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MODULE 3 
 
APPROXIMATE METHODS FOR SOLVING NONLINEAR EQUATIONS 
 
In this module different approximate perturbation methods will be used to solve the nonlinear 
equations of motions derived in the previous module. Initially the straight forward expansion 
method will be used and the following listed methods will be discussed in this module.   
 
 
   Straight forward Expansion 
   Lindstedt Poincare’ Method  
   Modified Lindstedt-Poincare method 
   Method of Multiple Scales       
   Method of Averaging 
   Harmonic Balance method 
   Intrinsic Harmonic Balance method 
   Generalized Harmonic Balance method 
   Multiple time scale- Harmonic Balance 
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Module 3 Lecture 1 
 
THE STRAIGHT FORWARD EXPANSION 
 
In this method, one can consider the expansion of the response which is valid for a small but 
finite amplitude motions by introducing the book-keeping parameterε . Let us use this method by 
taking the example of Duffing equation with quadratic and cubic nonlinearities which can be 
given by the following equation. 

2 2 3

0 2 3 0x x x xω α α+ + + =                                                                                                        (3.1.1) 
Now using book-keeping parameter ε  the response x can be expanded in the following form.  
( ) ( ) ( ) ( ) ...; 3

3
2

2
1 +++= txtxtxtx εεεε                                                                                      (3.1.2) 

Substituting (3.1.2) into (3.1.1) one obtains 
 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )                   

2
2 3 2 2 3

1 2 3 0 1 2 32

2 3
2 3 2 3

2 1 2 3 3 1 2 3

... ...

... ... 0 (3.1.3)

d x t x t x t x t x t x t
dt

x t x t x t x t x t x t

ε ε ε ω ε ε ε

α ε ε ε α ε ε ε

+ + + + + + +

+ + + + + + + + =
 

 
 
( ) ( ) ( ) ( )2 2 2 2 3 2 3 4

1 0 1 2 0 2 2 1 0 3. 2 1 2 3 12 0x x x x x x x x x x oε ω ε ω α ε ω α α ε+ + + + + + + + + =                    (3.1.4)             
 
 
Considering the fact that 1 2 3, , , ,nx n =   is independent ofε , one can set the coefficient of each 
power of ε  equal to zero. This leads to the following set of equation: 
 
Order of  ε  
                    01

2
01 =+ xx ω                                                                                                       (3.1.5) 

Order of 2ε  
                     2

122
2
02 xxx αω −=+                                                                                             (3.1.6) 

Order of 3ε  
                      3

13212.3
2
0 2 xxxxx ααω −−=+                                                                            (3.1.7) 

 
Let us assume the initial conditions as ( ) 00x t u= =  and  ( ) 00x t v= = .                               (3.1.8) 
In polar form it can be written as                                                                                           
( ) 0 00 cosx t aε β= =  and  ( ) 0 0 00 sinx t v aε β= = =                                                              (3.1.9) 

 
Following Nayfeh and Mook (1979), there are two alternative ways to use the initial condition. 
In the first way one can substitute the assumed expansion (3.1.2) into the initial conditions and 
equate coefficients of like powers ofε . Then one determines the constant of integration.   
 
So, ( ) ( ) ( ) ( ) ( )2 3 2

1 2 3 0 00 0 0 0; ... cosx x x x a oε ε ε ε ε β ε= + + + = +                                       (3.1.10) 

Hence, ( ) ( )1 0 0 1 00 0cos ,x a x vβ= =   and ( )0 0nx =  and  ( ) 00 =nx  for n ≥ 2                     (3.1.11) 
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Then one determines the constants of integration which satisfy (3.1.11).  
 
In the second case, one can ignore the initial conditions and the homogeneous solution in all 
the nx     for  n ≥ 2, until the last step. Then, considering the constants of integration in 1x  to be 
function ofε , one expands the solution for 1x  in powers ofε  and chooses the coefficients in the 
expansion such that the initial conditions are satisfied. 
 
It is demonstrated in the book of Nayfeh and Mook (1979) that the two approaches are 
equivalent, yielding precisely the same result. The second method is preferred because there is 
much less algebra involved and, in many instances only the steady state responses are required 
which are independent of the initial conditions.  
  
The general solution of (3.1.5) can be written in the form 
                                         ( )βω += tax 01 cos                                                                        (3.1.12) 
where a  and β  are constants. Following the first alternative, from Eq. (3.1.11)  0aa = and 

0ββ = . 
 
Following the second approach, we consider a  and β   to be functions of ε  and at this point pay 
no regard to the initial conditions. 
       Substituting (3.1.12) into (3.1.6) yields 

               ( ) ( )[ ]βωαβωαω 22cos1
2
1cos 0

2
20

22
22

2
02 ++−=+−=+ tataxx                        (3.1.13) 

Now, we have two choices for expressing 2x  as follows. 
According to the first alternative considering both homogeneous part and particular integral one 
can write 

  ( )[ ] ( )202002
0

2
02

2 cos322cos
6

βωβω
ω

α
++−+= tat

a
x .                                                 (3.1.14) 

Here 2a and 2β  are additional constants of integration, independent of ε , chosen such that  
(3.1.11) is satisfied. 
According to second alternative one has to write only the particular integral part as 

  ( )[ ]322cos
6 02

0

2
2

2 −+= βω
ω

α tax .                                                                                          (3.1.15) 

Thus following the first alternative, we have 

( ) ( ) ( ) ( )
2

2 30 2
0 0 0 0 0 2 0 22

0

2 2 3
6

cos cos cosax a t t a t oα
ε ω β ε ω β ω β ε

ω
 

 = + + + − + + +  
 

      (3.1.16) 

Following the second alternative we have 

( ) [ ] ( )3
02

0

222

0 3)22cos(
6

cos εβω
ω
αεβωε otatax +−+++=                                                   (3.1.17) 

Now substituting 2
1 2 ......,a A Aε ε ε= + +     and        ....10 ++= BB εβ  in Eq. (3.1.17) one can 

show that equation (3.1.17) and Eq. (3.1.16) are equivalent as follows.  
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( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2
1 0 1 2 0 0 1

2
1 2 0 0 1 0 0 1              3 1 18

x a t A A t B B
A A t B B t B B

= + = + + + + +
 = + + + + − + + 

cos .... cos ...
.... cos cos ... sin sin ... ( . . )

ε ω β ε ε ω ε
ε ε ω ε ω ε

Taking 1 ..Bε +  very small, one can write ( )1cos ...Bε + =1 and ( )1sin ...Bε + = 1Bε . Hence, Eq. 
(3.1.18) can be written as 

 ( ) ( ) ( ) ( )
1

2 2 2 2 32
1 1 0 0 2 1 1 0 2cos cosx A t A A B t Oε ω β ε ω θ ε= + + + + +                                      (3.1.19) 

where 1 1 1
2 0

2

tan A BB
A

θ −  
= +  

 
. 

Similarly, [ ] ( ) [ ] ( )
2 2 22 2 2

3 31
0 0 02 2

0 0

2 2 3 2 2 3
6 6

cos( ) cos( )Aa t o t B oε αε α ω β ε ω ε
ω ω

+ − + = + − +   (3.1.20) 

Choosing 0001 , β== BaA  and 2A  and 1B  such that 

( ) 2
2

12
1

2
1

2
2 aBAA =+  and 2

2

111
0 tan ββ =








+ −

A
BA and using Eq. (3.1.18) and Eq. (3.1.19) in Eq. 

(3.1.17), the later equation reduces to that of equation (3.1.16). Thus one may use either of the 
alternatives.  
 
Now substituting (3.1.12) and (3.1.15)  in  (3.1.7) yields 
 

( ) ( ) ( ) ( )

( ) ( )
2

332
2
0

2 3
2 3 32

3 0 3 0 0 0 3 02
0

0

2
33 2

02
0

35

3 2 2
3

              3 3                            3 1 1
4 66 4

2

ax x t t t a t

a ta t
 

− 

 + = + − + + − + 

 
= − − + +

  



co

cos cos cos cos

cs os ( . . )

αω ω β ω β ω β α ω β
ω

α αω β
αα

ω
ω β

ω
 
Due to the presence of the term ( )0cos tω β+  in the right hand side of the differential Eq. 
(3.1.21), the  particular solution corresponding to this term can be written as  
 

( )
2 2

32 3 0
03

0

10 9
24

sina t tα α ω
ω β

ω
 −

+ 
 

                                                                                         (3.1.22) 

If the straightforward procedure is continued, terms containing the factors ( )βω +tt m
0cos  and 

( )βω +tt m
0sin  will appear. Terms such as these are called secular terms. 

Because of secular terms, expansion of (3.1.22) is not periodic and the solution grow without 
bound as t tends to infinity. Hence, 3x  does not provide a small correction to 1x  and 2x . One says 
that the expansion (3.1.22) is not uniformly valid as t increases. 
 
Exercise problems: 
1. Perform straightforward expansion for the (i) Duffing equation with cubic nonlinearity,  
(ii) van der Pol’s equation considering 3 term expansion and compare your results by taking two 
term expansion. Write the disadvantage of this method. Develop a symbolic code to determine 
the response of the above mentioned systems using this method. 
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Module 3 Lecture 2 

The lindstedt Poincare’ method: 
 
This method was developed by Anders Lindstedt (June 27, 1854 – May 16, 1939) and Jules 
Henri Poincaré (29 April 1854 – 17 July 1912) for uniformly approximating periodic solutions 
to ordinary differential equations when regular perturbation approaches fail. Here a new 
independent variable tτ ω=  is introduced where initially ω is an unspecified function of ε  
which is a book-keeping parameter ( 1ε  ). As the new governing equation contains ω  in the 
coefficient of the second derivative, this permits the frequency and the amplitude to interact 
which a property is observed in nonlinear systems. One can choose the function ω in such a way 
as to eliminate the secular terms [Nayfeh and Mook, 1979]. This method is explained by taking 
the following ordinary differential equation of Duffing type. 
 

