.7.2) 

and applying the usual procedure of method of multiple scales, one can obtain the following reduced equations 
(Nayfeh and Mook, 1979). 

 
0

' sin
2

fa aµ γ
ω

= − −
          (6.7.3)

 

2 2
' 33 0 2

3
0 0

9 10 cos
24 2

fa a aα ω αγ σ γ
ω ω
−

= − +
       (6.7.4) 

Comparing these two equations with those obtained from Duffing equation with only cubic 

nonlinearities for primary resonance (Eq. 6.5.11 and 12), one may observe that both sets of equations 

are identical if  
2
2

3 2
0

10
9
αα α
ω

= −                                                                                                                     (6.7.5) 

When 
2
2

3 2
0

100
9
αα α
ω

= ⇒ = − which is negative, the system will show softening effect. Also if 

2
2

3 2
0

10 , 0
9
αα α
ω

< < one obtains softening effect in which the frequency response curves bends towards the 

lower frequencies irrespective of the sign of 2α . 

When 
2
2

3 2
0

10 ,
9
αα
ω

= 0α = , the system behaviour will be similar to that of a linear system. Here the effect of 

cubic nonlinearities will be cancelled by that of the quadratic nonlinearity. Similar to the expression in the cubic 
nonlinear system here the following equation can be used to find the frequency response. 

2 2
2 2 2

2
0 0

3
8 4

fa aαµ σ
ω ω

  
 + − = 
   

                                                                                                                         (6.7.8) 

The expression for the response can be given by 

( ) ( ) ( )2 2 22 2
2 2
0 0

1 1cos cos 2 2
2 6

u a t a a t Oα αγ ε ε γ ε
ω ω

= Ω − − + Ω + +                                                           (6.7.9) 
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Comparing this expression with that of the system with only cubic nonlinearity, it can be observed that the 
oscillating motion is not centered at 0u = and there is a drift or shift of the steady state part by an amount of  

22
2
0

1
2

aαε
ω

− . 

Superharmonic resonance 

This resonance condition may occur when one consider, the forcing term is same order that of the linear part. 
Also considering the damping and quadratic nonlinearity of the order of ε  and cubic nonlinearity of the order 

of  2ε one may write the equation of motion as (Nayfeh and Mook, 1979) 

2 2 2 3
0 2 32 cosu u u u u f tω εµ εα ε α+ + + + = Ω                                                                                     (6.7.10) 

Applying method of multiple scales while eliminating the secular term, one may observe that a 
resonance condition will occur when  02 ω εσΩ = + . In this case the steady state solution can be written as 

( )
( ) ( )

( ) ( )
2

22
22 2 1/22 2 2 2

0 0 0

cos sin 2
4

ffu t t Oα γ ε
ω ω ω µ σ

= Ω − Ω − +
−Ω −Ω −

                                          (6.7.11) 

1tan
σ

γ
µ

−  =  
 

 

Subharmonic resonance 

For the system given by equation (6.7.10), subharmonic resonance will occur when external frequency is nearly 

equal to  02ω εσΩ = + . In this case one may obtain the expression for the frequency of resulting oscillation as 
1/22 2 2

2
2
0 4

α σλ µ
ω

 Λ
−= − ±  

 
  (6.7.12) 

Hence if 
2 2

2 2
2
0

4ασ
ω
Λ

> , the motion is oscillatory and decays with time 

If 
2 22 2

22 22
22
00

44 4 αα µσ
ωω

 ΛΛ
−> >  

 
, the response decays without oscillating 

If 
2 2

2 22
2
0

44 α µ σ
ω

 Λ
− > 

 
, the system becomes unstable as the response grows 

 
Systems with self-sustained oscillations 

Let us consider the van der Pol’s oscillator with soft harmonic excitation which is given by the 
following equation. 
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32
0

1 cos
3

f tu uu u   = Ω− 
 

+ −  
 εω ε                                                                                                             (6.7.13) 

Let us consider the primary resonance case in which the external frequency is assumed to be near the 
linear system frequency 0ω . So using detuning parameter one may write 

0tΩ = +εσω                                                                                                                                                                 (6.7.14) 

Now to solve Eq. (6.7.14), taking  

( ) ( ) ( ) ( ),    , ,u t u T T u T T oε ε ε= + + 2
0 0 1 1 0 1                                                                                                         (6.7.15) 

one will obtain the following reduced equations 

2 2
0

0

1 1' sin1
2 24

fa aa γω
ω

 = +− 
                                                    (6.7.16)

 

'

0

cos
2

fa aγ σ γ
ω

= +
                                                    (6.7.17) 

The steady state solution can be given by 
( ) ( )cosu a t Oγ ε= Ω − +                                                                                                                                         (6.7.18) 

 

For steady state taking 'a = 'γ =0 and eliminating γ form the equations (6.7.16-17) one can obtain 

 

( )
2

22 41
4
fρ σ ρρ + =−                                                                                                                (6.7.19) 

Where 2 2
0

1
4

aρ ω=                                                                                                                                                 (6.7.20) 

Figure 6.7.1 shows the frequency response obtained using equation 6.7.20 for different values of forcing 
parameter. 
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Fig. 6.7.1: Frequency response curves for primary resonance for van der Pol’s oscillator 

 

Exercise Problems: 

1. Using numerical techniques plot the time response of the system given by Eq. (6.7.1) with primary, 
subharmonic and superharmonic resonance. Compare the results with those obtained from the 
perturbation method. 

2. Find the frequency response curves for van der Pol’s oscillator considering strong forcing term. 
Study the subharmonic and superharmonic resonance conditions.  

3. Find the expressions for frequency response curves for a single degree of freedom system for 
different resonance conditions when subjected to 2 and 3 frequency excitations.  
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Module 6 Lecture 8 

Free and Forced vibration of Multi-Degree of freedom system 

In this lecture briefly we will discuss about the free vibration of multi-degree of freedom nonlinear 
systems. Initially the system with quadratic nonlinearity and then the system with cubic nonlinearity 
will be considered.  

Free vibration of the system with quadratic nonlinearities 

Let us consider a two degree of freedom system where the equation of motion can be given by 

2
1 1 1 1 1 1 1 2 0ˆ2u u u u uω µ α =+ + −                                                                                                            (6.8.1) 

2 2
2 2 2 2 2 2 1ˆ2 0u u u uω µ α+ + − =                                                                                         (6.8.2) 

To use method of multiple scales one may assume the solution of these equations using different time 
scales ( )0 1,       n

nT T T tε=  as follows. 

2
1 11 0 1 12 0, 1( , ) ( ) ...u u T T u T Tε ε= + +                                                                                                     (6.8.3) 

2
2 21 0 1 22 0, 1( , ) ( ) ...u u T T u T Tε ε= + +                                                                                                    (6.8.4) 

Substituting Eq. (6.8.3) and (6.8.4) in Eq. (6.8.1) and (6.8.2) and separating the terms with different 
order of ε one obtains 

Order of ε  

2 2
0 11 1 11 0D u uω+ =                                                                                                                                  

(6.8.5) 

2 2
0 21 2 21 0D u uω+ =                                                                                                                                

(6.8.6) 

Order of 2ε  

2 2
0 12 1 12 0 1 11 1 11 1 11 212 ( )D u u D D u u u uω µ α+ + − + +                                                                                 (6.8.7) 

2 2 2
0 22 2 22 0 1 21 2 21 1 112 ( )D u u D D u u uω µ α+ + − + +                                                                                      (6.8.8) 
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The solution of Eq. (6.8.5) and (6.8.6) can be given by 

11 1 1 1 0( ) exp ( )u A T i T ccω= +                                                                                                           (6.8.9) 

21 2 1 2 0( ) exp ( )u A T i T ccω= +                                                                                                         (6.8.10) 

Substituting Eq. (6.8.9) and (6.8.10) in Eq. (6.8.7) and (6.8.8) yields 

[ ]{ }2 2
0 12 1 12 1 1 1 1 1 1 0 1 1 2 1 2 0

Secul
2

ar term
( )exp ( ) exp ( )D u u D A A i T A A i T ccω ω µ ω α ω ω+ = − + + + +



                        (6.8.11) 

2 2 2
0 22 2 22 2 1 2 2 2 2 0 2 1 1 0 1 1

Secular 
2 ( ) exp ( ) exp(2

e m
)

T r
D u u D A A i T A i T A A ccω ω µ ω α ω + = − + + + + 



                        (6.8.12) 

To eliminate the secular term from Eq. (6.8.11) and Eq. (6.8.12) one can write 

1 1 1 1 0D A Aµ+ =  and    1 2 2 2 0µ+ =D A A                                                                                         (6.8.13) 

Solving Eq. (6.8.13) one can write 

1 1 1 1exp( )A a Tµ= −    and   2 2 2 1exp( )A a Tµ= −                                                                                   
(6.8.14) 

Substituting Eq. (6.8.14) in (6.8.3) and (6.8.4),  the first order solution of the system can be given by 

( ) ( )2
1 1 1 1exp( ) expu t a i t cc Oε εµ ω ε= − + +                                                                                    (6.8.15) 

( ) ( )2
2 2 2 2exp( ) expu t a i t cc Oε εµ ω ε= − + +                                                                                  (6.8.16) 

Hence, for steady state as time tends to infinity, both the response 1 2 0u u= = . 

Resonant case (System with internal resonance) 

Considering internal resonance of 1:2, i.e., when the second frequency is nearly equal to twice the first 
frequency one can write 

2 12ω ω εσ= +                                                                                                                            (6.8.17) 

So, 1 0 2 0 0 2 0 12 T T T T Tω ω εσ ω σ= − = −   and ( )2 1 0 1 0 0 1 0 1ω ω ω εσ ω σ− = + = +T T T T T                   (6.8.18) 

Following similar procedure of method of multiple scales to eliminate the secular terms one obtains the 
following equations. 
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( ) ( )'
1 1 1 1 1 2 1 12 exp 0i A A A A i Tω µ α σ− + + =  and   ( ) ( )' 2

2 2 2 2 2 1 12 exp 0i A A A i Tω µ α σ− + + − =  (6.8.19) 

Now using  ( ) ( )1 1 1 2 2 2
1 1exp  and exp
2 2

A a i A a iθ θ= = and introducing 2 1 12 Tγ θ θ σ= − + and separating 

the real and imaginary parts the following reduced equations are obtained.   

' 1
1 1 1 1 2

1

sin
4

a a a aαµ γ
ω

= − +  and   ' 22
2 2 2 1

2

sin
4
αµ γ
ω

= − −a a a                                                          (6.8.20) 

' 1
1 1 1 2

1

cos
4

a a aαθ γ
ω

= − and   ' 22
2 2 1

2

cos
4

a aαθ γ
ω

= −                                                                          (6.8.21) 

Or, 
2 2

1 2 2 1
2 2

1 2

cos
2 4

a aa a α αγ σ γ
ω ω

 
′ = + −/  

 
                                                                                            (6.8.22) 

For steady state using ' ' '
1 2 0a a γ= = = , one may write  

1
1 1 1 2

1

sin 0
4

a a aαµ γ
ω

− + =                                                                                                                 (6.8.23) 

22
2 2 1

2

sin 0
4

a aαµ γ
ω

− − =                                                                                                                   (6.8.24) 

2 21 2
2 1 2

1 2

cos 0
2 4

a a aα α γ σ
ω ω

 
− + = 

 
                                                                                                   (6.8.25) 

Eliminating γ from Eq. (6.8.23) and (6.8.24) one obtains the following equations. 

2 22 2 1
1 2

1 1 2

0a aµ ω α
µ ωα

+ =                                                                                                                           (6.8.26) 

If 1 2 and α α are of different sign, 1 2 and a a can differ from zero, that is the system may have nontrivial 
response.  Hence, in the presence of internal resonance, even though there is no external forcing energy 
will transfer from 1st mode to second mode and self sustained oscillation will continue.   

Forced vibration Multi-Degree of freedom system with quadratic nonlinearities 

Let us consider a two degree of freedom system with quadratic nonlinearies given by the following 
equations.  
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( )1 1
2

1 1 1 1 1 1 1 2 cos2 f tu u u u u ε τω εµ α = Ω ++ + +                                                                                 (6.8.27) 

( )2 2 2
2 2 2 2 2 2 1 2 22 cosu u u u f tω εµ α ε τ+ + + = Ω +                            (6.8.28) 

Now to solve these equations let us use method of multiple scales by considering 

2
1 11 0 1 12 0, 1( , ) ( ) ...u u T T u T Tε ε= + +   and 

2
2 21 0 1 22 0, 1( , ) ( ) ...u u T T u T Tε ε= + +                        (6.8.29) 

Substituting Eq. (6.8.29) in Eqs. (6.8.27-6.8.28) and equating coefficients of like power of ε one 
obtains 

( )2 2
0 11 1 11 1 0 1cosD u u f Tω τ+ = Ω +                                                                                                        (6.8.30) 

2 2
0 21 2 21 0D u uω+ =                                                                                                                             (6.8.31)
2 2
0 12 1 12 0 1 11 1 11 1 11 212 ( )D u u D D u u u uω µ α+ = − + −                                                                                  (6.8.32) 

2 2 2
0 22 2 22 0 1 21 2 21 2 11 2 0 22 ( ) cos( )D u u D D u u u f Tω µ α τ+ = − + − + Ω +                                                       (6.8.34) 

Now, solution of Eq. (6.8.30) and Eq. (6.8.31) can be given by 

( )11 1 1 1 0 0 1( ) exp ( ) expu A T i T i T ccω τ= +Λ Ω + +                                                                                (6.8.35) 

21 2 1 2 0( ) exp ( )u A T i T ccω= +                                                                                                              

(6.8.36)                                                                                    Here, ( )2 2
1 1/ 2f ωΛ = −Ω  Now 

substituting these two equations in Eq. (6.8.33) and (6.8.34) one can write
( )2 2 '

0 12 1 12 1 1 1 1 1 0 1 2 1 2 1 0

secular term

2 ( )exp ( ) expD u u A A i T A A i Tω ω µ ω α ω ω+ = − + − +  
  

  
( ) ( )2 1 2 1 0 2 2 0 1

1
22 1near secular in case of internal resonance 

exp expA A i T A i T i
ω ω

ω ω ω τ
α

≈

 − + Λ Ω+ +      −   
 

  

  ( ) ( )
1

1 2 2 0 1 1 0 1

1 2near secular term if   near secular term if    

exp 2 expA i T i i i T cc
ω ω ω

α ω τ µ τ
+Ω ≈ Ω ≈

− Λ Ω− + − ΩΛ Ω + +      
 

                            (6.8.37) 

And
 ( )2 2 ' 2

0 22 2 22 2 2 2 2 2 0 2 1 1 0

Secular term

2 ( )exp ( ) exp 2D u u A A i T A i Tω ω µ ω α ω+ = − + −
  

  ( )( )2
2 1 1 1 1 0 12 expA A A i T iα ω τ− +Λ + Λ +Ω +    



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 51 of 104 
 
 

  
( ) ( )2

1 1 0 1 0 1
2

may be near secular term considering internal resonance

2 exp exp 2A i T i i Tω τ τ
α

 Λ Ω− + +Λ Ω +      −  
 

  

  ( )

2

2 0 2

near secular term if 

1 exp
2

f i T cc

ω

τ

Ω≈

+ Ω + +  


                                 (6.8.38) 

From Eq. (6.8.37) and (6.8.38) one may observe that one may get many resonance conditions such as 
(a) 1ωΩ ≈ , (b) 2ωΩ ≈ (c) 1 2ω ωΩ ≈ + . Also, some resonance condition occurs when one consider 

internal resonance i.e. 2 12ω ω≈ . 

 Let us consider when the external frequency is nearly equal to the second mode frequency i.e.,  

2 1ω εσΩ = +                          (6.8.39).  

Hence, without considering internal resonance, to eliminate secular terms one can write 

'
1 1 1 0A Aµ+ =                         (6.8.40) 

and ( ) ( )'
2 2 2 2 2 1 1 2

12 exp
2

i A A f i Tω µ σ τ+ = +           (6.8.41) 

Now solution of Eq. (6.8.40) can be written as  

1 1 1 1 1
1 exp( )
2

A a T iµ θ= − +                                                                                                            (6.8.42)

( ) ( )2
2 2 2 1 2 1 1 2

2 2 1

1 exp( ) exp
2 4

ifA a T i i T
i

µ θ σ τ
ω µ σ

= − + − +  +
                                               (6.8.43) 

               

For steady state as t tends to 0, one obtains 

( ) ( )2
1 2 1 1 2

2 2 1

0,  and exp
4

ifA A i T
i

σ τ
ω µ σ

= = − +  +
                                                         (6.8.44) 

Hence one obtains,  

( ) ( ) ( )21
1 12 2

1

cosFu t Oτ ε
ω

= Ω + +
−Ω

                                                                                  (6.8.45) 
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( )
( ) ( )22

2 2 02 2
2 2 1

sin
2

Fu t Oτ γ ε
εω µ σ

= Ω + − +
+

                                                                (6.8.46)
  

where  

1 1
0

2

tan
σ

γ
µ

−  
=  

 
                                                                                                                                            (6.8.47)

  

Now if one considers the system with internal resonance i.e., 2 12ω ω≈  or 2 1 22ω ω εσ= + , then to 
eliminate secular term one can write  

( ) ( )' '
1 1 1 1 1 2 1' 2 12 exp 0i A A A A i Tω µ α σ− + − =                                                                          (6.8.48) 

( ) ( ) ( )' 2
2 2 2 2 2 1 2 1 2 1 1 2

12 exp exp 0
2

i A A A i T f i Tω µ α σ σ τ − + − + − + =            (6.8.49) 

Substituting ( )1 exp
2n n nA a iβ= where n =1, 2, in Eqs. (6.8.48) and (6.8.49) one obtains 

' 1
1 1 1 1 2 2

1

sin
4

a a a aαµ γ
ω

= − −                         (6.8.50) 

' 2 12
2 2 2 1 2 2 2 1

2

1sin sin
4 2

a a a fαµ γ ω γ
ω

−= − + +                (6.8.51) 

' 1
1 1 2 1 2

1

cos
4

a a aαβ γ
ω

=                              (6.8.52) 

' 22
2 2 1 2 2 1

2 2

1cos cos
4 2

a a fαβ γ γ
ω ω

= −                            (6.8.53) 

Where, 1 1 1 2 2Tγ σ β τ= − + and  2 2 1 2 12 Tγ β β σ= − −              (6.8.54) 

For steady state response, '
1a , '

2a , '
1β  '

2β  are zero and  there are two possibilities. In the first case one will 
obtain the linear solution similar to Eq. 6.8.44. In the second case  

1/21/2
2 2

1 1 2 2
12
4

a P f P
  = − ± −  

   
                     (6.8.55) 
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( )
1/222

2 1 1 1 22 4a ω µ σ σ = + −                    (6.8.56) 

Here, ( )1 1 2 1 2 1 1 22 2P ωω σ σ σ µ µ = − +    

( )2 1 2 1 1 2 2 12 2P ωω σ µ µ σ σ = − −                 (6.8.57) 

Substituting these values in 1u and 2u one can obtain the response of the system. It may be noted that the 

second mode amplitude 2a is not a direct function of the external excitation. Using these equations one 
may plot the frequency response curves and observe many resonance phenomena similar to those 
observed in case of single degree of freedom system. 

Exercise Problems: 

1. Plot the frequency response curves using Eq. (6.8.55) and (6.8.56) taking 1α = 2α =-1. Observe 
different nonlinear phenomena. Study the stability of the system. 

2.  Study the resonant and non resonant free vibration of two degree of freedom system with cubic 
nonlinearities. The equation of motion of this system can be given by  

2 3 2 2 3
1 1 1 1 1 1 1 2 1 2 3 1 2 4 2ˆ2 0u u u u u u u u uω µ α α α α+ + + + + + =   

2 3 2 2 3
1 1 1 1 1 1 2 1 2 3 1 2 4 2ˆ2 0u u u u u u u u uω µ α α α α+ + + + + + =   
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Module 6 Lect 9 

Parametrically excited system 

In this lecture, the parametrically excited system will be considered and using Floquet theory the 
conditions for instability regions will be determined. It may be noted that a simple parametrically 
excited system can be represented by the following equation. 

  1 2( ) ( ) 0u p t u p t u+ + =                                                                                                                  (6.9.1) 

Where, the term 1( )p t and 2 ( )p t are periodic function of time. It may be noted that as these time varying 
terms are coefficients of the response and its derivative, this equation is called the equation of a 
parametrically excited system. One can have many variation of this equation by including different 
nonlinear terms and forcing terms. One can consider a single or multi degree of freedom system also. 
Eq. (6.9.1) can also be written in the following form by substituting  

1
1exp ( )
2

u x p t dt = − 
 ∫  

 in Eq. (6.9.1). The resulting equation can be written as                                                                

( ) 0x p t x+ =                                                                                                                                 (6.9.2) 

where 2
2 1 1

1 1( )
4 2

p t p p p= − −                                                                                                                             (6.9.3) 

Equation (6.9.2) is called the Hill’s equation who studied this system in 1886 (Nayfeh and Mook 1979). 

Now by substituting ( ) 2 cos 2p t t= +δ ε  in Eq. (6.9.2) one can write 

( 2 cos 2 ) 0x t x+ + = δ ε                                                                                                                                         (6.9.4) 

This equation is known as Mathieu’s equation. It may be noted that the basics of parametrically excited 
systems are based on Mathieu-Hill types of equation. As pointed out in module 4, one may use Floquet 
theory to study the stability of these systems.  
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Example 6.9.1: Study the stability of the  Hill’s equation given in Eq. (6.9.2) by taking the following 
initial condition.  

1 1 2 2(0) 1, (0) 0, (0) 0, (0) 1u u u u= = = =                                                                                                 (6.9.5) 

Solution 

Writing the fundamental sets of solution as 

1 11 1 12 2

2 21 1 22 2

( ) ( ) ( )
( ) ( ) ( )

u t T a u t a u t
u t T a u t a u t

+ = +
+ = +

                                                                                                                  (6.9.6) 

1 11 1 12 2

2 21 1 22 2

( ) ( ) ( )
( ) ( ) ( )

u t T a u t a u t
u t T a u t a u t

+ = +
+ = +

  

  

                                                                                                                  (6.9.7) 

one can obtain 

11 1 21 2 12 1 22 2( ), ( ), ( ), ( )a u T a u T a u T a u T= = = =                                                                     (6.9.8) 

Or 1 1

2 2

( ) ( )
( ) ( )

u T u T
A

u T u T
 

=  
 





                                                                                                                             (6.9.9) 

Finding the determinant of A I−λ  matrix one may write 

2 2 0λ αλ− + ∆ =                                                                                                                                          (6.9.10) 

where 

1
1 2 1 2 1 22 [ ( ) ( )], ( ) ( ) ( ) ( )u T u T u T u T u T u T= + ∆ = −  α                                                                           (6.9.11) 

The parameter ∆ is known as the Wronskian determinant of 1( )u T  and 2 ( )u T .  

In case of Hill’s equation the Wronskian determinant can also be obtained as follows. 

As, 1( )u t and 2 ( )u t are the fundamental set of solution, hence they must satisfy Eq. (6.9.2). Hence, one can 

write 

1 1

2 2

( ) 0
( ) 0

u p t u
u p t u
+ =
+ =





                                                                                                                                                 (6.9.12) 

Or, 1 2 1 2 0u u u u− =                                                                                                                                               (6.9.13) 

Which can be integrated to obtain, 1 2 1 2( ) ( ) ( ) ( ) ( )t u t u t u t u t∆ = −  =constant                                             (6.9.14) 
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At t =0, ( )t∆ = 1. So  the roots of the Eq. (6.9.10) can be given by 

2
1,2 1λ α α= ± −                                                                                                                                                     (6.9.15) 

Or, 1 2 1λ λ =                                                                                                                                                                   (6.9.16) 

From Eq.(6.9.15) it may be noted that α >1 one of the root will be greater than unity while the other root is 

less than one. Hence one of the normal solutions is unbounded and the other is bounded. When α <1 both 
the roots will be complex conjugate and their absolute value will be less than one. Hence they will be in the 
unit circle. So the solutions will be bounded. It may be observed that the transistion from stable to unstable will 

takes place when α =1. This corresponds to a periodic solution of period T when 1 2 1= =λ λ  and a periodic 

solution of period 2T when 1 2 1= = −λ λ . 

Example 6.9.2: Study the stability of the Mathieu’s equation using same initial condition given in 
example 6.9.1. 