2 2 3
0 2 3 0x x x xω α α+ + + =                                                                                                        (3.2.1) 

By using tτ ω=   equation (3.2.1) becomes 
 

2 2 2 3
0 2 3 0x x x xω ω α α+ + + =                                                                                                   (3.2.2) 

 Assuming the expansion forω as 
 
( ) 2

0 1 2 .....ω ε ω εω ε ω= + + +                                                                                                  (3.2.3) 
where 1ω , 2ω , …  are unknown constants at this point. Moreover, similar to the straight forward 
expansion,  x can be represented by an expansion having the form 
( ) ( ) ( ) ( )2 3

1 2 3;x t x x xε ε τ ε τ ε τ= + +                                                                                      (3.2.4) 
where  ( 1, 2,3 )nx n =   are independent ofε . Then (3.2.2) becomes 

( ) ( ) ( )
( ) ( )

222 2 3 2 2 3
0 1 2 1 2 3 0 1 2 32

2 32 3 2 3
2 1 2 3 3 1 2 3 0

d x x x x x x
d

x x x x x x

ω εω ε ω ε ε ε ω ε ε ε
τ

α ε ε ε α ε ε ε

+ + + + + + +

+ + + + + + =

                                (3.2.5) 

Equating the coefficients of and2,εε 3ε  to zero one obtains 

    012
1

2

=+ x
d

xd
τ

                                                                                                               (3.2.6) 

2 2
2 22 1
0 2 0 1 2 12 22d x d xx x

d d
ω ω ω α

τ τ
 

+ = − −  
 

                                                                (3.2.7) 

 

( ) 2
1

2

20
2
12122

1
2

1033
3

2
2
0 222

τ
ωωωα

τ
ωω

τ
ω

d
xdxx

d
xdx

d
xd

+−−−=







+                                      (3.2.8) 

The general solution of Eq. (3.2.6) can be written in the  form 
                                ( )1 cosx a τ β= +                                                                                     (3.2.9) 
Here a  and β  are constants. Substituting (3.2.9) into (3.2.7) leads to 



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 6 of 67 
 
 

( ) ( )
Secular Ter

2
2 22
0 2 22 0 1

m

1 1 cosos
2

2 2cd x x a
d

aω α τ β
τ

ω ω τ β
 

 + = − + + +  
  

                                        (3.2.10) 

Due to the presence of the underlined term in equation (3.2.10), the response will be unbounded 
and 2x will contain the secular term. Hence, this term must be eliminated which can be done by 
setting 01 =ω .  The solution of the remaining part of equation (3.2.10) can be written as follows.  

                  ( )
2

2
2 2

0

11 cos 2
32

ax α τ β
ω

 = − − +  
                                                                         (3.2.11) 

Substituting the expression for 1x  and 2x  into (3.2.8) and recalling that 01 =ω , one obtain 

( )

Secula

2 3
3 2

0

r te

2 3 2
0

2 2
2 33 2
0 3 33 2

0

rm

3 52 cos
8 4 312

21ad x
d

a ax aαω ω α τ
τ

β αω α
ωω

   
+ = − +   



 
− + +


 

  


    

                                                                                                                                        (3.2.12) 
 
In equation (3.2.12) the underlined term will yield an unbounded solution and to eliminate this 
secular term from 3x , one must put 

2 3
3 2

0 2 3 2
0

3 5 0
8 12

aa a αω ω α
ω

 
− + = 

 
 or 

( )
3
0

22
2

2
03

2 24
109
ω

αωα
ω

a−
=                     (3.2.13) 

Hence from (3.2.3), (3.2.9) and (3.2.11) one obtains 

( ) ( ) ( )
2 2

32
2
0

1cos 1 cos 2 2
32

ax a t t Oε αε ω β ω β ε
ω

 = + − − + +  
                                              (3.2.14) 

where  

                 ( )
2 2

2 2 33 0 2
0 4

0

9 101
24

a Oα ω α
ω ω ε ε

ω
 −

= + + 
 

                                                            (3.2.15) 

Imposing the initial condition ( ) 0 00 cosx t a β= =  and ( ) 0 00 sinx t a β= = −  from (3.2.14) one 
obtains 

2 2
2

0 0 2
0

1cos cos 1 cos2
32

aa a ε α
β ε β β

ω
 = − −  

                                                                    (3.2.16) 

2 2
2

0 0 0 2
0

sin sin sin2
3
aa a ε α ω

ω β ε ω β β
ω

− = − −                                                                    (3.2.17) 

One should solve these equations (3.2.16) and (3.2.17) to obtain a  and β which will be used 
further in (3.2.14) to obtain the nonlinear response of the system. 
 
Similar to the qualitative description of the motion, it may be noted that the Lindstedt-Poincare 
method produced (a) a periodic expression describing the motion of the system, (b) a frequency-
amplitude relationship (c) higher harmonics in the higher order terms of the expression and (d) a 

drift or steady-streaming term 2 2 2
2 0

1 /
2

aε α ω− . (Nayfeh and Mook 1979) 
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Example 3.2.1: Find the solution of the equation 30.1 0u u x+ + = . Take initial conditions 0t = , 
0.001x = m and 0.1x = m/s. 

Solution: Here  2
0 2 31, 0, 1 and =0.1ω α α ε= = =  

Substituting these parameters in equation (3.2.15), 
 

2 2
2 2 2 2 23 0 2

0 4
0

9 10 9 10 0 31 1 1 (0.1) 1
24 80024

a a aα ω α
ω ω ε

ω
 − − ×   = + = + = +         

 

Also, ( ) ( ) ( )
2 2

32
2
0

1cos 1 cos 2 2
32

ax a t t Oε αε ω β ω β ε
ω

 = + − − + +  
 

Now from initial condition 
 

20.01 0 10.001 0.1 cos 1 cos2 0.1 cos
2 3
aa aβ β β

 ×  = − − =     
 

20.01 00.1 0.1 sin sin2 0.1 sin
3

aa aωω β β ω β
 ×

= − − = − 
 

 

2 2
2 2

1 0.001 0.10.001 0.0001
0.01

a
ω ω

 = + = + 
 

 

2
2 2

2

3 2

3 3 0.1 31 1 0.0001 1 3 7
800 800 8000

3, 1.0000003
8000

,8000 8000.0024 3 0

a e

or

or

ω
ω ω

ω
ω

ω ω

    = + = + + = + − +       

− =

− − =

 

 
ω =1.0004. The other two roots are complex numbers. 
So, 0.3266a =  

0.1 10tan
0.01

β
ω ω

= − = −  

β = -1.4707. 
So, ( )0.03226cos 1.004 1.4707 .x t= −  
Exercise problem: 
 1. Find the nonlinear response of a simple pendulum taking the equation of motion up to cubic 
order nonlinearies. Plot the phase portrait and compare this with that obtained from the 
qualitative analysis. 
 
2. Use a symbolic software to derive and find the response of the system governed by equation 

0
1

=+∑
=

N

n

n
n xx α  (N = 5, quintic nonlinearities) using L-P method use initial conditions 

( )0 , (0) 0u a u= = . 
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Ref: Nayfeh and Mook 1979 
Module 3 Lecture 3 

 
 
Modified Lindstedt Poincare’ technique 
 
The Lindstedt-Poincare’ (L-P) method described in previous lecture can be applied to weakly 

nonlinear systems. To apply this method to strongly nonlinear system, the L-P method has been 

modified by many researchers. Here the method proposed by Cheung et al. (1991) is discussed. 

In this modified Lindstedt-Poincare’ method the coefficient of the nonlinear term α can be 

written as a function of the book keeping parameterε  and component of the expansion of the 

nonlinear frequency or the forcing frequency ( 0 1,ω ω ). Similar to L-P method here also 

nondimensional time tτ ω= is used in the governing equation (3.4.1) to obtain the following 

equation.  
2 2 2 3

0 2 3 0x x x xω ω α α+ + + =                                                                                        (3.3.1) 

or in general the equation can be written as 

( )2 2
0 0x x f xω ω ε+ + =                                                                                                  (3.3.2) 

Unlike in L-P method, here ε may not be small. 

Following four steps have been proposed in this method. 

1. In contrast to the standard L-P where expansion of ω  is carried out, here it is proposed to 

expand 2ω . 
2 2 2

0 1 2 .....ω ω εω ε ω= + + +                                                                                             (3.3.3) 

2. A new parameter α is introduced. 

1
2
0 1

εωα
ω εω

=
+

                                                                                                               (3.3.4) 

It may be noted that α is the ratio of the 2nd term to the first two terms in the expansion given in 

Eq. (3.3.3).  

From Eq. (3.3.4) one can write 

 
( )

2
0

1

  
1
ω α

ε
ω α

=
−

                 (3.3.5) 
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and  
2

2 0
0 1 1

ω
ω εω

α
+ =

−
                                            (3.3.6)   

So, ( )
22

2 2 2 2 2 302
0 1 2 0 1 2 32

0 1

....1 1
1
ωε ωω ω εω ε ω ω εω δ α δ α

ω εω α
 +

= + + + = + + = + + + + − 
    (3.3.7)     

Here, 1ω and iδ ( 2,3,i =  ) are unknown which will be obtained in the subsequent steps. 

Substituting Eq. (3.3.6) and Eq. (3.3.7) in Eq. (3.3.2), one can write 

( ) ( ) ( )
2 2

2 3 20 0
2 3 0

1

1  0
1 1

x x f xω ω αδ α δ α ω
α ω α

+ + + + + =
− −


                                                 (3.3.8) 

 Or, ( ) ( ) ( )2 3
2 3

1

1 1  0x x f xαδ α δ α α
ω

+ + + + − + =
                                                       (3.3.9) 

From Eq. (3.3.5) it can be observed that as 1 0εω → , 0α → . Also as 1 , 1εω α→ ∞ → . Hence 

irrespective of the value of 1εω , α value is small. Hence by introducing this parameterα , one 

can reduce the strongly nonlinear system to a weakly nonlinear system on which the regular L-P 

or other perturbation method can be used.  

3. Expand x into a power series using α  

( ) ( ) ( ) ( )2 3
0 1 2 3

0
;

m
n

n
n

x t x x x x xα α τ α τ α τ α
=

= + + + + = ∑                                                  (3.3.10) 

Now substituting (3.3.10) in (3.3.9) and equating the coefficients of like power of α , one can 

obtain the following set of linear differential equations. 

 
2

0
02 0d x x

dτ
+ =                                                                                                                 (3.3.11) 

( )
2

1
1 0 02

1

1d x x x f x
d ωτ

+ = −                                                                                               (3.3.12) 

( )
22

02
2 2 1 1 0, 12 2

1

1 (terms of ;  having power of 1)d xd x x x x f x x
d d

δ α α
ωτ τ

+ = − + − =             (3.3.13) 

The usual steps in L-P method may be applied to solve these equations to obtain the solution of 

Eq. (3.3.2) to any desired order of α . 

4. In the fourth and last step, the initial value (i.e., ( 0)x t a= = and ( 0) 0x t = = ) are separated 

into two parts as follows. 
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(0)x a b= +                                                                                                                   (3.3.14) 

0(0)x a= and (0) ( 1,2 )i ix b i= =                                                                                (3.3.15) 

Where a is the initial value of the sum of all odd harmonic terms of x and ib  is the initial value of 

the sum of all even harmonic terms of ix . 

1

i
i

i
b bα

=

= ∑                                                                                                                        (3.3.16) 

For detailed application of this method one may refer the work by Cheung et al. (1991), Chen 

and Cheung (1996). Franciosi and Tomasiello (1998) used Mathematica to analyze strongly 

nonlinear two degree of freedom system using modified L-P method. Latif (2004) and Yang et 

al. (2004) also used this method. Amore and Aranda (2005) used an improved L-P method in 

which they applied linear delta expansion (LDE) to L-P method and it is shown that this method 

can be applied to a wider range of nonlinear equations and it converges to the exact solution 

more rapidly than the conventional L-P method. Chen et al. (2007) used multi-dimensional L-P 

method. Xu (2007),  Öziş andYıldırım (2007) used He’s modified L-P method for strongly 

nonlinear system. Pušenjak (2008) extended L-P method for nonstationary response of strongly 

nonlinear system.  
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Exercise Problems: 
 
Problem 1: Apply modified L-P method for the following systems 
 
(i) 2 3

0 0u u uω εα+ + =  
(ii) 2 2

0 0u u uω εα+ + =  
(iii) 2 3

0 cosu u u u f tω εζ εα ε+ + + = Ω   
 
(N.B: These problems are addressed in Cheung et al. (1991).) 
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Module 3 Lecture 4 
 
The method of multiple scales 
 
In method of multiple scales, the original time is written in terms of different time scales which 
are considered to be multiple independent variables, or scales, instead of a single variable. Here, 
the new independent variables ( , 1,2,nT n =  ) of time are written using the book-keeping 
parameter ε  as  
                                     n

nT tε=                                                                                               (3.4.1) 
 
Hence, the derivatives with respect to t  can be written in terms of the partial derivatives with 
respect to the nT  as follows. 

0 1
0 1

0 1

dT dTd D D
dt dt T dt T

ε∂ ∂
= + + = + +

∂ ∂
                                                                             (3.4.2) 

( )
2

2 2 2
0 0 1 1 0 22 2 2 ....d D D D D D D

dt
ε ε= + + + +                                                                             (3.4.3) 

 
Let us apply this method to the Duffing equation with quadratic and cubic nonlinearities 
 
Example 3.4.1: 
     2 2 3

0 2 3 0x x x xω εα εα+ + + =                                                                                                (3.4.4)  
 
Similar to previous method here, one may assume that the solution of (3.4.4) can be represented 
by an expansion having the form 
 
( ) ( ) ( ) ( ) .....,......,,,......,,,......,,; 2103

3
2102

2
2101 +++= TTTxTTTxTTTxtx εεεε                         (3.4.5) 

 
We note that the number of independent time scales needed depends on the order to which the 
expansion is carried out. For example for ( )3εO , one may consider ,, 10 TT and 2T . Substituting 
(3.4.3) and (3.4.5) into (3.4.4) and equating the coefficients of ,, 2εε and 3ε  to zero, one obtains 
the following sets of equations. 
 
 Order of 1ε  

2 2
0 1 0 1 0D x xω+ =                                                                                                                      (3.4.6) 

Order of 2ε    
2 2 2
0 2 0 2 0 1 1 2 12D x x D D x xω α+ = − −                                                                                               (3.4.7) 

Order of 3ε  
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2 2 2 3
0 3 0 3 0 1 2 1 1 0 2 1 2 1 2 3 12 2 2D x x D D x D x D D x x x xω α α+ = − − − − −                                                   (3.4.8) 

The solution of (3.4.6) can be written as  

1 1 2 0 0 0 0( , ) exp( ) exp( )x A T T i T A i Tω ω= + − .                                                                           (3.4.9) 
Here A  is an unknown complex function and A  is the complex conjugate of A .  Substituting 
(3.4.9) into (3.4.7) leads to  
  

Secular term

2 2 2
0 2 0 2 2 0 00 1 0 0 exp(2( ) )2 expD x x A i T AA cci D A i Tω α ωω ω  + = − − + + 



                               (3.4.10) 

Here cc denotes the complex conjugate of the preceding terms. The particular solution of 
(3.4.10) has a secular term containing the factor ( )0 0 0expT i Tω . To have a bounded solution this 
term has to be eliminated. Hence one can obtain 

1
1

0dAD A
dT

= =                                                                                                                        (3.4.11) 

Therefore A  must be independent of  1T . With 1 0D A =  the particular solution of (3.4.10) can be 
written as 

   
2

2 2
2 0 02 2

0 0

exp(2 )
3

Ax i T AA ccα αω
ω ω

= − +                                                                                  (3.4.12) 

 Substituting the expression for 1x  and 2x  from equation (3.4.9) and (3.4.12) into (3.4.8) and 
recalling that 1 0D A =  we obtain 

( )

Secular Te

2 2
22 3 0

0 2 0 02
0

2 2
0 3 0 3

2 2
33 0 2

0 02
0

rm

10 92 exp
3

                        3 2 exp(3 )
3

 

D x x

A i T cc

i D A A A i Tα α ωω

α ω α ω
ω

ω ω
ω

 −
−+ = −

+
−




+




                                               (3.4.13) 

To eliminate the secular terms from 3x , we must put  

 
2 2

23 0 2
0 2 2

0

9 102 0
3

i D A A Aα ω αω
ω
−

+ =                                                                          (3.4.14)   

To solve Eq. (3.4.14), it is convenient to write A  in the polar form as 

 1 exp( )
2

A a iβ=                                                                                                                     (3.4.15) 

where a  and β  are real function of 2T . Substituting (3.4.15) into (3.4.14) and separating the 
result  
into real and imaginary parts, we obtain 

  0aω ′ =  and 
2 2

32 3 0
0 2

0

10 9 0
24

a aα α ωω β
ω
−′+ =                                             (3.4.16) 

where the prime denotes the derivative with respect to 2T . As 0a′ = , a  is a constant and    
2 2

32 3 0
2
0 0

10 9
24

a
a

α α ωβ
ω ω
−′ = −    or 

2 2
23 0 2

2 03
0

9 10
24

a Tα ω αβ β
ω
−

= +                                                      (3.4.17) 
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Here 0β  is a constant. Now using 2
2T tε=  from (3.4.15) we find that 

2 2
2 23 0 2

03
0

9 101 exp
2 24

A a i a t iα ω α ε β
ω

 −
= + 

 
                                                       (3.4.18) 

Substituting Eq. (3.4.18) in the expressions for 1x  and 2x  in  Eqs. (3.4.9), (3.4.12) and (3.4.5),  
one obtains 

2 2
32

0 02
0

1cos( ) 1 cos(2 2 ) ( )
2 3
ax a t t Oε αε ω β ω β ε
ω

 = + − − + +  
                                                (3.4.19) 

 Here 
2 2

2 2 33 0 2
0 4

0

9 101 ( )
24

a Oα ω αω ω ε ε
ω

 −
= + + 

 
                                                                   (3.4.20) 

This solution is in good agreement with the solution obtained using the Lindstedt-Poincare’ 
procedure. The method of multiple scales though a little more involved, has advantage over the 
Lindstedt-Poincare method, for example it can treat damped systems conveniently ( Nayfeh and 
Mook 1979). 
 
Example 3.4.2: Find the expression for the frequency-response curve for a nonconservative 
system using method of multiple scales. 
 
Solution: 
Consider the governing equation of motion of a nonconservative system which can be given by 

 .                                                                                                (3.4.21) 
Following standard procedure of method of multiple scales one may write 
 
( ) ( ) ( ) ( )2 3

0 1 0 1 2 2 0 1 2 3 0 1 2; , , ,...... , , ,...... , , ,...... .....u t u u T T T u T T T u T T Tε ε ε ε= + + + +               (3.4.22) 
 
 Substituting (3.4.3) and (3.4.22) into (3.4.21) and equating the coefficients of 0 1,ε ε and 2ε  to 
zero,   
 one obtains the following sets of equations. 
 

                                                                                                   (3.4.23) 
   ( )2 2

0 1 0 1 0 1 0 0 0 02 ,D u u D D u f u D uω+ = − +                                                                               (3.4.24) 

   2 2 2 3
0 2 0 2 0 1 2 1 1 0 2 1 2 1 2 3 12 2 2D u u D D x D x D D x x x xω α α+ = − − − − −                                              (3.4.25) 

   2 2
0 0 0 1 1( , , ) for 2n n nD u u F u u u nω −+ = ≥                                                                            (3.4.26) 

 
The solution of Eq. (3.4.23) can be given by 
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( ) ( )0 1 2 0 0 0 0( , ) exp expu A T T i T A i Tω ω= + −                                                                         (3.4.27) 
Substituting Eq. (3.4.27) in Eq. (3.4.24) following equation is obtained. 

( ) ( )
( ) ( ) ( ) ( )( )

2 2
0 1 0 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

2 exp 2 exp

                      exp exp ,2 exp exp

D u u i D A i T i D A i T

f A i T A i T i A i T A i T

ω ω ω ω ω

ω ω ω ω ω

+ = − + − +

 + − − − 
      (3.4.28) 

One may use Fourier series to write the forcing function as follows. 