Solution: In case of Mathieu equation 

( 2 cos 2 ) 0x t x+ + = δ ε                                                                                                                                      (6.9.17) 

α is a function of δ and ε . The values of δ and ε  for which α >1 are called unstable values while those for 

which α =1 are called transition values. The locus of transition values separates the  ε δ  plane into regions of 

stability and instability as shown in the fallowing figure.   

 

Fig 6.9.1 Transition curve for Matheiu equation 

Hill’s Infinite Determinat 
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One may also use hill’s infinite determinant method to find the transition curve which is explained 
below. 

( )2 cos 2 0u t u+ δ + ε =         (6.9.18) 

Using Floquet theory one may assume the solution of the equation (6.9.18) as  

( ) ( )expu t t= γ φ          (6.9.19) 

Where ( ) ( )t t Tφ = φ + . One may expand ( )tφ in a Fourier series to obtain the following equation. 

 

( )exp 2n
n

u in t
∞

=−∞

 = φ γ + ∑         (6.9.20) 

Where nφ is constant. Substituting Eq. (6.9.20) in (6.9.18) one obtains  

( ) ( ){ } ( ) ( ){ }22 exp 2 exp 2 1 exp 2 1 0n n
n n

in in t t i n t t i n t
∞ ∞

=−∞ =−∞

       γ + + δ φ γ + +∈ φ γ + + + γ + − =      ∑ ∑
           (6.9.21) 

Equating each of the coefficients of the exponential functions to the zero one can obtain the following infinite 

set of linear, algebraic, homogenous equations for nφ  

( ) ( )2

1 12 0n n nin − +
 γ + + δ φ + ε φ + φ =        (6.9.22) 

For a non trivial solution the determinant of the coefficient matrix must vanish. Since the determinant is infinite 
one may divide the mth row by 24mδ −  for convergence considerations to obtain the following Hill’s 
determinant.  
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( )

( )

( )

( )

( )

2

2 2

2

2 2 2

2

2

2 2 2

2

2 2 2

... . . . . . . . . . ...
4

... 0 0 0 0 0 0 0 ...
4 4

2
... 0 0 0 0 0 0 ...

2 2 2
... 0 0 0 0 0 0 ...

2
... 0 0 0 0 0 0 ...

2 2 2
4

... 0 0 0 0 0 0 ...
4 4 4

i

i

i

i

δ + γ −ε
δ − δ −

δ + γ −ε ε
δ − δ − δ −

ε δ + γ ε∆ γ =
δ δ δ

δ + γ −ε ε
δ − δ − δ −

δ + γ −ε ε
δ − δ − δ −

             
          (6.9.23) 

The determinant can be rewritten as (Whittaker and Watson 1962, Nayfeh and Mook 1979) 

( ) ( )
















−∆=∆
δπ

πγ
γ

2
1sin

2
1sin

0
2

2 i
        (6.9.24) 

Since the characteristic exponents are solution of ( )∆ γ =0, they are given by 

( )
2
1

21 6
2
1sin0sin2















∆±= − π

π
γ i

       (6.9.25) 

Once γ  is known nφ  can be related to 0φ  using equation (6.9.22). 

One may also consider the central three rows and columns to approximate the characteristic equation as 
follows 

( )
( )

( )

2

2

2

2 0
0

0 2

i

i

δ + γ − ε
∆ γ = =ε δ + γ ε

ε δ + γ +
 

 

Or ( ) ( ) ( ) ( ) ( )2 2 2 22 2 22 2 2 2 0i i i i       δ + γ + δ + γ δ + γ − − ε δ + γ + − ε δ + γ − =         (6.9.26) 

The transition curve separating stability from instability correspond to γ =0 (i.e., periodic solution with periodπ
) or iγ = ±  (i.e., periodic motion with period 2π ).  
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When γ =0 Eq. (6.9.26) gives the transition curves  

21
2

δ = − ε  and 214
2

δ = + ε                                                                                                                     (6.9.27) 

When iγ = ±  Eq. (6.9.26) gives the transition curves  

1δ = ± ε  and  219
8

δ = + ε                                                                                        (6.9.28) 

      

Exercise problem 

Problem 6.9.1: Use Floquet theory to study the stability of the periodic motion corresponding to 
primary resonance of Duffing equation. 

Problem 6.9.2: Use Method of Multiple Scales to determine the equations for transition curves for 
Matheiu equation. Plot these transition curves near 2δ = ω =1, 4. Taking few points in the stable and 
unstable regions and by using numerical method to solve the Mathieu’s equation,  plot the time 
responses  to check  whether the marked instability regions are correct.  

 

 

Module 6 Lect 10 

Multi-degree-of freedom parametrically excited system 

 Case study: Instability Region of a Sandwich beam 

In this lecture a case study has been taken by considering a three-layered, soft-cored, symmetric 

sandwich beam subjected to a periodic axial load. For completeness purpose the derivation of the 

governing equation of motion is given here and then the parametric instability regions for simple and 

combination resonances are investigated for simply supported and clamped-free end conditions by 

modified Hsu’s method.  
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Figure 6.10.1 Symmetric three-layered soft cored sandwich beam with periodic axial load 

Figure 6.10.1 shows a simply supported, symmetric, three-layered sandwich beam of length L and  

width b with a flexible soft core.  The top, core and bottom layer thickness are d t , c and d b , 

respectively.  The upper and lower layers (face layer) of the beam are of the same elastic material and 

the core is of soft viscoelastic material. The sandwich beam is subjected to an axial periodic load 

( ) ,cos10 tPPtP ω+=  ω  being the frequency of the applied load, t  being the time and 0P  and 1P  are 

the amplitudes of static and dynamic load, respectively. 

Figure 6.10.2 shows the geometry of the sandwich beam, the load and internal forces and moments in 

different layers and the deflection in x and z directions before and after deformations. Here, xxQ  is the 

shear force, xxN is the axial force and xxM  is the bending moment. Superscripts  and t b  represent the 

top and bottom layer, respectively. The assumptions made for deriving the governing equations are 

similar to that by Frostig [1-4] and are (i) the face sheets of the sandwich beam are modeled as Euler-

Bernoulli beams (ii) the transversely flexible core layer is considered as a two dimensional elastic 

medium with small deformations where its height may change under loading, and its cross section does 

not remain planar. The longitudinal (in-plane) stresses in the core are neglected and (iii) the interface 

layers between the face sheets and the core are assumed to be infinitely rigid and provide perfect 

continuity of the deformations at the interfaces.   
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Figure 6.10.2 (a) Geometry, (b) load, internal forces and moments (c) displacement pattern through depth of 

section. N.A is the neutral axis. 

The internal potential energy (U ) in terms of direct stresses (σ) and shear stress τ  and strains (ε,γ ) is given by,    

,xx xx xx xx c c zz zz

core coretop botv v v v
U dv dv dv dvσ ε σ ε τ γ σ ε= + + +∫ ∫ ∫ ∫                                                          (6.10.1) 

where, topv , botv , and corev  are the volume of the top, bottom and core layer, respectively. One may note that, as 

the core is taken to be flexible, deformation takes place in the transverse direction ( z  direction) and the last term 

of equation (1) takes care of that effect.  The kinetic energy T  can be given by 

(b)  (c) 
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( ) ( ) ( )2 2 2 2 2 2

0 0

1 2
L L

t t t b b b c c c c

core corev v
T m u w dx m u w dx u dv w dvρ ρ

  = + + + + + 
  
∫ ∫ ∫ ∫      .                                (6.10.2) 

Here ,  and t bm m  are the mass per unit length of the top and bottom layer, respectively and cρ is the density of 

the core material; tu  and bu  are the displacement at the neutral axis of the top and bottom layer along x 

(longitudinal) direction, respectively; tw  and bw  are the displacement at top and bottom layer along z (vertical) 

direction, respectively (Fig. 6.10.2(c)). Also, cu  and cw  are the displacement of the core along x and z 

directions, respectively and can be given by [1] 

( ){ }, ,
,

( / 2) ( / 2)
( / 2) b b b x t t t x

c t t t x

u d w u d w z
u u d w

c

+ − −
= − + , ( )b t

c t

w w z
w w

c
−

= +                        (6.10.3)                                            

Here (),x  represents the differentiation with respect to x and subscripts t , b, c represent top, bottom and core 

layer, respectively.  

The non-conservative work done due to the applied load can be given by 

( ) 2 2
, ,

0 0

1 2
L L

nc t x b xW Pw dx Pw dx
 

= + 
 
∫ ∫ .                                                                                                         (6.10.4)        

The following non-dimensional parameters are used in this analysis.  
2

0 0 (2 )q qP P L E I= , 2
1 1 ( 2 )q qP PL E I= , 2∗=c c cG A L Eξ , 2

t t tE A L Eφ = , 2 ,=b b bE A L Eφ  2
c c cE A L Eφ = ,

( )2 2  = / ( / )( / ) ( / )( / )c t t t b b bg G E c d L d E c d L d+ , 0/ ,t t t= /x x L= , /q qu u L= , /q qw w L= , 

/q qm m m= , /c cm m m= .                                                                                                                          (6.10.5) 

Here, 0P  and 1P  are, respectively, the non-dimensional static and dynamic load amplitudes; , andq q qE I A  are 

the Young’s modulus, moment of inertia and the area of cross-section of the qth layer (q equal to t for top layer 

and b for bottom layer); t t b bE E I E I= + ; cE , cA  and cm  are the Young’s modulus, area of cross-section and 

mass per unit length of the core, respectively. The non-dimensional time, 4 (1/ 2)
0 ( / )t mL E= , where m is the total 

mass per unit length. The complex shear modulus of the viscoelastic core is given by * (1 )c c cG G jη= + , where 
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cG  is the phase shear modulus, 1j = −  and cη  is the core loss factor. The non-dimensional term g  is known 

as the shear parameter of the system.   

Using equations (6.10.1-6.10.5), the governing non-dimensional equations of motion and the boundary 

conditions are derived by applying the extended Hamilton’s principle. These resulting governing equations of 

motion are as follows. 

2 2 4
, ,

2 4
, ,

( / 3) ( /12)( / ) ( / ) ( / 576)( / ){1 ( / )}( / ) ( / )

( / 24)( / )( / )( / ) ( / 576)( / ){1 ( / )}( / ) ( / )

( / 6) ( / 6)( / )( / )

t c t c t t xx c t t c c t xxxx

c t b b xx c b t c c b xxxx

c b c t

m m w m d c c L w m d c d c c L w

m d c d c c L w m d c d c c L w

m w m d c c L u

ξ φ

ξ φ

+ − + +

+ + +

+ +

  

 

 

3
, ,

3
, ,

2 2 2
, ,

(1/ 48)( / 6){1 ( / )}( / ) ( / )

( /12)( / )( / ) (1/ 48)( / 6){1 ( / )}( / ) ( / )

( / ) ( / 4){1 ( / )} ( / ) ( / 4){1 ( / )}{1 ( / )}

t x t c t c c t xxx

c t b x b c t c c b xxx

c t c t t xx c b c t b b xx

m m d c c L u

m d c c L u m m d c c L u

L c w d c w L c w d c d c w

ξ φ

ξ φ

φ ξ φ ξ

− + +

+ + + +

− − + − − + +

+



 

3
, ,

3
, ,

2 2 2
, ,

( / 2)( / ){1 ( / )} ( / ){1 ( / )}( / 48)( / )

( / 2)( / ){1 ( / )} ( / ){1 ( / )}( / 48)( / )

( /12)( / ) ( / ) ( / ) 0

c t t x c c t t t xxxxx

c t b x c c t b b xxxxx

t t t xxxx t xx

L c d c u d c c L u

L c d c u d c c L u

d c c L w PL E w

ξ ξ φ φ

ξ ξ φ φ

φ

+ + +

− + − +

+ + =

     (6.10.6)                                                        

 

2 4
, ,

2 2 4
, ,

( / 6) ( / 24)( / )( / )( / ) ( / 576)( / ){1 ( / )}( / ) ( / )

( / 3) ( /12)( / ) ( / ) ( / 576)( / ){1 ( / )}( / ) ( / )

( /12)( / )( / )

c t c t b t xx c t b c c t xxxx

b c b c t b xx c b b c c b xxxx

c b

m w m d c d c c L w m d c d c c L w

m m w m d c c L w m d c d c c L w

m d c c L

ξ φ

ξ φ

+ + +

+ + − + +

−

  

  



3
, , ,

3 2
, ,

2 2
,

(1/ 48)( / 6){1 ( / )}( / ) ( / ) ( / 6)( / )( / )