( ) ( )0 0, expn
n

f f A A in Tω
∞

=−∞

= ∑                                                                                               (3.4.29) 

where, ( ) ( )
0

2

0
0 0 0

0

, exp
2nf A A f in T dT

π
ωω ω

π
= −∫                                                                         (3.4.30) 

Hence to eliminate secular term from Eq. (3.4.28) one may write 
 

( )
0

2

1 0 0 0
0

12 exp
2

iD A f i T dT

π
ω

ω
π

= −∫                                                                                        (3.4.31) 

For a first order approximation, one may consider A to be a function of 1T only and can write 
A in its polar form as  

( ) ( ) ( )( )1 1 1
1 exp
2

A T a T i Tβ=                                                                                             (3.4.32)  

Substituting (3.4. 32)  in (3.4.31) one can write 

 ( ) ( )( ) ( )
0

2

1 1 1 0 0 0
0

1 12 exp exp
2 2

iD a T i T f i T dT

π
ω

β ω
π

  = − 
  ∫                                                      (3.4.33) 

Or, ( )( ) ( )( ) ( )
0

2

1 1 0 0 0
1 1 0

1exp exp exp
2

da di i T a i T f i T dT
dT dT

π
ωββ β ω

π
− = −∫                                  (3.4.34) 

( )( ) ( )

( ) ( )( )

( )( )( ) ( )

( ) ( )

0

0

0 0

0

2

0 0 0
1 1 1 0

2

0 0 1 0
0

2 2

0 0 1

0 0 1

0 0
0 0

2

0
0

1Or, exp
2 exp

1 exp exp
2

1 1 exp exp
2 2

1  = cos sin where
2

da di a f i T dT
dT dT i T

f i T i T dT

f i T T dT f i dT

Ti Tf dT

π
ω

π
ω

π π
ω ω

π
ω

β ω
π β

ω β
π

ω β
π π

φ φ

φ

β
π

φ ω

− = −

= − −

= − + = −

− = +

∫

∫

∫ ∫

∫

               (3.4.35) 

Separating the real and imaginary parts one may write 
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( )
2

0
1 0 0

1 sin cos , sin
2

da f a d
dT

π

φ φ ω φ φ
πω

= − −∫                                                                        (3.4.36) 

 

( )
2

0
1 0 0

1 cos cos , sin
2

d f a d
dT a

πβ φ φ ω φ φ
πω

= − −∫                                                                    (3.4.37) 

The first order approximation solution can be written as  
 
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( )

0 1 2 0 0 0 0

0 0 0 0

0 0 0 0

0

; ( , )exp exp
1 1                 = exp exp exp exp
2 2
1                 = exp exp
2
1                 = exp exp cos cos
2

u t u A T T i T A i T

a i i T a i i T

a i T i i T i

a i i a a t O

ε ω ω

β ω β ω

ω β ω β

φ φ φ ω β ε

= = + −

+ − −

+ + − −

+ − = = + +



                      (3.4.38) 

Exercise Problems: 
1. Derive the frequency-amplitude relation for the following systems using multiple scales 
(a) 2

0 2 0u u uω εµ+ + =     
(b) 2 2

0 2 cosu u u f tω εα ε+ + = Ω                            
(c) 2 3

0 2 cosu u u u f tω εµ εα ε+ + + = Ω   
(d) 2 2 3

0 2 32 cosu u u u u f tω εµ εα εα ε+ + + + = Ω     
(e) 2 3

0 2 cos 0u u u u f tuω εζ εα ε+ + + + Ω =   
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Module 3 Lecture 5 
 
METHOD OF MULTIPLE SCALES APPLIED TO FORCED VIBRATION 
 
In this lecture the method of multiple scales is applied to a forced vibration system. One may 
follow similar procedure as in the previous lecture. But in this case additional secular terms will 
arise which will give different resonance conditions. In the following example the primary 
resonance condition for the forced Duffing equation is illustrated. It may be noted that unlike 
linear system in case of nonlinear system multiple equilibrium solution will arise.  
 
Example 3.5.1: Find the frequency-amplitude relation for primary resonance condition for the 
forced Duffing equation. 

2 3
0 2 cosu u u u K tω εµ εα ε+ + + = Ω                                                                                          (3.5.1)   

Solution 
 
For primary resonance condition, the frequency of external excitation Ω  should be nearly equal 
to that of natural frequency 0ω  of the system. Hence, to show the nearness of Ω  to 0ω , one may 
use a detuning parameterσ , and by using book-keeping parameter it can be written that 

0ω εσΩ = +                                                                                                                (3.5.2) 
Now expanding u using the book-keeping parameter and different time scales one may write 
( ) ( ) ( )0 0 1 1 0 1; , , .......u t u T T u T Tε ε= + +                                                                          (3.5.3) 

Now substituting Eqs.(3.4.3) and (3.5.3) in Eq. (3.5.1) and separating the like power of ε , 
following equations are obtained. 

2 2
0 0 0 0 0D u uω+ =                       (3.5.4) 

                    (3.5.5) 
The solution of Eq. (3.5.4) can be given by 

( ) ( ) ( ) ( )0 1 2 0 0 1 2 0 0, exp , expu A T T i T A T T i Tω ω= + − .                             (3.5.6) 
Substituting (3.5.6) in Eq. (3.5.5) one obtains 

( ) ( )( ) ( )

( ) ( )

2 2 2
0 1 0 1 0 1 0 0 0 0 0 0

3
0 0 0 0 1

2 exp exp 3 exp

1exp 3 exp
2

D u u i D A i T A i T A A i T

A i T f i T T cc

ω ω ω µ ω α ω

α ω ω σ

 + = − + + 

− + + +  
  

(3.5.7)
 

Or, 

 

( ) ( ) ( )

( )0 0 1

Nearly secu

' 2
0 0 0

Secular t

2

er

2 3
0 1 0 1

lar term

0 0

m

1 ex

e

p

2 3 e p

2

p x 3xD u u A i T

ccf i T

A A

T

i A A i T

ω σ

ω µ α ωω α ω+ = −

+ +  

 − + + 

+







    (3.5.8)
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In Eq. (3.5.8), the term containing ( )0 0exp i Tω  is a secular term and term containing 

( )0 0 1exp i T Tω σ+    is a nearly secular term as it will approach to a secular term when 0σ → . To 
have a bounded solution these two terms should be eliminated by imposing the following 
condition. 

( ) ( )2
0 1

12 ' 3 exp 0          
2

i A A A A f i Tω µ α σ+ + − =                                                       (3.5.9) 

Substituting ( )1 exp
2

A a iβ=  in Eq. (3.5.9) and separating the real and imaginary parts, the 

following first order differential equations are obtained.  
  

( )1
0

1' sin        
2

fa a Tµ σ β
ω

= − + −                                                                                     (3.5.10)
 

 

( )3
1

0 0

3 1' cos     
8 2

fa a Tαβ σ β
ω ω

= − −                                                                                 (3.5.11)
 

One may write these two equations in their autonomous form by substituting 1Tγ σ β= − . The 
resulting equations are  

0

1' sin          
2

fa aµ γ
ω

= − +                                                                                               (3.5.12)
 

3

0 0

3 1' cos
8 2

fa a aαγ σ γ
ω ω

= − +                                                                                        (3.5.13)  

Equations (3.5.12) and (3.5.13) are known as the reduced equations and can be used for finding 
the response and stability of the system. By analytically or numerically solving these equations 
one may obtain the amplitude and phase of the response of the system. The first order response 
of the system can be given by

     
 

( )0cos ( )    u a t Oω β ε= + +                                                                                             (3.5.14)  
It may be noted that for steady state, the amplitude and phase of the system do not depend on the 
time and hence the time derivative terms i.e.,  and a γ′ ′ should be equal to zero. Hence, for steady 
state one can write 

0

1 sin   
2

faµ γ
ω

=                                                                                                             (3.5.15) 

3

0 0

3 1 cos   
8 2

fa aασ γ
ω ω

− = −                                                                                            (3.5.16) 

Now squaring and adding Eqs. (3.5.15) and Eq. (3.5.16), the following closed form equation is 
obtained. 

2 2
2 2 2

2
0 0

3
8 4

fa aαµ σ
ω ω

  
 + − = 
   

                                                                                      (3.5.17)
   

It may be noted that this equation is a 6th order polynomial in terms of a  and is quadratic in 
terms of detuning parameterσ . Hence, solving the quadratic equation, one can obtain the 
following relation for the frequency response curve.           
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                                                                                        (3.5.18)
        

Example 3.5.2: Apply method of multiple scales to the following nonlinear parametrically 
excited system 

( ) ( ) ( )( )3 2 2 2
1 2 3 1 12 cos 2 - 1 cos 2 0q q q q q q q q f q k qq+ εζ + + ε α + α + α − ε ωτ ε + ωτ =      

          (3.5.19) 
 

This equation contains parametric term ( )1 cos 2f qωτ  and nonlinear damping term 

( )( ) 2
1 1 cos 2k qq+ ωτ  , along with cubic geometric ( 3

1
qα ) and inertial ( 2 2

2 3
q q q qα +α  ) 

nonlinear terms.  
 
Solution:  In this method the displacement q can be represented in terms of different time scales 

0 1( , )T T  and a book keeping parameter ε as follows. 

( ) ( ) ( )2
0 0 1 1 0 1( ; ) , ,q q T T q T T Oτ ε = + ε + ε .                                                                           (3.5.20) 

Here, 0T τ= ,  and 1T ετ= . The transformation of first and second time derivatives are given by 

)( 2
10 εε

τ
ODD

d
d ++=  and  )(2 2

10
2
02

2
εε

τ
ODDD

d
d ++= . 

where, 0
0

D
T
∂

=
∂

, and 1
1

D
T
∂

=
∂

. 

Substituting Eqs. (3.5.20) in  (3.5.19) and equating the coefficient of like powers ofε , yields the 
following equations.  
Order  :0ε 2

0 0 0 0D q q+ = ,                                                                           (3.5.21 ) 

Order :1ε 2
0 1 1 0 1 0 0 02 2D q q D D q D q+ = − − ζ ( ) ( )23 2 2

1 0 2 0 0 0 3 0 0 0q D q q D q q−α −α −α                     

                                            ( ) ( )( )( ) 2
1 0 0 1 0 0 0 0cos 2 1 cos 2f T q k T D q q+ ω + + ω .                (3.5.22)  

General solutions of Eq. (3.5.21) can be written as 
                                     0 1 2 0 1 2 0( , ) exp( ) ( , ) exp( )q A T T iT A T T iT= + − .                             (3.5.23) 
Substituting Eq. (3.5.23) into Eq. (3.5.22) leads to 
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( )( ) ( )

( )

2
1 2 3 1 0

secular term

1
0

nearl

2 3
0 1 1

3 3 2

y secular term

21

1 1
1 0 0

0

2 2 3 3 exp( )

exp (2 1)
2

exp (2

+ exp 3

+ exp 3 + + exp (2 3) exp (2 1)
2

2

2

0

0

i A i A ik A A iD q q A iT

ik ikik A iT A i T

T

f A i T A A i T

ik A A i

′− + ζ + α+ = ν

ω+ + ω+

− α +α −

 
 ω



−

−

 





31
0 0

nearly secular term nearly secular term

1) e+ xp (3 2 )
2

ikT A T ci c+ω− − ω
 

 (3.5.24) 

Here, 1 2 3ν = −α +α +α . One may observe that any solution of Eq. (3.5.24) will contain secular 
or small divisor terms when non-dimensional frequency of magnetic strength (ω ) is nearly equal 
to 1 which is known as simple resonance case. In this case, one may present detuning parameter 
σ to express the nearness of ω to 1, as 
                              ( )1O  and    ,1 =+= σσεω                                                                 (3.5.25) 
Substituting Eq. (3.5.25) into Eq. (3.5.24), one may obtain the following secular or small divisor 
terms. 
         ( ) 2

0 0 1 2 3 1 02 exp( ) 2 exp( ) 3 3 exp( )i A iT i A iT ik A A iT′− − ζ − α − α +α −  

               ( ) ( ) ( )3 21 1 1
1 1 1exp 2 exp 2 exp 2 0.

2 2 2
f k kA T i A T i A A T+ σ + − σ − σ =                    (3.5.26)     

Putting  A equal to ( ) ( )( )1
1

1 
2

i T
a T e

β
  into Eq. (3.5.26) and separating the real and imaginary terms, 

one may find the reduced equations as given below. 

  31 1

2

sinγ
8 4

da k fa a a
dT

= −ζ + + ,                                                                               (3.5.27) 

   3 33 1
1 2 1

2

1 3 12 sin cosγ
4 3 4 2

d fa a a a k a
dT

αγ ω−   = − α −α + + γ +   ε   
.                     (3.5.28) 

For steady state as 
2

da
dT

,
2

d
dT
γ

 are equal to 0,the above equations reduces to 

21 1 sinγ = 0
8 4
k fa a −ζ+ + 

 
                        (3.5.29) 

2 23 1
1 2 1

1 3 12 sin cosγ = 0
4 3 4 2

fa a kαω−    − α −α + + γ +   ε   
                    (3.5.30) 

One may observe from the Eq. (3.5.29) that, the system possesses both trivial ( 0a = ) and 
nontrivial ( 0a ≠ ) responses. The nontrivial response can be obtained by numerically solving 
Eqs. (3.5.29) and (3.5.30). Later it can be studied that the stability of the steady state response 
can be determined by finding the eigenvalues of the Jacobian matrix obtained by perturbing  Eqs.  
(3.5.27) and (3.5.28). 
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The first order non-trivial steady state response is given by 

                                     ( )1cos
2

q a  = ωτ− γ 
 

                                                                 (3.5.31) 

Exercise Problems 
1. Find the expression for the transition curve for a parametrically excited system given by the 

following     equation of motion.  
( )2

0 2 cos 0u u u f t uω εµ ε+ + + Ω =      
2. The equation of motion for a bimaterial beam with alternating magnetic field and thermal 
loads (G. Y. Wu, Journal of Sound and Vibration 327(2009)197-210)  can be given by   
    ( )( ) ( )2 2

1 2 12 1 cos 2 cos 2 0q q k k q q f q Ω + + Ω + + τ − τ =     

Derive the expression for the frequency response by using method of multiple scales.    
 
References for further reading 
One may read higher order method of multiple scales from Rahman and Burton(1989) and 
Dwivedy and Kar (1999) . 

1. Z. Rahman and T. D. Burton, On higher order method of multiple scales in nonlinear 
oscillations-periodic steady state response, Journal of Sound and Vibration 133, 369-379, 1989. 

2. S. K. Dwivedy and R. C. Kar  Nonlinear response of a parametrically excited system using 
higher–order method of multiple scales, Nonlinear Dynamics, 20, 115-130, 1999. 

3. A. H Nayfeh and D. T. Mook, Nonlinear oscillations, New York, Willey Interscience,1979. 
4. H. Boyaci and M. Pakdemirli, A comparison of different versions of the method of multiple 

scales for partial differential equations, Journal of Sound and Vibration, 204(4),595-607, 1997. 
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Module 3 Lecture 6 
 
THE METHOD OF HARMONIC BALANCE 
 
Harmonic balance method is the most commonly used method to study the nonlinear vibration 
problems. Here, the response of the system is assumed in terms of a Fourier series and using this 
expression in the governing differential equation and separating the coefficients of the harmonic 
terms one can obtain the unknown coefficients and frequency amplitude relation of the nonlinear 
system.  One may assume the response in the following form. 

                                     0
0 0

cos( ) sin( ) cos( )
M M

m m m
m m

x A m t B m t A m t mω ω ω β
= =

= + = +∑ ∑
 

           (3.6.1) 

Then substituting (3.6.1) in the governing equation and equating the coefficient of each of the 
lowest M + 1 harmonics to zero, one obtains a system of M + 1 algebraic equation relating ω  
and the mA . Usually these equations are solved for 0 2 3, , ,....., mA A A A  and ω  in terms of 1A . The 
accuracy of the resulting periodic solution depends on the value of 1A  and the number of 
harmonics in the assumed solution. The method is illustrated using the following examples. 
 
Example 3.6.1:  
Find the expression for frequency amplitude relation for the single degree of freedom system 
with both quadratic and cubic nonlinearities using harmonic balance method by taking one , two 
and three terms in the expansion of the Fourier series.   
 2 2 3

0 2 3 0x x x xω α α+ + + =                                                                                               (3.6.2) 
Solution : 
Taking only one term expansion, from equation (3.6.1) one has  
 
                                        1 0 1cos( ) cosx A t Aω β φ= + =                                                    (3.6.3) 
 
Substituting equation (3.6.3) into equation (3.6.2) yields, 

[ ] [ ]2 2 3
0 321 1

2
1

1 1 c 1( ) cos 3cos
4

os 2 cos3 0
2

AA Aω ω φ α φα φ φ+ + + +− =−                           (3.6.4) 

  Equating the co-efficient of cosφ  to zero, one obtains 
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                                                               2 2 2
0 3 1

3
4

Aω ω α= +                                               (3.6.5) 

which for small 1A  becomes 

                                                                     (3.6.6) 
Comparing (3.6.6) with (3.2.14) we conclude that only part of the nonlinear correction to the 
frequency has been obtained. 
Now taking two terms and following Nayfeh and Mook (1979) by putting  
                                                    0 1 cosx A A φ= +                                                                  (3.6.7 ) 
in (3.6.2) one obtains  
 
  

( )2 2 2 3 2
0 0 2 0 2

2 2 2 3
0 1 2 0 1 3 01 3 0 3 0 1 31 1

1 3 32 3 cos
42 2

A A A A A A AA A AA A ωω α α α α ω α α α φ + + + +  − − + + +   +
 

                      2 2
2 1 3 0 1

1 3 cos 2
2 2

A A Aα α φ + +  
3

3 1
1 cos3 0
4

Aα φ+ =                                     (3.6.8) 

Equating the constant term (terms with magenta colour) and the coefficient of cosφ  (terms with 
blue colour) to zero, one obtains the following equations. 

2 2 2 3 2
0 0 2 0 2 1 3 0 3 0 1

1 3 0
2 2

A A A A A Aω α α α α+ + + + =                                                                     (3.6.9)                                                                                                 

( )2 2 2 2
0 2 0 3 0 3 1

32 3 0
4

A A Aω ω α α α− − + + + =                     (3.6.10) 

When 1A  is small, neglecting terms containing 2 2 3
0 1 0, ,A A A , from Eqs. (3.6.9)  and (3.6.10) one 

can write                    

                   2 42
0 1 12

0

1 ( )
2

A A O Aα
ω

 
= − + 
 

                                                                               (3.6.11) 

                                                                                       

                    
2

2 2 22
0 3 12

0

3
4

Aαω ω α
ω

 
= + − 

 
                                                                                 (3.6.12)                

Hence, 

                              
2 2

23 0 2
0 14

0

3 41
8

Aα ω αω ω
ω

 −
= + 

 
                                       (3.6.13) 

It may be noted that this expression for frequency is not same as that we obtained by using 
method of multiple scales or L-P method. Hence to obtain a consistent solution by using the 
method of harmonic balance, one need either to know about the solution a priori or one has to 
take many terms in the Fourier series and make a convergence analysis. Otherwise one might 
obtain an inaccurate approximation. 
Using two harmonic terms 

0 1 2cos cos 2x A A Aφ φ= + +                                                                                                   (3.6.14) 
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where 0tφ ω β= + and . Substituting Eq. (3.6.14) in Eq. (3.6.2) and equating the 
coefficient of the constant part, coefficient of cosφ  and cos 2φ equal to zero, one obtains the 
following equations. 
Constant terms 

2 2 2 2 3 2 2 2
0 0 2 0 1 2 3 0 0 1 0 2 1 2

1 1 3 3 3 0
2 2 2 2 4

A A A A A A A A A A Aω α α   + + + + + + + =   
   

                (3.6.15) 

Coefficient of cosφ  

( )2 2 2 3 2
0 2 0 1 2 1 2 3 0 1 3 1 3 0 1 2 3 1 2

3 32 3 3 0
4 2

A A A A A A A A A A A Aω ω α α α α α α− + + + + + + =                (3.6.16) 

Coefficient of cos 2φ  

( ) ( )2 2 2 3 2 2 2
0 2 2 1 0 2 3 2 0 2 1 2 0 1

1 34 2 4 2 2 0
2 4

A A A A A A A A A A Aω ω α α − + + + + + + = 
 

              (3.6.17) 

Assuming 1A to be small, one can observe from Eqs. (3.6.15-3.6.17) that 0A and 2A  are of the 
order of 2

1A . So neglecting the terms of ( )4
1O A  and higher order terms one can write 0A  in terms 

of 1A form Eq. (3.6.15) as follows.  