(1/ 48)( / 6){1 ( / )}( / ) ( / ) ( / ) ( / 4){1 ( / )}{1 ( / )}

( / ) ( / 4){1 ( / )}

t x t c b c c t xxx c b b x

b c b c c b xxx c b c t b t xx

c t c b b xx

u m m d c c L u m d c c L u

m m d c c L u L c w d c d c w

L c w d c w

ξ φ

ξ φ φ ξ

φ ξ

− + + −

+ + + + − + +

− − + +

 



,

3
, ,

3 2 2 2
, , ,

( / 2)( / ){1 ( / )}

( / ){1 ( / )}( / 48)( / ) ( / 2)( / ){1 ( / )}

( / ){1 ( / )}( / 48)( / ) ( /12)( / ) ( / ) ( / ) 0

c b t x

c c b t t xxxxx c b b x

c c b b b xxxxx b b b xxxx b xx

L c d c u

d c c L u L c d c u

d c c L u d c c L w PL E w

ξ

ξ φ φ ξ

ξ φ φ φ

+

+ + − +

− + + + =

     (6.10.7)                                                                                                                             

3
, ,

3
, ,

2
,

2

( / 6)( / )( / ) ( / 288)( / )( / ) ( / )

( /12)( / )( / ) ( / 288)( / )( / ) ( / )

(1/ 24)( / 6)( / ) ( / ) ( / 3)

(1/ 24)( / 6)( / ) ( / )

c t t x c t c c t xxx

c b b x c b c c b xxx

t c c c t xx t c t

b c c c

m d c c L w m d c c L w

m d c c L w m d c c L w

m m c L u m m u

m m c L

ξ φ

ξ φ

ξ φ

ξ φ

−

− −

+ + − +

− +

 

 

 



, ,

2 2
, , ,

2 2
,

( / 6) ( / 2){1 ( / )}( / )

( / 2)( / ){1 ( / )} ( / ) ( / )( / 24)( / )

( / ) ( / )( / 24)( / ) 0

b xx c b c t t x

c b b x t t xx c t c c t t xxxx

c b c c b b xxxx

u m u d c L c w

L c d c w u L c u c L u

L c u c L u

ξ

ξ φ ξ ξ φ φ

ξ ξ φ φ

− + +

+ + + − −

+ + =

 

                   (6.10.8) 
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3

, ,

3
, ,

2
,

( /12)( / )( / ) ( / 288)( / )( / ) ( / )

( / 6)( / )( / ) ( / 288)( / )( / ) ( / )

( / 6) (1/ 24)( / 6)( / ) ( / ) ( / 3)

(1/ 24)( / 6)( /

c t t x c t c c t xxx

c b b x c b c c b xxx

c t t c c c t xx b c b

b c

m d c c L w m d c c L w

m d c c L w m d c c L w

m u m m c L u m m u

m m c

ξ φ

ξ φ

ξ φ

+

− +

− − + − +

+ +

 

 

  

2
, ,

2 2
, ,

2 2
, ,

) ( / ) ( / 2){1 ( / )}( / )

( / 2)( / ){1 ( / )} ( / ) ( / )( / 24)( / )

( / ) ( / )( / 24)( / ) 0

c c b xx c t t x

c b b x c t c c t t xxxx

b b xx c b c c b b xxxx

L u d c L c w

L c d c w L c u c L u

u L c u c L u

ξ φ ξ

ξ ξ ξ φ φ

φ ξ ξ φ φ

− +

− + + +

+ − − =



                                (6.10.9) 

As the above equations of motion (6.10.6-6.10.9) are in space and time co-ordinates, generalized 

Galerkin’s principle is used to reduce these equations to their temporal form. For multi-mode 

discretization one may take 
2 3

4

1 1 2 1

3 1

( ) ( ),       ( ) ( ),      ( ) ( ) and 

( ) ( ).

N N N

t p p b q q t r r

N

b s s

p q N r N

s N

w f t w x w f t w x u f t u x

u f t u x

= = + = +

= +

= = =

=

∑ ∑ ∑

∑
                   (6.10.10)                                                                                                                     

Here, N is a positive integer representing the number of modes taken in the analysis, and ( )pf t , ( )tf q

, ( )tf r  and ( )tf s  are the generalized co-ordinates and ( )pw x , ( )xwq , ( )xur  and ( )xus  are the shape 

functions chosen to satisfy as many as the boundary conditions. The resulting equation of motion 

becomes   

          [ ]{ } [ ]{ } [ ]{ } { }1 cosM f K f P t H fω φ+ − = .                                                                               (6.10.11)                                                              

Here, ( ) ( ) tdd=⋅ , { } { } { } { } { }{ } ,
TT T T T

p q r sf f f f f=  and [ ] [ ] [ ]1 0= −K K P H , 

where 

[ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

M M M M
M M M M

M
M M M M
M M M M

 
 
 =  
 
  

, [ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

11 12 13 14

21 22 23 24
1

31 32 33 34

41 42 43 44

K K K K
K K K K

K
K K K K
K K K K

 
 
 =  
 
  
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[ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

11

22

H
H

H

φ φ φ
φ φ φ
φ φ φ φ
φ φ φ φ

 
 
 =  
 
  

, { }φ and [ ]φ  are null matrices. 

The elements of the various sub matrices are given  below. 

( ) ( ) ( )( ){ }

( )( )( )( ) ( ){ }

1 1
2

11
0 0

1
4

0

3 12

576 1 / /   

t c i j c t i jij

c t t c c i j

M m m w w dx m d L w w dx

m d c d c c L w w dxξ φ

   
′ ′= + +   

   
 

′′ ′′+ +  
 

∫ ∫

∫
 

( ) ( ) ( )( ){ }

( )( )( )( ) ( ){ }

1 1
2

12
0 0

1
4

0

6  24

576 1

c i j c t b i jij

c b t c c i j

M m w w dx m d d l w w dx

m d c d c c L w w dxξ φ

   
′ ′= −   

   
 

′′ ′′+ +  
 

∫ ∫

∫
 

( ) ( )( )( )( ) ( ){ } ( )( ){ }
1 1

3
13

0 0

6 1 48 1 6t c t c c i j c t i jij
M m m d c c L w u dx m d L w u dxξ φ

   
′′ ′ ′= + + +   

   
∫ ∫  

( ) ( )( )( ) ( ){ } ( )( ){ }
1 1

3
14

0 0

(1 48) 6 1 /12b c t c c i j c i jij
M m m d c L w w dx m L w u dxξ φ

   
′′ ′ ′= − + + +   

   
∫ ∫

( ) ( ) ( )( ){ }

( )( )( )( ) ( ){ }

1 1
2

21
0 0

1
4

0

6 24  

576 1

c i j c t b i jij

c t b c c i j

M m w w dx m d d L w w dx

m d c d c c L w w dxξ φ

   
′ ′= −   

   
 

′′ ′′+ +  
 

∫ ∫

∫
              

( ) ( ) ( )( ){ }

( )( )( )( ) ( ){ }

1 1
2

22
0 0

1
4

0

3 12

576 1 / /    

b c i j c i jij

c b b c c i j

M m m w w dx m c L w w dx

m d c d c c L w w dxξ φ

   
′ ′= + +   

   
 

′′ ′′+ +  
 

∫ ∫

∫
 

( ) ( )( )( ) ( ){ } ( )( ){ }
1 1

3
23

0 0

(1 48) 6 1 12  t c b c c i j c i jij
M m m d c c L w u dx m c L w u dxξ φ

   
′′ ′ ′= + + −   

   
∫ ∫  
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( ) ( )( )( ) ( ){ } ( )( )
1 1

3
24

0 0

(1 48) 6 1 / / 6 /b c b c c i j c b i jij
M m m d c c L w u dx m d L w u dxξ φ

   
′′ ′ ′= − + + −   

   
∫ ∫

( ) ( )( )( ) ( ){ } ( )( ){ }
1 1

3
31

0 0

288 + 6 /c t c c i j c t i jij
M m d c c L u w dx m d L u w dxξ φ

   
′′ ′ ′=    

   
∫ ∫    

( ) ( )( ){ } ( )( )( ) ( ){ }
1 1

3
32

0 0

12 288 /c b i j c b c c i jij
M m d L u w dx m d c c L u w dxξ φ

   
′ ′′ ′= −   

   
∫ ∫

( ) ( )( ) ( ){ } ( )
1 1

2
33

0 0

(1 24) 6 3t c c c i j t c i jij
M m m c L u u dx m m u u dxξ φ

   
′ ′= − + − +   

   
∫ ∫

( ) ( ){ } ( )( ) ( ){ }
1 1

2
34

0 0

6 (1 24) 6 /c i j b c c c i jij
M m u u dx m m c L u u dxξ φ

   
′ ′= − + +   

   
∫ ∫

( ) ( )( ){ } ( )( )( ) ( ){ }
1 1

3
41

0 0

12 288c t i j c t c c i jij
M m d L u w dx m d c c L u w dxξ φ

   
′ ′′ ′= − +   

   
∫ ∫

( ) ( )( ){ } ( )( )( ) ( ){ }
1 1

3
42

0 0

6 / 288c b i j c b c c i jij
M m d L u w dx m d c c L u w dxξ φ

   
′ ′= +   

   
∫ ∫

( ) ( ){ } ( )( ) ( ){ }
1 1

2
43

0 0

6 (1 24) 6 /c i j t c c c i jij
M m u u dx m m c L u u dxξ φ

   
′ ′= − + +   

   
∫ ∫

( ) ( ){ } ( )( ) ( ){ }
1 1

2
44

0 0

3 (1 24) 6 /b c i j b c c c i jij
M m m u u dx m m c L u u dxξ φ

   
′ ′= − + − +   

   
∫ ∫

( ) ( )( ){ } ( )( ){ } ( ){ }
1 1 1

2 2 2
11

0 0 0

1 4 1 1 12 /t c i j t c i j c i jij
K d c w w dx d L w w dx L c w w dxξ φ φ

     
′ ′ ′′ ′′= + + +     

     
∫ ∫ ∫

( ) ( ){ } ( )( )( ){ }

( )( ) ( )( ){ }

1 1
2

12
0 0

1
3

0

1 4 1 1

1 48 1  

c i j t b c i jij

t c c b i j

K L c w w dx d c d c w w dx

c L d c w u dx

φ ξ

ξ φ φ

   
′ ′= − + + +   

   
 

′′′ ′′− +  
 

∫ ∫

∫
   

( ) ( )( )( ){ } ( )( ) ( )( ){ }
1 1

3
13

0 0

1 2 / 1  1 48 1t c i j t c c t i jij
K L c d c w u dx c L d c w u dxξ ξ φ φ

   
′ ′′′ ′′= − + − +   

   
∫ ∫

( ) ( )( )( ){ } ( )( ) ( )( ){ }
1 1

3
14

0 0

1 2 / 1 1 48 1t c i j t c c b i jij
K L c d c w u dx c L d c w u dxξ ξ φ φ

   
′ ′′′ ′′= + + +   

   
∫ ∫

( ) ( ){ } ( )( )( ){ }
1 1

2
21

0 0

1 4 1 1c i j t b c i jij
K L c w w dx d c d c w w dxφ ξ

   
′ ′= − + + +   

   
∫ ∫  
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( ) ( )( ){ } ( )( ){ } ( ){ }
1 1 1

2 2 2
22

0 0 0

1 4 1 1 12b c i j b c i j c i jij
K d c w w dx d L w w dx L c w w dxξ φ φ

     
′ ′ ′′ ′′= + + +     

     
∫ ∫ ∫

( ) ( )( )( ){ } ( )( ) ( )( ){ }
1 1

3
23

0 0

 1 2 1 1 48 / 1b c i j b c c t i jij
K L c d c w u dx c L d c w u dxξ ξ φ φ

   
′ ′′′ ′′= − + − +   

   
∫ ∫

( ) ( )( )( ){ } ( )( ) ( )( ){ }
1 1

3
24

0 0

1 2 / 1 1 48 1b c i j b c c b i jij
K L c d c w u dx c L d c w u dxξ ξ φ φ

   
′ ′′′ ′′= + + +   

   
∫ ∫

( ) ( )( )( ){ }
1

31
0

1 2 1 t c i jij
K L c d c u w dxξ

 
′= − +  

 
∫  

( ) ( )( )( ){ }
1

32
0

1 2 1 b c i jij
K L c d c u w dxξ

 
′= − +  

 
∫  

( ) ( ) ( ){ } ( )( ) ( ){ }
1 1 1

2 2
33

0 0 0

/ 1 24t i j c i j c c t i jij
K u u dx L c u u dx c L u u dxφ ξ ξ φ φ

     
′ ′ ′′ ′′= − − −     

     
∫ ∫ ∫  

( ) ( ){ } ( )( ) ( ){ }
1 1

2 2
34

0 0

1 24c i j c c b i jij
K L c u u dx c L u u dxξ ξ φ φ

   
′′ ′′= +   

   
∫ ∫  

( ) ( )( )( ){ }
1

41
0

1 2 / 1 t c i jij
K L c d c u w dxξ

 
′= +  

 
∫  

( ) ( )( )( ){ }
1

42
0

1 2 1 b c i jij
K L c d c u w dxξ

 
′= +  

 
∫  

( ) ( ){ } ( )( ) ( ){ }
1 1

2 2
43

0 0

/ 1 24c i j c c t i jij
K L c u u dx c L u u dxξ ξ φ φ

   
′′ ′′= +   

   
∫ ∫  

( ) ( ) ( ){ } ( )( ) ( ){ }
1 1 1

2 2
44

0 0 0

/ 1 24b i j c i j c c b i jij
K u u dx L c u u dx c L u u dxφ ξ ξ φ φ

     
′ ′ ′′ ′′= − − −     

     
∫ ∫ ∫  

( )
1

11
0

i jF w w dx′ ′= ∫    

( )
1

22
0

i jF w w dx′ ′= ∫                                     
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In the above equations () () x′ = ∂ ∂ . 