( )2 42
0 1 12

0

1
2

A A O Aα
ω

= − +                            (3.6.18) 

Now multiplying 24A in Eq.(3.6.16) and subtracting it from  Eq.(3.6.17) one obtains the 
following equation. 
( ) ( )

( )

( )

2 2 2 2 2 2 3 2 2
0 2 2 0 2 2 2 2 3 0 2 3 1 2 3 0 2 3 2 0 2

2 2 2 3
2 1 0 2 3 1 0 2 0 2 2

2 2
0 2 2 1

2 4
2 2 1 12

0

4 8 4 12 3 12 6 4

1 3 32 3 0
2 2 4

1, 3 0
2

1,
6

A A A A A A A A A A A A A

A A A A A A A A A

or A A

or A A O A

ω ω α α α α α α ω ω

α α

ω α

α
ω

− + + + + + + + − +

   − + − + + + =   
   

− =

= +

(3.6.19) 

Substituting the expressions for 0A and 2A in Eq. (3.6.16) one obtains 
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( )

( )

( )

2 2 2 2 2
0 2 0 2 2 3 0 3 1 3 0 2 3 2

2 2 2 2 2 42 2
0 2 1 2 1 3 1 12 2

0 0

2 2 2 42
0 3 1 12

1 0

2
2 2 2 43 0 2

0 1 12
0

3 32 3 3
4 2

1 1 3Or, 2
2 6 4

5 3Or, 
6 4

18 20Or, 
24

Or, 

A A A A A A A

A A A O A

A O A

A O A

ω ω α α α α α α

α αω ω α α α
ω ω

αω ω α
α ω

α ω αω ω
ω

ω

= + + + + + +

   
= + − + + +   

   
 

= + − + + = 
 −

= + + 
 

=

2
23 0 2

1/22
23 0 2

0 14
0

0 14
0

18 201
24

Or, 9 101
24

A

A

α ω αω ω
ω

α ω αω
ω

  −

  −
+  
 

= +  


 

 

                                              (3.6.20) 

By substituting 1A aε= , this expression is same as that obtained by applying method of multiple 
scales and Lindstedt Poincare’ technique. 
Now substituting the expression of 0A and 2A in Eq. (3.6.14) one obtains 

 22
1 12

0

1 1cos 1 cos 2
2 3

x A Aαφ φ
ω

 = − −  
                    (3.6.21) 

Though the harmonic balance method is the most commonly used method for analyzing the 
nonlinear structural vibration, it has several disadvantages. First the formulation is very tedious 
not only for a multi degree of freedom nonlinear system but also with higher harmonic terms 
taken into account. Second, to obtain a consistent solution, one needs to know a priori which 
harmonic terms to be included in the analysis. Third a separate analysis is required to study the 
stability of the system.   
 
Exercise problems: 
Determine the frequency response of a 3-degree of freedom system given by the following 
equation  

( ) ( ) ( )
( ) ( ) ( ) ( )
( )

32
1 0 1 12 1 2 1 2 1 2

3
2 21 2 1 23 2 3 1 2 2 1

3 32 3 2

2 cos

2 0

0

x x c x x x x x x P t

x c x x c x x x x x x

x c x x

ω α ς

α ς

+ + − + − + − = Ω

+ − + − − − + − =

+ − =

  

  



             (3.6.22) 

These equations represent that of a three mass system where the first mass is connected to a rigid 
support by a spring and subjected to a harmonic force cosP tΩ . The first and second mass are 
connected by a spring with cubic nonlinearity and a linear damper. The second and third mass is 
connected by a linear spring. (Refer Stupnicka (1990, volume 2, page 152-162)). 
 
Materials for further reading 

• Wanda Szemplinska Stupnicka,The Behavior of Nonlinear Vibrating Systems, Volume 1. 
Fundamental Concepts and Methods, Application to Single-Degree-of-Freedom Systems, 
Kluwer Academic Publishers, London,1990. 
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• Wanda Szemplinska Stupnicka,The Behavior of Nonlinear Vibrating Systems, Volume 2. 

Advanced Concepts and Application to Multi-Degree-of-Freedom Systems, Kluwer Academic 
Publishers, London, 1990. 
 

• A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, New York, 1973. 
 

• V. V. Bolotin, The Dynamic Stability of Elastic Systems, Holden-Day, Inc, 1964. 
 

• B. Ravindra, A.K. Mallik, Hard Duffing-type vibration isolator with combined Coulomb and 
viscous damping, International Journal of Non-Linear Mechanics 28 (1993) 427–440. 
 

• B. Ravindra, A.K. Mallik, Performance of non-linear vibration isolators under harmonic 
excitation, Journal of Sound and Vibration 170 (1994) 325–337. 
 

• A.K.Mallik, V. Kher, M. Puri, H. Hatwal, On the modelling of non-linear elastomeric vibration 
isolators, Journal of Sound and Vibration 219 (1999) 239–253. 
 

• Z.K. Peng, G.Meng, Z.QLang, W.M.Zhang,  F.L.Chu Study of the effects of cubic nonlinear 
damping on vibration isolation using Harmonic Balance Method,  International Journal of 
Nonlinear Mechanics 
 

• Hadj Youzera , Sid Ahmed Meftah, Noel Challamel, Abdelouahed Tounsi, Nonlinear damping 
and forced vibration analysis of laminated composite beams, Composites, Part B. 
 

• J. J. Wu. A generalized harmonic balance method for forced nonlinear oscillations: the 
subharmonic cases. Journal of Sound and Vibration, 159(3), 503-525,19 
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Module 3 Lecture 7 
 
METHOD OF AVERAGING: 
 
This is one of the techniques for variation of parameters and there are many techniques such as 
van der Pol's technique, Krylov-Bogoliubov, the generalized method of averaging, the Krylov-
Bogoliubov-Mitropolsky technique, etc.(Nayfeh 1973). A detailed study of this method can be 
found in the book of Nayfeh (1973). Few of these techniques are described here with examples. 
 
Vander Pol’s Technique  
 
Consider the equation 
 

( )
2

2 2
02 1 cosd u duu u f t

dt dt
ω ε ε+ + − = Ω Ω                                                                                   (3.7.1) 

 
Assuming ε to be small and the frequency of external excitation nearly equal to the natural 
frequency 0ω which can be written by using a detuning parameter σ as follows 
 

0ω εσΩ = +                                                                                                                            (3.7.2) 
Initially the solution of Eq. (3.7.1) can be assumed to that of the equation considering ε  equal to 
zero but with variable coefficient as given below. 

1 2( ) ( ) cos ( )sinu t a t t a t t= Ω + Ω                                                                                               (3.7.3) 

Here 1( )a t and 2 ( )a t are assumed to be slowly varying function of time. Hence, ( )ida o
dt

ε=  

and
2

2
2 ( )id a o

dt
ε= . Differentiating Eq.( 3.7.3) twice one obtains 

( ) ( )2 2 1cos sinu a a t a a t= + Ω Ω + − Ω Ω                                                                                     (3.7.4) 

( ) ( )2 2
1 2 1 1 2 22 cos 2 sinu a a a t a a a t= −Ω + Ω + Ω + − Ω + −Ω Ω                                                      (3.7.5) 

Substituting Eq. (3.7.3-3.7.5) in Eq. (3.7.1) one obtains 
 
( ) ( ) ( )

( )( ) ( ) ( )( )

2 2 2
1 2 1 1 2 2 0 1 2

2
1 2 2 2 1

2 cos 2 sin ( )cos ( )sin

( ) cos ( )sin 1 cos sin cos

a a a t a a a t a t t a t t

a t t a t t a a t a a t f t

−Ω + Ω + Ω + − Ω + −Ω Ω + Ω + Ω

+ Ω + Ω − + Ω Ω + − Ω Ω = Ω Ω

   

 

ω

ε ε
    (3.7.6) 

Or,  
( ) ( )

( )
( )

2 2 2 2
0 1 2 1 1 2 0 2

2 3 2 3 3 2 2
1 2 2 1 2 1 2

3 2 2
1 1 2 2 1

( ) 2 cos 2 ( ) sin

cos sin 2 sin cos
cos

2 cos sin cos sin

a a a t a a a t

a a t a a t a a a t t
hot f t

a a a t t a t a t

−Ω + + Ω + + Ω + − Ω + + −Ω + Ω

 Ω − Ω + − Ω Ω −
 + Ω + = Ω Ω
 − Ω Ω − Ω Ω + Ω Ω 

   ω ω

ε ε
                 (3.7.8) 
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Now using, 

( )3cos cos3 3cos / 4t t tΩ = Ω + Ω , ( )3sin 3sin sin 3 / 4t t tΩ = Ω − Ω , 

( )2cos sin sin sin 3 / 4t t t tΩ Ω = Ω − Ω and ( )2sin cos cos cos3 / 4t t t tΩ Ω = Ω − Ω                  (3.7.9)                                        

in Eq. (3.7.8) and keeping in mind that 1a  and 2a  are 2( )o ε  and then equating the coefficient 
of cos tΩ  and sin tΩ to zero one obtains the following two equations. 
 

2 2 2 2
0 1 2

1 2 12 1 0
4

a aa a aω ε
   Ω − +

+ − − =   Ω   
                                                                             (3.7.10) 

  
2 2 2 2

0 1 2
2 1 22 1

4
a aa a a fω ε ε

   Ω − +
− − − =   Ω   

                                                                             (3.7.11) 

 
For steady state, 1 2 0a a= =  . Using Eq. (3.7.2) in the above equations, one may obtain 

( )2 22 2 2 2 2 2
0 00 0 0 02 2

ω εσ ωω ω εω σ ε σ ω εσ
+ −Ω − + + −

= =
Ω Ω Ω

 .                                             (3.7.12) 

Taking the equilibrium solution to be 10a and 20a and writing 
2 2
10 20

0 4
a aρ +

= , Eqs. (3.7.10) and 

(3.7.11) reduced to the following equations. 
( )20 10 02 1 0a aσ ρ− − =                                                                                                           (3.7.13) 

( )10 20 02 1a a fσ ρ− − − =                                                                                                          (3.7.14) 
squaring and adding Eqs. (3.7.13) and (3.7.14) one obtains 

( ) ( ) ( )22 2 2 2 2 2
10 20 0 10 204 1a a a a fσ ρ+ + − + =                                                                              (3.7.15) 

( )( )22 2
0 04 4 1 fρ σ ρ+ − =                                                                                                     (3.7.16) 

 
This is the frequency response equation of the system governed by van der Pol’s equation. For 
forcing function 0f = , Eq. (3.7.16) reduces to 

( )22
04 1 0σ ρ+ − =                                                                                                                 (3.7.17) 

 
Krylov–Bogoliubov Technique 
 
Let us consider a general equation 

( )
2

2
02 ,d x x f x x

dt
ω ε+ =                                                                                                             (3.7.18) 

 
According to this method, one may assume the solution of this equation same as the solution of 
the linear equation by substituting 0ε = , but in this case the constant terms are assumed as 
function of time. So the solution of this equation can be written as 
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     [ ]0( ) cos ( )x a t t tω β= +                                                                                              (3.7.19) 
Also it is assumed that 
     ( )0 0( )sinx a t t tω ω β= − +                                                                                           (3.7.20) 
Differentiating (3.7.19) one may write 

 ( ) [ ]0 0 0( )sin cos ( )d dax a t t t t t
dt dt
βω ω β ω β = − + + + +     

                                                 (3.7.21) 

Differentiating (3.7.20) one may write 

( ) ( )0 0 0 0 0sin ( ) cosda dx t t a t t t
dt dt

βω ω β ω ω ω β = − + − + +        
                                        (3.7.22) 

Substituting 0 ( )t tφ ω β= + , compairing Eq. (3.7.20) and Eq. (3.7.21)  

sin cos 0d daa
dt dt
β φ φ− + =                                                                                                     (3.7.23) 

Also, from Eq. (3.7.18) and Eq. (3.7.22) 

( )2
0 0 0 0

2 2
0 0sin cos co cos , sis nda dx x f a a

dt dt
a aω βω ω φ ω ε φω ω φφ φ + = − + − + = − 


−


         (3.7.24) 

Or, ( )0 0 0sin cos cos , sinda da f a a
dt dt

βω φ ω φ ε φ ω φ− − = −                                                  (3.7.25) 

 
From Eq. (3.7.23) and Eq. (3.7.25) one may write Carrying out the operation 

0 cosω φ ×  Eq. (3.7.23) - sinφ ×Eq.  (3.7.25) yields 

( )0
0

sin cos , sinda f a a
dt

ε φ φ ω φ
ω

= − −                                                                                    (3.7.26) 

Carrying out the operation 0 sinω φ ×  Eq. (3.7.23) + cosφ ×Eq.  (3.7.25) yields 

( )0
0

cos cos , sind f a a
dt a
β ε φ φ ω φ

ω
= − −                                                                                 (3.7.27) 

For small ε , da
dt

and d
dt
β are small; hence a  and β vary much more slowly with time t  than 

0tφ ω β= + . In other words,  a  and β hardly change during the period of oscillation  
0

2T π
ω

=  of 

cosφ  and sinφ . Hence, one may average the equations (3.7.26) and (3.7.27) over the period T . 

Considering a , β , da
dt

 and d
dt
β  to be constant during this averaging one obtains the following 

equations. 
 

              
( )

( )

00
0

20
00

0 0

sin cos , sin

    sin cos , sin
2

Tda f a a dt
dt T

df a a
π

ε φ φ ω φ
ω
εω φφ φ ω φ
ω π ω

= − −

= − −

∫

∫
                                                     (3.7.28)                           
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Similarly 

( )

( )

00
0

20
00

0 0

cos cos , sin

cos cos , sin
2

Td f a a dt
dt a T

df a a
a

π

β ε φ φ ω φ
ω

εω φφ φ ω φ
ω π ω

= − −

= − −

∫

∫
                                                                     (3.7.29) 

Hence, from equation (3.7.28) and (3.7.29) one can write the averaged equations as follows. 

( )
2

00
0

sin cos , sin
2

da f a a d
dt

πε φ φ ω φ φ
πω

= − −∫                                                                     (3.7.30) 

 

( )
2

00
0

cos cos , sin
2

da f a a d
dt

πβ ε φ φ ω φ φ
πω

= − −∫                                                                 (3.7.31) 

It may be noted that the above two equations are obtained by multiplying 
02

ε
πω

− sinφ  and 

02
ε
πω

− cosφ to the forcing function ( f ) and integrating it from 0 to 2π . But in the forcing 

function one should substitute cosx a φ= and 0 sinx aω φ= − . 
Example 3.7.1:  
Let us apply Krylov–Bogoliubov Technique to Duffing equation with cubic nonlinearity.  
 
Solution: 
Here the equation is given by 

( )2 3
0 ,x x f x x xω ε ε+ = = −                                                                                                      (3.7.32) 

Hence, ( ) ( )3 3 3 3 3 1, cos cos cos cos3
4 4

f x x a a aε ε φ ε φ ε φ φ = − = − = − + 
 

                          (3.7.33) 

Using equation (3.7.30) and (3.7.31) one can write 

( )
2

00
0

3 2

0
0

sin cos , sin
2

3 1sin cos cos3 0
2 4 4

da f a a d
dt

a d

= − −

 = + = 
 

∫

∫

π

π

ε φ φ ω φ φ
πω

ε φ φ φ φ
πω

                (3.7.34) 

 
3 3 32

0
0 0 0

3 1 3 3cos cos cos3
2 4 4 8 8

d a a aa d
dt

πβ ε πεφ φ φ φ ε
πω πω ω

 = + = = 
 ∫                                     (3.7.35) 

 
One may use the following Matlab code to find the integration 
syms p 
int(cos(p)*(3*cos(p)+cos(3*p)),0,2*pi) 
 
(ans =  3*pi) 
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Or instead of writing 3cos φ in terms of cosφ and cos3φ , one may directly integrate 
cosφ * 3cos φ symbolically using Matlab as follows. 
 
syms p 
int(cos(p)*(cos(p))^3,0,2*pi) 
 
ans = (3*pi)/4 
 
From Eq. (3.7.34) and (3.7.35) one may obtain 

2

0
0

3constant and 
8

aa tβ ε β
ω

= = +  

Hence, using equation (3.7.19), the solution of this equation can be given by 

 [ ]
2 2

0 0 0 0 0
0 0

3 3( )cos ( ) cos cos
8 8

a ax a t t t a t t a tω β ω ε β ω ε β
ω ω

    
= + = + + = + +         

              (3.7.36) 

So the frequency of oscillation of the system is 
3

0
0

3
8

aω ε
ω

+ . But it may be noted that this 

frequency expression is not correct. Hence one has to use better approximation to obtain the 
accurate solution. In the next lecture generalized averaging and the KBM method will be 
described which give better results than the KB method. 
 
Exercise Problems 
1. Use Krylov–Bogoliubov Technique to find the response of a single degree of freedom system 
with (i) viscous damping, (ii) Coulomb damping, (iii) Negative damping, (iv) quadratic nonlinear 
damping and (v) hysteretic damping.  
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Module 3 Lecture 8 

 
Generalized method of averaging 
 
In this case instead of writing the reduced equations in terms of a and β , it is written in terms of 
a and φ  as follows. This lecture is adopted from the book by Nayfeh (1973). 

( )0
0

sin cos , sinda f a a
dt

ε φ φ ω φ
ω

= − −                                                                                    (3.8.1) 

As 0tφ ω β= +  and  ( )0
0

cos cos , sind f a a
dt a
β ε φ φ ω φ

ω
= − − one may write 

( )0 0
0

cos cos , sind f a a
dt a
φ εω φ φ ω φ

ω
= − −                                                                           (3.8.2) 

Unlike in the case of K-B method, instead of integrating Eq. (3.8.1) and (3.8.2) to get a and φ , a 
near-identity transform has been used in this method as follows. 
 ( ) ( )2

1 2, ,a a a a a aε φ ε φ= + + +                                                                                     (3.8.3) 

( ) ( )2
1 2, ,a aφ φ εφ φ ε φ φ= + + +                                                                                     (3.8.4) 

Substituting Eq. (3.8.3) in Eq. (3.8.1) and Eq. (3.8.4) in Eq. (3.8.2), it can be written as  

( ) ( )2
1 2

da A a A a
dt

ε ε= + +                                                                                                    (3.8.5) 

( ) ( )2
0 1 2

d B a B a
dt
φ ω ε ε= + + +                                                                                            (3.8.6) 

with iA and iB independent of φ . Substituting Eqs. (3.8.3)-(3.8.6) in Eqs. (3.8.1) and (3.8.2), 
expanding and equating coefficients of like power of ε , one obtains equations in the following 
forms. 

( )0 ,n
n n

a A F aω φ
φ

∂
+ =

∂
                                                                                                     (3.8.7) 

( )0 ,n
n nB G aφω φ

φ
∂

+ =
∂

                                                                                                          (3.8.8) 

Here, ( ),nF a φ and ( ),nG a φ are known function of lower-order terms which contain short 
period terms and long-period terms. Denoting short-period and long period terms by superscript 
s and l , respectively, one may write 
 ,l l

n n n nA F B G= =             (3.8.9)   

So, 0 0,s sn n
n n

a F Gφω ω
φ φ

∂ ∂
= =

∂ ∂
                                                                                            (3.8.10) 

These equations can be solved to obtain the frequency response curve of the system. 
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Example 3.8.1 
Let us consider the example of van der Pol oscillator in which one may write  

( ) ( )2, 1u u f u u u u+ = = −   .                                                                                     (3.8.11) 
Using generalized method of averaging we have to find the frequency response relation. 
Solution: 
Here, 0 1ω = . So, Eq. (3.8.1) and (3.8.2) can be written as 
 

( )

( )

2 3

2 2

1 4 4 cos 2 cos 4
8

11 2 2 sin 2 sin 4
8

da a a a a
dt
d a a
dt

ε φ φ

φ ε φ φ

 = − − + 

 = + − − 

                  (3.8.12) 

Substituting Eq. (3.8.3) and Eq. (3.8.4) in Eq. (3.8.12) it can be written as  
 

( ) ( )( )
( ) ( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

22 2
1 2 1 2

2
1 2 2 2

1 2 1 2

32 2
1 2 1 2

2
11 2

, , 4 , ,
, , 1 4 , , cos 2 , ,

8
, , cos 4 , ,

2 2, , 11
8

a a a a a a a a a a
d a a a a a

a a a a a a a
dt

a a a a a a a

a a ad a a

dt

ε φ ε φ ε φ ε φ
ε φ ε φ

ε ε φ ε φ φ εφ φ ε φ φ

ε φ ε φ φ εφ φ ε φ φ

εφ εφ φ ε φ φ
ε

 + + + − + + + 
+ + +  

= − + + + + + + 
 
 + + + + + + +
  

− ++ + +
= +

 



 

 



( ) ( )( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

22 2
2 1 2

22 2
1 2 1 2

, , sin 2 , ,

, , sin 4 , ,

a a a a

a a a a a a a

φ ε φ φ εφ φ ε φ φ

ε φ ε φ φ εφ φ ε φ φ

 + + + + + 
 
 − + + + + + + 

 

 

                      
                       (3.8.13) 
                        

Substituting Eq. (3.8.5)-(3.8.8) in (3.8.12) one obtains 
 
Order ε  

( )

( )
term without  

2
1

31

2 21
1

1 1cos 2 cos 4
2 8

1 12 sin 2 s

1 4
8

in 4
4 8

A a a

B

a a a

a a

φ

φ φ
φ

φ φ φ
φ

∂
+ = − +

∂

∂
+ = − −

−

∂



                                                      (3.8.14) 

      
Order 2ε  
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( )

( )

2 22 1 1
2 1 1 1

2
1

2 1 1
2 1 1 1

2 2
1

1 4 3 4cos 2 3 cos 4
8

1 2sin 2 sin 4
2

1 2sin 2 sin 4
4

1 2 cos 2 cos 4
2

a a aA A B a a a
a

a a

B A B aa
a

a a

∂ ∂ ∂  + = − − + − − + ∂ ∂ ∂

 + − 

∂ ∂ ∂
+ = − − − +

∂ ∂ ∂

 + − − 

φ φ
φ φ

φ φ φ

φ φ φ φ φ
φ φ

φ φ φ

                                   (3.8.15) 

From Eq. (3.8.13) taking terms withoutφ , one may write 

 ( )2
1 1

1 4 , 0
8

A a a B−= − =                             (3.8.16) 

So ( )3 2 21 11 1 1 1cos 2 cos 4 , 2 sin 2 sin 4
2 8 4 8

a a a a aφφ φ φ φ
φ φ
∂ ∂

= − + = − −
∂ ∂

            (3.8.17) 

Solving Eq. (3.8.17) 1a  and 1φ  can be written as follows.  