Equation (6.10.11) is a set of coupled Mathieu-Hill equations with complex coefficients. For numerical 

calculations following shape functions (Ray and Kar [7]) are considered. 

For simply supported beam  

( ) ( )sinpw x p xπ= , ( ) ( )xqxwq πsin= , ( ) ( )xrxur πcos= , and ( ) ( )xsxus πcos= .                     (6.10.12)                                                                          

These shape functions satisfy all the boundary conditions. Here 1,2 ,p N=  , 

( ) ,q q N= − ( )2r r N= −  and ( )3s s N= − .                                                                            (6. 10.13a)                                                                         

 For clamped-free beam, the shape functions are as follows (Ray and Kar [7]) 

{ } { } { }
{ } { }

( 1)
2 2 1 2

2 ( 3)
2 1 2

( 1)

( ) ( 3)( 2) ( 2)( 1) 2( 3)( 1) ( 2) ( 1) ( 2)( 1)
( 2)( 1) ( 1) ( 1) / ( 3)( 2)( 1) ( 3) ,

( ) ( 1)

i
i

i

k k
k

w x i i i i x i i i i i i i i
i i i i i i i i i i x

u x k x kx

+

+

+

 = + + + + −µ + + + µ − + µ + + + −µ 
+ + + −µ + + −µ + + + + − + µ

= + −
(6.10.13b) 

Here  and i k  are same as the previous boundary conditions.      

If [ ]  L  is a normalized modal matrix of [ ] [ ],1 KM −  then the linear transformation 

                                             { } [ ]{ }f L U= ,                                                              (6.10.14) 

transforms equation (6.10.11) to, 

   
4

2

1
( ) 2 cos 0

N

q q q qp p
p

U U t b Uω ε ω∗ ∗

=
+ + =∑ ,                 =q 1….4N;                                         (6.10.15)  

where ( )2∗
qω  are the distinct eigen values of [ ] [ ]KM 1−  and ∗

qpb  are the elements of  

[ ] [ ] [ ] [ ][ ]1 1B L M H L− −= − . Also, <= 21Pε 1 for the present analysis.   The complex frequency and forcing 

parameters in terms of real and imaginary parts are given by       
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              , ,q q R q Ijω ω ω∗ = +  and , ,qp qp R qp Ib b jb∗ = + .                                                                           (6.10.16) 

The boundaries of the regions of instability for simple and combination resonances are obtained by the modified 

Hsu’s [9] method.  When the system is excited at a frequency nearly equal to twice the natural frequencies 

principal parametric resonance and when it is excited near a frequency, which is equal to the sum or differences 

of any two modal frequencies combination resonances of sum or difference types take place.  Following relations 

are used to obtain the boundaries of the regions of instability for simple and combination resonances [7]. 

(1) Simple resonance case  

 ,( / 2) Rαω ω− < 1
4 αχ ,                    α = 1, 2…..4N                                                                              (6.10.17) 

 where    αχ =
2 2 2

, , 2
,2

,

4 (
16R I

I
R

b bαα αα
α

α

ε
ω

ω

 +
− 

  
.                                                                                (6.10.18)   

(2) Combination resonance of sum type  

    , ,( )R Rα βω ω ω− + < αβχ                                                                                                                  (6.10.19)                                                                                                                                                                                                                                                                                                                                                                                       

 when damping is present, 

αβχ =

1/ 22
, , , , , ,

, ,1/ 2
, ,, ,

( ) 4 ( )
16 ,

4( )
I I R R I I

I I
R RI I

b b b bα β αβ βα αβ βα
α β

α βα β

ω ω ε
ω ω

ω ωω ω

 + +
 −
  

                                        (6.10.20)                       

and for the undamped case, 

  
1/ 2

, ,

, ,

 
.

 
R R

R R

b bαβ βα
αβ

α β
χ ε

ω ω

 
=  

  
       α β≠ ,   ,α β =  1, 2…..4N                                                   (6.10.21) 

 (3) Combination resonance of difference type 

, ,( )R Rβ α αβω ω ω− − < Λ                  α β>  ,   ,α β =  1, 2…..4N                                               (6.10.22) 

when damping is present, 
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1/ 22
, , , , , ,

, ,1/ 2
, ,, ,

( ) 4 ( )
16

4( )
I I I I R R

I I
R RI I

b b b bα β αβ βα αβ βα
αβ α β

α βα β

ω ω ε
ω ω

ω ωω ω

 + −
 Λ = −
  

,                                   (6.10.23) 

  and for the undamped case, 

1/ 2
, ,

, ,

 
.

 
R R

R R

b bαβ βα
αβ

α β
ε

ω ω

 
Λ = − 

  
                                                                                                             (6.10.24) 

Numerical Results and Discussions 

Here the parametric instability regions of a three-layered symmetric sandwich beam with simply 

supported, and clamped-free boundary conditions have been determined numerically using MATLAB. 

For visco-elastic materials, core loss factor ( cη ) is a measure energy dissipation capacity and the shear 

parameter ( )2 = / 2 ( / )( / )c t t tg G E c d L d  is a measure of stiffness of the material and is important in 

determining how much energy gets into the visco-elastic material. So these two parameters are varied 

in determining the instability regions for the parametrically excited beams. Also the effects of core and 

skin thickness on the instability regions are studied for all these boundary conditions. In the parametric 

instability regions shown in the following figures, the regions enclosed by the curves are unstable and 

the regions outside the curves are stable. Here the ordinate 1P  is the amplitude of non-dimensional 

dynamic load and the abscissaϖ  is the non-dimensional forcing frequency. Following physical 

parameters are taken for the numerical analysis. The span of the beam, L=300 cm, width, b=50 mm, the 

top and bottom face thickness 2== bt dd mm and the core thickness, c = 30 mm. The non-

dimensional static load amplitude 0 0.1P =  for all the figures except it is specifically mentioned. The 

top and bottom faces are of steel and the core is of soft plastic foam (Divinycell H60). The mechanical 

properties of steel and Divinycell H60 are given in Table (1).  

Table 1:Material properties of sandwich beam [10] 

 
       Material 

   Young’s         
modulus 

    E, Gpa                          

   Shear  
modulus 

  G, Gpa                                

   Poisson’s         
ratio 

          ν  

        Density 
       ρ, kg/m3 

 
         Steel 

 
          210 

 
       81 

 
           0.3 

 
         7900 
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  Divinycell H60 
 

 
         0.056 

 
    0.022 

 
          0.27 

 
           60 

 

Simply supported beam 

Using the shape functions given in equation (6.10. 12) the instability regions for the simply supported 

beam are determined and shown in Figures (6.10.3-6.11.6) for the first three modes. Figure 6.10.3 

shows the parametric instability regions obtained using both the higher-order theory and classical 

theory [10] for simple resonances. One may observe that for all the three modes, the region of 

instability starts at a lower frequency for higher order theory in comparison to the classical theory, 

which is due to the fact that, the core is considered to be more flexible in higher order theory than in 

case of classical theory. Also, it is clearly observed from these figures that the instability region is 

wider in case of higher order theory as compared to the classical theory. With change in 0P  (say 0P

=0.1), while instability region with higher order theory remains almost unchanged, it is observed that 

for lower value of 1P , the instability regions with classical theory shifts towards left. 

                                                                 

Figure 6.10.3: Comparison of instability regions using higher-order and classical theories, 0 0.5,  cP η= = 0.1; 

g=0.05;               , higher-order theory; ------, classical theory. 
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Figure 6.10.4: Effect of shear parameter on instability regions for =cη 0.0.            , g = 0.05; -----, g = 0.1;  +++ 

, g = 0.5.                                                  

 

Figure 6.10.5: Effect of shear parameter on instability regions for =cη 0.3.          , g = 0.05; -----, g = 0.1;  +++, 

g = 0.5.  

Figures (6.10.4-5) show the influence of core loss factor ( cη ) and the shear parameter (g) upon the instability 

region obtained by using higher order theory.  It is clearly observed that increase in core loss factor improves the 

stability by shifting the instability zones upwards and reducing the area of instability, which is similar to those, 

obtained by classical theory.  It is also observed that with increase in shear parameter stability of the system 

improves. From the above figures it is clearly understood that to get a more stable system one may go for higher 

value of core loss factor ( cη ) and shear parameter (g). 

Clamped-Free beam.   

Using the shape functions (equation (6.10.15)) for the clamped-free beam, the instability regions for the first 

three modes are determined and shown in Figures (6.10.6-8). 
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Figure 6.10.6: Comparison of instability regions using higher order and classical theories for 0 0.5,  cP η= = 0.1, 

g = 0.05.             , higher-order theory; ------, classical theory. 

Using higher order theory and classical theory the parametric instability regions for simple resonances 

are shown in Figure 6.10.6. Here also, higher order theory gives a conservative design for lower modes.   
 

Figures (6.10.7-8) show the influence of core loss factor ( cη ) and the shear parameter (g) upon the instability 

region and it is observed that with increase in core loss factor and shear parameter stability of the system 

improves. 

                                   

Figure 6-10.7: Effect of shear parameter on instability regions for =cη 0.          , g = 0.05;  

-----, g = 0.1; +++, g = 0.5.                            
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Figure 6.10.8: Effect of shear parameter on instability regions for =cη 0.3.       , g = 0.05; -----, g = 0.1; +++, g = 

0.5. 

For all the boundary conditions the system is always found to be stable at combination resonances of sum and 

difference type. In these cases, for simple resonances it is observed that with increase in shear parameter the 

instability plot moves upward implying that there exists critical forcing amplitude below which the system is 

always stable. For example, when a cantilevered sandwich beam with cη =0.3 and g= 0.1 is excited near twice the 

first natural frequency ( 8.2ω  ), the system will not vibrate if the forcing amplitude is less than 0.485 (point Pc 

on figure 6.10.8). But for the same cη  and g = 0.05, with same amplitude of forcing, the system will vibrate at a 

slightly less frequency (say 7.8ω  ). Again with increase in shear parameter, the instability region shifts 

towards right and hence, for same forcing amplitude, the system becomes unstable at a higher frequency. As the 

shear parameter ( )2 = / 2 ( / )( / )c t t tg G E c d L d , is a function of dimension and material properties of both skin 

and core material, using the above stability charts, a designer will be able to construct sandwich beams having 

very less or vibration free structures.  
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Module 6 Lecture 11 

Parametrically excited continuous system 

Case study: Nonlinear Vibration of a Magneto-Elastic Cantilever Beam With Tip Mass  

In this work the effect of the application of alternating magnetic field on the large transverse vibration 

of a cantilever beam with tip mass is investigated.  The governing equation of motion is derived using 

the D’ Alembert’s principle which is reduced to its non-dimensional temporal form by using the 

generalize Galerkin’s method. The temporal equation of motion of the system contains the 
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nonlinearities of geometric and inertial type along with parametric excitation and non-linear damping 

term.  Method of multiple scales is used to determine the instability region and frequency response 

curves of the system. The influences of the damping, tip mass, amplitude of magnetic field strength, 

permeability and conductivity of the beam material on the frequency response curves are investigated. 

These perturbation results are found to be in good agreement with those obtained by numerically 

solving the temporal equation of motion and experimental results.  

 

 

 

 

 

 

 

 

Fig. 6.11.1: Schematic diagram of a flexible single-link cantilever beam with tip mass. 

Figure 6.11.1 shows a flexible cantilever beam with a tip mass M. The beam is subjected to a harmonic 

transverse magnetic field 0 cosmB B t= Ω  where mB and Ω  are respectively, the amplitude and 

frequency of the magnetic field strength. In this work, the flexible cantilever beam with tip mass is 

modeled as an Euler-Bernoulli beam with a tip mass. For the purpose of completeness a brief derivation 
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of the equation of motion using d’ Alembert’s principle is given below. The bending moment ( )M s  of 

the beam at a distance s from the fixed end (Fig. 1) can be expressed as [7,11]  

( ) 21
2ss s ssM s E I v v v ≈ + 

 
.                                                                                          (6.11.1) 

Here, v is the transverse displacement of the beam. ( )s  is the first derivative with respect to s. One 

may write the inextensibility condition of the beam in terms of longitudinal displacement ( )tu ,ξ and 

transverse displacement ( )tv , ξ  as [7] 

( )22 1 1s sv u+ + = .      or,  ( ) ( )
1

2 2, 1
0

u t v dη

ξ
ξ = ξ − − η∫ .                        (6.11.2) 

Here ,ξ η  are the integration variables. Considering the inertia forces , ,  and Au Av M u M vρ ρ    , and 

using the d’ Alembert’s principle, one may write Eq. (6.11.1) as follows  

( ) ( ) ( ) 0LM s M s M sξ− − = .                                                                                       (6.11.3) 

Here ( )M sξ  is the summation of the moment due to inertia force of beam and the moment due to 

external magnetic force a distance ξ  from the roller support and the couple due to magnetic field. 

( )LM s  is the moment due to inertia force for the pay load at the tip of the manipulator. The 

expressions for these moments are given below. 

  
( ) ( )sin cos

              sin  cos  ,                                                                

d

L L
M s Au d d Av C d d

s s s s
L

p d d c d
s s s

v
ξ ξ

= − ρ θ η ξ − ρ + θ η ξ∫ ∫ ∫ ∫ξ

ξ ξ
− ξ θ η − θ η∫ ∫ ∫

  

  (6.11.4) 
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  Here, p  and c  are the body force and body couple of the beam due to the magnetic field 0B which are 

expressed as [3, 5, 6, 9] 

2 2 2 2
0 0

0

1 11 ,   and 
2 20

s s s s s s
r

mp h dB v v v v v v d c h dB vs
   = − − − =∫   
   

 

ξ χ
σ ξ

µ µ
.                     (6.11.5)     

  Also, ( ) sin cos
L L

M s M u d M v dL s s
= − θ ξ − θ ξ∫ ∫  .                                                             (6.11.6) 

By differentiating Eq. (6.11.3) twice with respect to s and applying the Leibnitz’s rules one may obtain 

the following governing differential equation of motion. 

( ) ( )2 3 2
ξ

1 3
2

s

ssss s ssss s ss sss ss s s ss
0

v v v dξ ξEI v v v v v v v ρAv v v + ξ 
 

+ + + ∫+ + 

( )( ) ( ) ( )2 2
LL

d s ss ss ξ ξ ξ ξ ξ ξ
s s 0 0

dρ Av C v M v v v d dη M dv ρA v v v v v v
ξ ξ

η+ + − ξ + ξ∫
 

+ + 
 
∫ ∫ ∫      

( ) ( ) ( ) ( )( )2 2 21 1 11 1 1 0
2 22

L

ss s s s ss ss d
s

dcv ρAv C v pd pv v v v v c
ds

v −− + − ξ − − + + =∫
   

     
  .             (6.11.7) 

To obtain the temporal equation of motion, one may discretize the governing equation of motion 

(6.11.7) by using following assumed mode expression. 

( ) ( ) ( ),v s t r s q t= ψ .                                                    (6.11.8) 

Here, r is the scaling factor; q(t) is the time modulation and ( )sψ  is the eigen-function of the cantilever 

beam with tip mass, which is given by [7] 

( ) ( )sin sinh( ) cos cosh sin sinh
cos cosh

L Ls s s s s
L L

 β + β
ψ = − β − β + β − β β + β 

.                            (6.11.9) 
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One may determine Lβ from the following equation. 

( )1 cos cosh cos sinh sin cosh 0L L m L L L L L+ + − =β β β β β β β .                                (6.11.10) 

Following non-dimensional parameters are used in this analysis. 

L
sx = , e t=τ ω ,

e

Ω
=ω
ω

,  rr
L

= , Mm
AL

=
ρ

,  4AL
EI
ρ

χ = .                                            (6.11.11)      

Substituting Eq. (6.11.9) into Eq. (6.11.6) and using the generalized Galerkin’s method, one may obtain 

the resulting non-dimensional temporal equation of motion, which can be expressed as   

( ) ( )
( )( )

3 2 2
1 2 3 1

2
1

2 cos 2

                                                   - 1 cos 2 0.                             

q q q q q q q q f q

k qq

+ εζ + + ε α + α + α − ε ωτ

ε + ωτ =

   



.  (6.11.12)                             

The expressions for the coefficients ( 1 2 3 1 1i.e. , , , , ,f kζ α α α ) in this equation are given below. 

The natural frequency of the lateral vibration of an elastic beam 

 
2

151 1
4 2

14 0 14

2
2

mm

r

B
e

h d hE I h
mL h mL h

 χ
ω = −  µ µ  

,     

     ( )
22

151 1
4

14 0 1 1

2
2

1 1mm
m

r

B
L

h d L hE I h B
mL h E I h

  χ
= − = ω −   µ µ   

.                                                (A1) 

Here, 1 1
4

14

2
L

E I h
mL h

ω = , 
2

15

0 1 1

2
and .  

2
m

r

m
m

B h d L hB
E I h

χ  
=  µ µ  

                                                             

Damping ratio due to the viscous damping to the system, 
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2
d L

e e

C
m

 ω
ζ = = µ = µδ  ε ω ω 

,                                                                                     (A2) 

Coefficient of the nonlinear geometric term 3q  = 

32 4
1

14 14 14

2

4 2 3
2

e

hh hEI r
h h hm L

 
α = + + 

εω  
,                                                                           (A3) 

Coefficient of the nonlinear inertia term 2q q=  

5 6 7 8 9 10
2

14 14 14 14 14 14

2 h h h h h hr m m
h h h h h h

 
α = + + − − − ε  

,                                                          (A4) 

Coefficient of the nonlinear inertia term 2q q = 

1311 12
3

14 14 14

2 hh hr m
h h h

 
α = − − ε  

,                                                                                      (A5) 

Coefficient of the parametric excitation termcos(2 ) qωτ = 

0
1 2

2

2 2
r

e c

B ff
B

 = =  δω  
, where 

2
2

2
m

r
BB =  and

2
0 1 1

14

2 r

m
c

E IL hB
h d h

 µ µ
=  χ  

.                             (A6) 

Coefficient of the nonlinear damping terms ( ) 21 cos(2 ) q q+ ωτ  = 

2
2 16 17

1
14 142

m

e

B h d h hk r
m h h

 σ
= − − + ω  

.                                                                                   (A7) 

 Here,  
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( ) ( )
41

1
0

d x
h x dx

dx
ψ

= ψ∫ ,  
( ) ( )

321

2
0

d x
h x dx

dx
 ψ

= ψ 
 
∫ , 

( ) ( ) ( )
41

3
0

d x d x
h x dx

dx dx
ψ ψ

= ψ∫  

( ) ( ) ( ) ( )
2 31

4 2 3
0

d x d x d x
h x dx

dx dx dx
ψ ψ ψ

= ψ∫ , 
( ) ( ) 2

1

5
0 0

( )
x dd x

h d x dx
dx d

 ψ ξψ
 = ξψ
 ξ 

∫ ∫ , 

( ) ( ) ( ) ( )
21 1

6 2
0 x

d x d x
h d x dx

dx dx
ψ ψ

= ψ ξ ξψ∫ ∫ ,  
( ) ( ) ( )

21
2

7 2
0

( )
d x d x

h x dx
dx dx
ψ ψ

= ψ∫ , 

( ) ( ) ( )
221 1

8 2
0 0x

d x d x
h d d x dx

dx d

ηψ ψ 
= ξ ηψ ξ 
∫ ∫ ∫ ,  

( ) ( ) ( )
2

21

9 2
0 0

x dd x
h d x dx

dx d

 ψ ξψ
 = ξψ
 ξ 

∫ ∫ , 

( ) ( )( )
21

2
10

0

d x
h x dx

dx
ψ 

= ψ 
 
∫ ,  

( ) ( ) ( )
2

1

11
0 0

x dd x
h d x dx

dx d

 ψ ξψ
 = ξψ
 ξ 

∫ ∫ , 

( ) ( ) ( )
2

21 1

12 2
0 0x

dd x
h d d x dx

dx d

η  ψ ξψ
 = ξ ηψ
 ξ 

∫ ∫ ∫ ,  
( ) ( ) ( )

2
21

13 2
0 0

x dd x
h d x dx

dx d

 ψ ξψ
 = ξψ
 ξ 

∫ ∫ ,  

 ( )( )
1

2
14

0

h x dx= ψ∫ ,  
( ) ( )

21

15 2
0

d x
h x dx

dx
 ψ

= ψ 
 
∫ , 

1

16
0 0

( ) ( ) ( )
xd x dh d x dx

dx d
 ψ ψ ξ

= ξ ψ ξ 
∫ ∫ ,  

and 
1 12

17 2
0 0

( ) ( ) ( )
x

d x dh d d x dx
dx d

ξ ψ ψ ξ
= η ξ ψ  ξ 
∫ ∫ ∫ . 

Here one may observe that the non-dimensional temporal Eq. (6.11.12) has parametric term

( )1 cos 2f qωτ  and nonlinear damping term ( )( ) 2
1 1 cos 2k qq+ ωτ  , along with cubic geometric ( 1

3qα ) 

and inertial ( 2 3
2 2q q q qα +α  ) nonlinear terms. Hence, it may be noted that the temporal equation of 
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motion Eq. (6.11.12) contains many nonlinear terms and it is very difficult to find the exact solution. 

Hence one may go for the approximate solution by using the perturbation method. Here method of 

multiple scales is used. 

In method of multiples scales, the displacement q can be represented in terms of different time scales 

0 1( , )T T  and a book keeping parameter ε as follows. 

                      ( ) ( ) ( )2
0 0 1 1 0 1( ; ) , ,q q T T q T T Oτ ε = + ε + ε .                                                 (6.11.13) 

Here, 0T τ= ,  and 1T ετ= . The transformation of first and second time derivatives are given by  

                                         )( 2
10 εε

τ
ODD

d
d ++= ,                                                        (6.11.14) 

                                       )(2 2
10

2
02

2
εε

τ
ODDD

d
d ++= .                                                (6.11.15) 

where, 0
0

D
T
∂

=
∂

, and 1
1

D
T
∂

=
∂

. Substituting Eqs. (6.11.13- 6.11.15) into Eq. (6.11.12) and equating the 

coefficient of like powers ofε , yields the following equations.  

Order  :0ε 2
0 0 0 0D q q+ = ,                                                                    (6.11.16 ) 

Order :1ε 2
0 1 1 0 1 0 0 02 2D q q D D q D q+ = − − ζ ( ) ( )23 2 2

1 0 2 0 0 0 3 0 0 0q D q q D q q−α −α −α                     

                                            ( ) ( )( )( ) 2
1 0 0 1 0 0 0 0cos 2 1 cos 2f T q k T D q q+ ω + + ω .              (6.11.17)  

General solutions of Eq. (6.11.16) can be written as 
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                                     0 1 2 0 2 0( , ) exp( ) ( , ) exp( )q A T T iT A T T iT= + − .                            (6.11.18) 

Substituting Eq. (6.11.18) into Eq. (6.11.17) leads to 

( )2 2
0 1 1 0 0 1 2 3 1 02 exp( ) 2 exp( ) 3 3 exp( )D q q i A iT i A iT ik A A iT′+ = − − ζ − α − α +α −   

( ) ( ) ( )3 3 1
1 2 3 1 0+ exp 3 + exp 3 + exp (2 1) exp (2 1)

20 0
fA iT ik A iT A i A i T −α +α +α ω− + ω−    

                 3 2 21 1 1
0 0 0+ exp (2 3) exp (2 1) exp (2 1)

2 2 2
ik ik ikA i T A A i T A A i Tω+ + ω+ − ω−  

                 31
0+ exp (3 2 )

2
ik A i T cc− ω +  .                                                                        (6.11.19)   

Here, cc is the complex conjugate of the preceding terms One may observe that any solution of Eq. 

(6.11.19) will contain secular or small divisor terms when non-dimensional frequency of magnetic field 

strength (ω ) is nearly equal to 1 which  may be called as simple resonance case. In this case, one may 

use detuning parameter σ to express the nearness of ω to 1, as 

                              ( )1O  and    ,1 =+= σσεω .                                                         (6.11.20) 

Substituting Eq. (6.11.20) into Eq. (6.11.19), one may obtain the following secular or small divisor 

terms. 

         ( ) 2
0 0 1 2 3 1 02 exp( ) 2 exp( ) 3 3 exp( )i A iT i A iT ik A A iT′− − ζ − α − α +α −  

               ( ) ( ) ( )3 21 1 1
1 1 1exp 2 exp 2 exp 2 0.

2 2 2
f k kA T i A T i A A T+ σ + − σ − σ =                    (21)     
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Putting  A equal to ( ) ( )1
1

1 
2

i Ta T e β   and 12 2Tγ = σ − β  into Eq. (6.11.21) and separating the real and 

imaginary terms, one may a set of reduced equations as given below. 

                        31 1 sinγ
8 4
k fa a a a= −ζ + + ,                                                                 (6.11.22) 

         3 33 1
1 2 1

1 3 12 sin cosγ
4 3 4 2

fa a a a k aαω−   γ = − α −α + + γ +   ε   
 .                    (6.11.23) 

One may observe from the Eqs. (6.11.21)-( 6.11.22) that the system possesses both trivial and 

nontrivial responses. Hence one may determine both responses by solving Eqs. (6.11.22, 6.11.23) 

simultaneously. To find the stability of the steady state responses, one may perturb the above Eqs. 

(6.11.22, 6.11.23), by substituting 1oa a a= +  and 0 1γ = γ + γ  where 00 γ,a  are the singular points, and 

then investigate the eigenvalues of the Jacobian matrix (J) which is given by 

   

21 1 1
0 0 0 0

3
1 2 0 0 1 0 2 1

0 1 0 0

3 sin cos
8 4 4

3 1+ sin 1       cos sin2 3 2
4 2

    

k f fa a

J a a k fa k

 −ζ + + γ γ 
 

α=   − α −α + γ  γ − γ  
  

 .         (6.11.24) 

It may be noted that the system will be stable if and only if all the real parts of the eigen-values are 

negative. 

For trivial state instability region, one may use the following expression for the transition curve for 

simple resonance case which has been obtained by finding the eigen-values of Jacobian matrix (J) 

given in Eq.( 6.11.24). 
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 ( )
2

2 20 4 .
2 4L

f O
 Ω ε

Ω = = δ± − µ + ε ω δ  
                                                                        (6.11.25) 

Here, the expression for 0,  ,  and  fδ µ are given in appendix [7]. 

It may be noted that this simple expression has been obtained by using first order method of multiple 

scales is different from the expression given in the work of Pratiher and Dwivedy [7], which was 

obtained by using the second order method of multiple scales.   

Now the first order non-trivial steady state response of the cantilever beam with a tip mass can be given 

by 

                                     ( )1cos
2

q a  = ωτ− γ 
 

.                                                          (6.11.26) 

Here for numerical simulations, a steel beam similar to that considered in the work of Wu [5, 6] with 

length L = 0.5 m, width d = 0.005 m, depth h = 0.001 m, Young’s Modulus E = 1110941 ×.  N/m2, mass 

of the beam per unit length m = 0.03965 kg, and the permeability of the vacuum, 0µ = 61026.1 −×  Hm-1 

have been considered. Using these parameters, the reduced Eqs. (6.11.22, 6.10.23), have been solved 

numerically to obtain the   instability regions and the frequency response curves. In the instability plot, 

the regions bounded by the curves are unstable and regions outside the curves are stable. In the 

frequency response curves dotted and solid lines represent, respectively the unstable and stable 

response of the system. The effect of the amplitude of magnetic field strength ( mB ), damping ( dC ), tip 

mass (M), material conductivity (σ), and relative permeability of the material ( rµ ) on the frequency 

response have been investigated. 
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 Fig. 6.11.2: The region of instability of a cantilever beam with tip mass subjected to  magnetic field,                  

  -.-.-.-.-. Moon and Pao’s  theoretical result, - - - - - Moon and Pao’s experimental result, and ---- the 

present result.   

For simple resonance case, the beam is subjected to a transverse magnetic field with a frequency nearly 

equal to the natural frequency of the system. Here, the instability regions are plotted in ( )2/ LΩ ω  Vs 

( )2/r cB B  plane similar to the work of Moon and Pao [2], Wu [5, 6], and Pratiher and Dwivedy [7]. The 

experimental and theoretical results of Moon and Pao [2] are also being plotted in Fig.6.11.2 for 

comparison with the present result. It is found from Fig.6.11.2 that the result obtained in the present 

work is in good agreement with the experimental results Moon and Pao [2]. The accuracy of the 

instability region obtained by using the first order method of multiple scales can be verified by 

numerically solving the temporal equation of motion (6.11.12) and plotting the time response (Fig. 

6.11.3) for two different points A and B as marked in Fig.6.11.2. Figure 6.11.3(i) clearly shows that the 

response is stable and Fig.6.11. 3(ii) shows that the response is unstable which are in good agreement 
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with the result shown in Fig.6.11. 2. Hence, one may use the first order closed form solution (Eq. 

6.11.25) for finding the instability region instead of going for a second order solution as reported in the 

work of Pratiher and Dwivedy [7]. But when more accurate result is required, one may use the 

expression given in the work of Pratiher and Dwivedy [7]. 

                        

 

Fig.6.113. (a) Time response for the point A and (b) time response for point B marked in Fig.6.11.2. 

Figure 6.11.4 shows the frequency response curve for four different values of amplitude of magnetic 

field strength mB . From Fig.6.11.4, it may be noted that with increase in mB , though the maximum 

response amplitude remain unchanged, the trivial state becomes unstable which is similar to that shown 

in Fig.6.11.2. The trivial state becomes unstable by the sub-critical pitchfork bifurcation at 1R , which 

ends with a super-critical pitchfork bifurcation at 2R . Here, one may observe that the system has a 

tendency to jump up from the unstable trivial state at 1R  to the stable non-trivial state at /
1R .  

Figures 6.11.5(a) and (b) show the transient and steady state response for point C marked in Fig. 

6.11.4(c). The solid line and dotted line respectively represent the response of the system with and 

without magnetic field. In the presence of magnetic field, it clearly shows that the steady state response 

q q 

Time (τ) Time (τ) 

(a) (b) 
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has zero response amplitude. Also it may be noted that the free vibration response of the beam shown 

as dotted line in Fig. 6.11.5, is reduced by applying the magnetic field.  

 

          

          

Fig.6.11.4. Effect of the magnetic field strength ( mB ) on the frequency response curves for 0.02 kgM = ,

20.01 N-s/mdC = , 3000rµ = , 710σ = Vm-1 (a) 0.20mB =  Am-1 (b) 0.25mB =  Am-1  (c) 0.30mB =  Am-1   

(d) 0.35mB =  Am-1. 

(a) (b) 

a a 

  

(c) 

(d) 

a a 

  

  
A BA 

 

 
C R2 R1 
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Fig.6. 11. 5. (a) Transient response and (b) steady state time response for the point C with and without magnetic 

field. 

The effect of damping dC on the response curves is shown in Fig.6.11.6 and it has been observed that 

with increase in dC , while the non-trivial response amplitude remains unchanged the trivial state 

unstable region decreases, the sub-critical pitchfork bifurcation point  occurs at a higher value of ω  and 

the corresponding jump length decreases.  

            

Fig.6.11.6: Influence of damping on frequency response curve for 0.02 kgM = , 3000rµ = , 710σ = Vm-1, 

0.30mB =  Am-1 (a) 20.02 N-s/mdC = ,(b) 20.03 N-s/mdC = . 

Similarly one can study the influence of effect of relative permeability ( rµ ), material conductivity (σ) 

and mass ratio on the frequency response curves of the system. 

(a) (b) 

q q 

Time (τ) Time (τ) 

(a) (b) 

a a 
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Module 6 Lect 12 

Parametrically excited System with internal Resonance 

In this lecture a case study is taken for a parametrically excited system with internal resonance.  The 
system considered is a uniform cantilever beam of length 𝐿 carriying a mass 𝑚 at an arbitrary position 
𝑑 from the fixed end and subjected to base motion ( ) tZtz Ω= cos0 as shown in Fig. 6.12.1. 

 

Fig. 6. 12. 1. Base Excited Cantilever beam with attached mass at arbitrary position 
 

The equation of motion of the beam is given by Kar and Dwivedy[1999] as 
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( ){ }
( ){ } ( )( ) ( )

2 3 2

0

1 13 1
2 2

0

ssss s ssss s ss sss ss s tt t

L

s sss tt t s stt s
s

EI m s d c

m d c d j s d N

ν ν ν ν ν ν ν ν ρ δ ν ν

υ υ ρ δ ξ υ υ ξ δ υ υ

     + + + + − + − +        

  + + − + − − − =   ∫
                      (6.12.1) 

Subject to the boundary conditions 

( ) ( ) ( ) ( ) 0,,0,,0,0,0,0 ==== tLtLtt ssssss υυυυ               (6.12.2) 

Where 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

0

2 2
0

1 1
2 2

11
2

s L

s s tttt tt
L s s

s

tt stt s s st
L

N d d m d d d m z g

sd d L z g J s d
L

ξ ξ

ρ υ η ξ δ ξ υ η ξ

δ ξ ξ ρ δ υ υ υ υ

      = + − × + −   
      

   × − + − − − − +  
   

∫ ∫ ∫ ∫

∫
                          (6.12.3) 

      

Here, ( ) ( ) ( ) ( )
st st ∂

∂
=

∂
∂

= ,  

Here, E, I and 𝜌 are, respectively, the Young’s modulus, the second moment of area of the cross-section 
of the beam and mass per unit length of the beam; 𝑗0 is the moment of inertia of the concentrated mass 
𝑚 about its centroidal axis perpendicular to the X-Y plane; υ  is the lateral displacement of the beam; 
𝑔, 𝑐 and 𝑧 are, respectively, the acceleration due to gravity, the coefficient of viscous damping and the 
displacement of the base; and δ is the Dirac delta function. Assuming a solution of Eq. (6.12.1) in the 
form 

( ) ( ) ( ), n n
n

s t r s u tυ ϕ
∞

=

=∑
1

                  (6.12.4) 

Where r  is a scaling factor,  n sφ  is the shape function of the n th  mode, and 𝑢𝑛 is the time 

modulation of the nth mode. Applying generalized Galerkin’s method and using the following non-
dimensional parameters, 

,,,,
1

1 θ
θ

ωθτβ n
nt

L
d

L
sx ====  

1
2

00 ,,,,
θ

φ
ρρ

µλ Ω
=====

Lr
J

J
Z
Z

T
L

m
L
r

r

 (6.12.5) 

   

Eq. (6.12.1) reduces to 

{ }2

1 1 1 1

0,2 cos
n n n
klm k l m klm k l m klm k l m

n n n n n nm m
m k l m

u u u u u u u u uu u u f u α β γεξ ω ε φτ ε
∞ ∞ ∞ ∞

= = = =

+ + =+ + − +∑ ∑∑∑    

      (6.12.6) 
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Here, 1,2,...n = , ( ) ( ) τdd /. = . For details of the coefficients one may refer (Kar and Dwivedy 1999). 
The small dimensionless parameter ε is the book-keeping parameter to indicate the smallness of 
damping, non-linearities and excitation. So, we have 𝑛 number of coupled equations with cubic 
geometric and inertial non-linearities, where 𝑛 represents the number of modes participating in the 
resulting oscillation. Due to the absence of any internal and external excitation for 3≥n , the amplitude 
of these higher modes die out in the presence of damping  and hence two mode discretization in the 
Galerkin’s method is sufficient in this particular system. 

The approximate solution of Eq. (6.12.6) can be obtained using the method of multiple scales. Let 

( ) ( ) ( ) ...,,; 101100 ++= TTuTTuu nnn εετ                (6.12.7a) 

∞=== ,...,2,1,, 10 nTT εττ                 (6.12.7b) 

Substituting Eqs. (6.12.7a) and (6.12.7b) into Eq. (6.12.6) and equating the coefficients of 0ε  and  ε to 
zero, yields 

,00
2

0
2
0 =+ nnn uuD ω                     (6.12.8) 

∑
∞

=

−+−=+
1,

0010001
2

1
2
0 cos22[

mn
mnmnnnnnn ufuDDuDuuD φτξω  

  00
2
00000000000 =+++∑

klm
mlk

n
klmmlk

n
klmmlk

n
klm uDuuuDuDuuuu γβα             (6.12.9) 

Where 00 / TD ∂∂=  and   11 / TD ∂∂= . The solution of Eq. (9) is given by 

( ) ( ) ccTiTAu nnn += 010 exp ω                                               (6.12.10) 

Where cc indicates the complex conjugate of the preceding terms and nA is determined in the following 
section. Considering the  Principal parametric resonance ( )12ωφ ≈ , to express the nearness of φ  to 

12ω the detuning parameter 1σ is introduced. Also, to account for the internal resonance, the detuning 

2σ is used. Hence, we have 

,ϕ ω εσ ω ω εσ= + = +1 1 2 1 22 3                                          (6.12.11) 

Substituting  Eqs. (6.12.10) and (6.12.11) into Eq. (6.12.9) and eliminating the secular terms, we get for 
𝑛 = 1 

( ) ( ) ( ){ }[ ]01221201111
'
1111 expexp

2
12 TiAfTiAfAAi σσεεσξω −+−+  
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( )∑
∞

=

=++
1

02
2

121211 0exp
j

jjje TiAAQAAA εσα                                          (6.12.12) 

For n=2, 

( ) ( ){ }021121
'
2222 exp

2
12 TiAfAAi σσεξω −−+  

( )∑
∞

=

=−++
1

02
3

122112 0exp
j

jjje TiAAQAAA εσα                                                (6.12.13) 

For 3≥n , 

( ) ∑
∞

=

=++
1

' 02
j

njjenjnnnn AAAAAi αξω                           (6.12.14) 

Where a prime denotes the derivative with respect to 𝑇1. Since the higher modes ( )3≥n are neither 
directly excited by external excitation nor indirectly excited by internal resonance, from Eq. (6.12.14) it 
can be shown that the response amplitude of these modes die out due to the presence of damping. 

Letting ( ) ( ){ }11 exp
2
1 TiTaA nn β=  (where na  and nβ  are real) in Eqs.  (6.12.12) and (6.12.13) and then 

separating into real and imaginary parts, one obtains 

( ) ( ){ }212121111
'
1111 sin2sin

2
12 γγγξω −+−+ afafaa ( ) 03sin25.0 21

2
1212 =−+ γγaaQ    (6.12.15a)

( ){ }

( )

'
1 1 1 1 11 1 1 12 2 1 2

2
2 2

1 1 12 2 1 1 2
1

1 12 cos 2 cos
2 2

1 1 cos 3 0
4 4e j j

j

a f a f a

a a Q a a

ω γ σ γ γ γ

α γ γ
=

 − − + − + 
 

+ − =∑
                                                (6.12.15b) 

( ) ( ){ } ( )' 3
2 2 2 2 21 1 2 1 21 1 2 1

1 12 sin sin 3 0
2 4

a a f a Q aω ξ γ γ γ γ+ − − + − =                                    (6.12.15c) 

( ) ( ) ( )
2

' 2 3
2 2 2 2 1 21 1 2 1 2 2 21 1 2 1

1

1 1 12 1.5 cos cos 3 0
2 4 4e j j

j
a f a a a Q aω γ σ σ γ γ α γ γ

=

+ − − − + + − =∑ (6.12.15d) 

Where 

( )1 1 1 1 2 2 1 2 1
1 ,  and  1.5
2

T Tγ β σ γ β σ σ= − + = − + −  



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 95 of 104 
 
 

The above equations are known as the reduced equations. For steady state, 0'
2

'
2

'
1

'
1 ==== γγ aa . So, 

now we have a set of non-linear algebraic equations which is solved numerically to obtain the fixed 
point response of the system. The first-order solution of the system can be given by 

( ){ }11111 2/cos γτεσω −+= au               (6.12.16a) 

( ){ }[ ]221222 5.1cos γτσσεω −−+= au              (6.12.16b) 

Stability equations of steady-state response 

By directly perturbing the reduced equations, one can study the stability of the non-trivial steady sate 
solution. But, as the reduced Eqs. (6.12.15a-d) have  the coupled terms '

11γa  and '
22γa , the perturbed 

equations will not contain the perturbations '
1γ∆  or '

2γ∆ for trivial solutions and hence the stability of 
the trivial state cannot be studied by directly perturbing these equations. To circumvent this difficulty, 
normalization method is adopted by introducing the transformation 

2,1,sin,cos === iaqap iiiiii γγ                (6.12.17) 

Into equations (6.12.15) to obtain the following normalized reduced equations or the Cartesian form of 
modulation equations: 

( ) 2121111111
'
11 2

1
2
12 qfqfpp +






 −++ σωξω  

( ){ } ( )∑
=

=+−+−+
2

1

22
11121

2
1

2
1212 0

4
12

4
1

j
jjje qpqqpppqqQ α            (6.12.18a) 

( ) 2121111111
'
11 2

1
2
12 pfpfqq +






 −++ σωξω  

( ){ } ( )∑
=

=+−+−+
2

1

22
11211

2
1

2
1212 0

4
12

4
1

j
jjje qppqqpqppQ α            (6.12.18b) 

( ) ( ) 221212122
'
22 23

2
12 qqfpp σσωξω −+++  

( ) ( )∑
=

=−−−−
2

1

22
22

2
1

2
1121 0

4
13

4
1

j
jjje qpqqpqQ α             (6.12.18c) 

( ) ( ) 221212122
'
22 23

2
12 ppfqq σσωξω −−−+  
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( ) ( )∑
=

=++−+
2

1

22
22

2
1

2
1121 0

4
13

4
1

j
jjje qppqppQ α             (6.12.18d) 

Now perturbing the above equations, one obtains  

{ }Tqpqp '
2

,'
2

'
1

'
1 ,,, ∆∆∆∆ [ ]{ }T

c qpqpJ 2211 ,,, ∆∆∆∆=               (6.12.19) 

Where T is the transpose and [𝑗𝑐] is the Jacobian matrix whose eigenvalues will determine the stability 
and bifurcation of the system. 

The stability boundary for the linear system (i.e. the trivial state) can be obtained from the eigen values 
of the matrix [𝐽𝑐] by letting 02121 ==== qqpp . 

The first order solution of the system in terms of ( )2,1, =iqp ii  can be given by 

,sincos 11111 τωτω qpu +=                (6.12.20a) 

τωτω 12122 3sin3cos qpu += ,              (6.12.20b) 

where 111 2
1 εσωω +=                                                                                                         (6.12.21)   

If the external frequency  m n Ω=ω ±ω  where nω is the nth natural frequency of the system one will 

obtain combination resonance of sum ( )m nω ωΩ = +  or difference ( )-m nω ωΩ =  type for which one 

may refer to the work of Dwivedy and Kar (1999). Also an exhaustive list of literature is given for the 

interested reader.    

Numerical Results and Discussion 

Following Zavodney and Nayfeh [7] and keeping internal resonance in view, a metallic beam is 
considered with the following properties: 

L=125.4 mm,       I=0.04851 𝑚𝑚4, E=0.20936× 𝑁
𝑚𝑚2� ,𝑍𝑟 = 1 𝑚𝑚, 𝑐 = 0.1 𝑁. 𝑠/𝑚𝑚2, 

 𝜌 = 0.03332 𝑔 𝑚𝑚�  ,          𝜇 = 3.68979, J=0.959,        𝛽 = 0.25 

The roots of the characteristics equation are found numerically to be 𝑘1=1.80097, 𝑘2=3.2836 and the 
corresponding non-dimensional natural frequencies are 𝜔1=1 and 𝜔2=3.33179. The book keeping 
parameter 𝜀 and scaling factor λ are taken as 0.001 and 0.1, respectively. The coefficients of damping 
( )nξ , excitation ( )mmf  and non-linear terms ( )n

klm
n
klm

n
klm γβα ,,  are found to be of the same order. The 
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values of other required parameters expressed in the appendix (Kar and Dwivedy 1999) are calculated 
to be 

𝛼𝑒11=2.54149,   𝛼𝑒12=-12.2027,𝛼𝑒21=-6.63699,   𝛼𝑒22=-195.55,𝑄12=14.62282, 𝑄21=7.84674, 

∗
11f =0.0655762,  ∗

12f =0.0122118, ∗
21f =0.04249, ∗

22f =0.1699298, ∗
1ξ =0.0118963,  ∗

2ξ =0.0045865 

Figure 6.12.2 shows the trivial state instability regions for the system with principal parametric 

resonance   for different damping parameters. While the region bounded by the curves is unstable the 

regions outside the curves are stable. Clearly due to the presence of internal resonance, in addition to 

the main unstable region near φ  =2,  additional alternate zones of stable and unstable trivial  branches  

exists. With increase in damping and forcing amplitude these additional zones get merged with the 

main unstable region. Here it may be noted that while with increase in damping the instability region 

decreases, with increase in forcing amplitude, the instability region increases.  

 

Fig. 6.12.2: A typical principal instability region 
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Fig. 6.12.3: Frequency response curve Γ 8, 0.001ν   

 

A typical frequency response curve is shown in Figure 6.12.3 for both the first mode (lines without 

bullet point) and the second mode (lines with bullet point). The stable branches are shown by solid lines 

and the unstable branches are shown by dotted line. One may observe multi stable regions for a wide 

range of frequency of the system. The nontrivial response amplitude of the first mode is observed to be 

larger than the second mode. While supercritical and subcritical pitchfork bifurcations are observed in 

the trivial state, both saddle node and Hopf bifurcations are observed in the nontrivial state. Due the 

presence of Hopf bifurcation stable periodic response occurs in the trivial unstable region. With 

decrease in forcing amplitude and damping parameter figure 6.12.4 shows the frequency response curve 

for both the modes for Γ 5, 0.01ν  . In addition to the other phenomenon described in the previous 

figure, here one may clearly observe (in the insert) the additional alternate stable and unstable trivial 

states near the main unstable region. While increasing the frequency one may observe jump up 

phenomena and while decreasing the frequency one may observe the jump down phenomena in the 

system. 
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Fig. 6.12.4: Frequency response curve for Γ 5, 0.01ν   

 

Jump up  
Jump down  

Jump up  
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Figure 6.12.5 shows the force response curve φ = 2.0,  ν = 0.001.  

 

 

Figure 6.12.6 shows the force response curve φ = 1.75,  ν = 0.001.  
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Figure 6.12.7 Phase portraits: cascade of period doubling leading to chaos for φ = 2.13, Γ 8.0 , (a) ν = 
8.5 (periodic), (b) ν = 8.4(2T periodic), ν = 8.3 (chaotic orbits). 

 

Figure 6.12.8 Poincare’ showing period doubling route to chaos for φ = 2.13 
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Figure 6.12.5 shows the force response curve for the perfectly tuned system at φ = 2.0,  ν = 0.001. 

Herethe nontrivial fixed point becomes unstable with saddle nodde bifurcation points at Γ 0.9 and 

1.6.And Hopf bifurcation points at Γ 5.75 . Here the trivial branch istotally unstable except at Γ 0

.Similarly Figure 6.12.6 shows the force response curve of the system at  φ = 1.75,  ν = 0.001. Though 

the trivial response loses its stability at  Γ 7.55  through supercritical Pitchfork bifurcation, and a 

Hopf bifurcation is observed at Γ 7.95 , the system will fail through blue sky catastrophe if the 

amplitude of excitation is increased beyond the 

turning point at Γ 10.75 . Figure 6.12.7(a) shows the periodic response originating from the Hopf 

bifurcation for φ = 2.13, Γ 8.0 ,ν = 8.5. With decrease in the damping parameter ν to 8.42 one may 

observe a response with double period (Figure 6.12.7(b)). This period doubling phenomena continues 

with further decrease in damping parameter and finally a chaotic response (Figure 6.12.7(c)) is 

observed. Figure 6.12.8 shows the Poincare’ section depicting cascade of period-doubling leading to 

chaos. 
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