  
( )

3
1

2 2
1

1 1sin 2 sin 4
4 32
1 12 cos 2 cos 4
8 32

a a a

a a

φ φ

φ φ φ

= − +

= − − +
                                       (3.8.18) 

Now substituting Eq. (3.8.16) in (3.8.14) and (3.8.15) one obtains the following equations. 
 

2
2

2 42
2

1 3 11
8 16 256

a A short period terms

B a a short period terms

φ
φ
φ

∂
+ = −

∂
∂

+ = − + − + −
∂

                                     (3.8.19) 

So, 42
22 256

11
16
3

8
1,0 aaBA −+−==                                  (3.8.20) 

  The first order solution of the system can be given by 
 cosu a φ=                                                      (3.8.21) 
Where, 

( )

( ) ( )

2 2
1

2 2 2
1

1 1sin 2 sin 4
4 8
1 12 cos 2 cos 4
8 4

a a a a a a O

a a O

ε ε φ φ ε

φ φ εφ φ ε φ φ ε

 = + = − − +  
 = + = − − − +  

                                    (3.8.22) 

 

( ) ( )

( )

2 2 3
1 2

2 2 2 4 3
1 2

1 4
8

1 3 111 1
8 2 32

da A A a a O
dt
d B B a a O
dt

ε ε ε ε

φ ε ε ε ε

= + = − +

 = + = − − + +  

                (3.8.23) 
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Krylov–Bogoliubov-Mitropolski Technique 
 

In this case the solution is assumed as an asymptotic expansion of the form 

( ) ( )1

1
cos ,θ ε θ ε +

=

= + +∑
N

n n
n

n
u a u a O                            (3.8.24) 

Also one may consider the following equations  

( ) 1

1
= ( )ε ε +

=

+∑
N

n N
n

n

da A a O
dt

                   (3.8.25) 

1
0

1
 ( ) ( )θ ω ε θ ε +

=

= + +∑
N

n N
n

n

d a O
dt

                             (3.8.26) 

= θ
θ

∂ ∂
+

∂ ∂
d da d
dt dt t dt

                    (3.8.27) 

2 22 2 2 2 2 2

2 2 2 2 2= 2d da d a da d d d
dt dt t dt a dt dt a dt dt

∂ ∂ ∂ ∂ ∂   + + + +   ∂ ∂ ∂ ∂ ∂ ∂   
θ θ θ

θ θ θ
                 (3.8.28) 

2
2 31

12
1

( ) ε ε ε
=

   = = = = +   
   

∑
N

n n

n

dA dAd a d da da d da da A O
dt dt dt dt da dt dt da da

                    (3.8.29) 

2
2 31

12
1

( ) θ θθ θ θ ε ε ε
=

   = = = = +   
   

∑
N

n n

n

d dd d d da d d da A O
dt dt dt dt da dt dt da da

              (3.8.30) 

 
Example 3.8.2: 
 
Apply KBM method to the Duffing equation.  
  
Solution: 
The Duffing equation is given by  

2 3
0u u u+ = − ω ε                         (3.8.31) 

Using Eq. (3.8.24) one may write 

( ) ( ) ( )2 3
1 2cos , , Ou a u a u a= + + +θ ε θ ε θ ε  .                    (3.8.32) 

Substituting Eq. (3.8.32) in Eq. (3.8.31)and using Eq. (3.8.25)- Eq. (3.8.31)  the three terms of 

Eq.(3.8.31) can be written as follows. 
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( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( )

( )

2 2 222 2
1 2 1 2

2 2 2

2 22 22
1 2 1 2

2

22
1 2

2

2 2 2
0 0 1

cos , , cos , ,
=

cos , , cos , ,
2

cos , ,

cos ,

a u a u a a u a u ad u da d a
dt dt t dt a

a u a u a a u a u ada d d
dt dt a dt

a u a u ad
dt

u a u a u

∂ ∂+ + + +  +  ∂ ∂ 
∂ ∂+ + + + + +  ∂ ∂ ∂ 

∂ + +
+

∂
= + +

θ ε θ ε θ θ ε θ ε θ

θ ε θ ε θ θ ε θ ε θθ θ
θ θ

θ ε θ ε θθ
θ

ω ω θ ε θ ε ( )( )
( ) ( )( ) ( )

3
2

33 32 3 3 2
1 2 1

( ) ,

( ) cos , , cos 3 cos

Oa

u Oa u a u a a u a

+

− = − = ++ + +

εθ

ε ε εθ ε θ ε θ ε θ ε θ

     

           (3.8.33)
  

 
2 2 2 222

21 2
2 2 22

2 2 2
2 21 2 1 2

2

Or, cos sinsin cos sin

2cos sin

u uda d a da dda d dda a
dt dt dt dt t tdt dt dtdt

d a dau u d u u
dt dt dta a a a

   ∂ ∂   − + − + ++ +      ∂ ∂     
  ∂ ∂   ∂ ∂   + ++ + − + +      ∂ ∂    ∂ ∂ ∂ ∂   

θθ θθ θ θ ε εθ θ θ

θθ ε ε θ ε ε
θ θ

( ) ( )( )
( ) ( )( ) ( )

2 22 2
22 1 21 2

22 2

2 2
0 1 2

3 32 3 3 2
1 2 1

sincos

 =cos , ,

O( ) cos , , cos 3 cos

d d u uu u aa
dt dt

a u a u a

a u a u a a u a





  ∂ ∂   ∂ ∂  + + +− + +− + +       ∂ ∂ ∂ ∂     

+ +

− = ++ + +

θ θ
θ ε εθ ε ε

θ θθ θ

ω θ ε θ ε θ

ε εθ ε θ ε θ ε θ ε θ

           
                       (3.8.34)

 Substituting Eq. 3.8.25 to Eq. 3.8.30 in the above equations one may obtain the following 

expression 
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( )
( )( ) ( )

( )( )

22 2 22 1
1 2 0 1 2 10 1 2

22
1 2 2 2

2 2 221 1 2
1 1 2 0 1 2 2 2

2 21 1 2
1

sin cos sin
Or,

cos sin

cos

dA A a a A
da

A A
dA u uA A A
da t t

dA u uA
da a a

   − + + + + ++ +   
   +

 ∂ ∂ + − + + + + +  ∂ ∂  
∂ ∂  + ++ +   ∂ ∂  

θε ε ω εθ ε θ θ θ θ εω εθ ε θ
ε ε

ε θ ε ε θ ε εω εθ ε θ

ε θ ε ε ( )( )

( )
( ) ( )( )
( ) ( )( )

2 2
2 2 21 2

1 2 0 1 2

2 222 2 212 1 21 2
0 1 2 12 2

2 2
0 1 2

32 3 3
1 2

2 sin

sincos

 =cos , ,

cos , , cos 3

u uA A
a a

d u uu u A aa
da

a u a u a

a u a u a a

 ∂ ∂+ + + − + + ∂ ∂ ∂ ∂ 
∂ ∂   ∂ ∂  + + + + +− + +− + +     ∂ ∂ ∂ ∂   

+ +

− =+ + +

ε ε ω εθ ε θ θ ε ε
θ θ

θω εθ ε θ ε θ ε εθ ε ε
θ θθ θ

ω θ ε θ ε θ

ε θ ε θ ε θ ε θ ε( ) 32
1 O( ) cosu a + εθ

                      
 (3.8.35)

 
 

( )
( )( ) ( )

( )( )

22 2 22 1
1 2 0 1 2 10 1 2

22
1 2 2 2

2 2 221 1 2
1 1 2 0 1 2 2 2

2 2 2 cos1 0

sin cos sin
Or,

cos sin

dA A a a A
da

A

A

A
dA u uA A

a

A
da t t

   − + + + + ++ +   
   +

 ∂ ∂ + − + + + + +  ∂ ∂  
 

θε ε ω εθ ε θ θ θ θ εω εθ ε θ
ε ε

ε θ ε ε θ ε εω εθ ε θ

ε ω θ

( )( )
2 2

2 22 21 21 2 1 2
1 1 2 0 1 22cos

22 1 cos 2 2 2 12 sin 2 sin 2 sin 21 1 0 1 1 0

si

2 1

n

0

dA u u u uA A

dA uA

A
da a a

A A A Ada a

a a
∂ ∂    ∂ ∂ + + ++ + + + − + +    ∂

∂
−

∂  ∂ ∂ ∂ ∂   

− + +
∂ ∂



 

ε ε εθ ε ε ω εθ ε

ε θ ε ω

θ θ ε ε
θ θ

θ ε θ θ ε ω θ ε ω
θ

( )
2 222 21 2

0 1 2 2

2
1
2

2

2 21 1 2
1

2 2
2 2 2 2 2 2 2 21 2cos co

cos

sin

s 2 cos 2 2 cos0 0 0 1 0 1 0 1 0 22 2
u u ua a a

u ua

d u u
da

a

A a

 ∂ ∂+ + + − + + ∂ ∂ 

∂ ∂ + − + +  ∂ ∂

∂ ∂ ∂
− + + − − + −

∂∂ ∂







ω θ ω ε ω ε ε θ θ ω εθ θ ω ε θ ω ε θ θ
θθ θ

ω εθ ε θ θ ε ε
θ θ

θε θ ε ε
θ θ

( ) ( )( )

( ) ( )( )

2 2
0 1 2

32
1 2

2 1 sin1

3 3 2co

 cos , ,

= cos ,

s 3 cos

,

1

a u a u a

a u a u a

d
a A

da

a u a

 + + +

−

 
 

− +

+

+





ω θ ε θ ε θ

ε θ ε θ

θ
ε θ

ε θ ε

θ

θ

ε

                       
(3.8.36)
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( )

2 2 2 2 2 21
1 0 1 1 1 1 0 2

2 2 2
2 2 2 2 2 2 21 1 2

1 0 0 0 0 1 0 12 2

2
2 2 2 2 21 1

0 1 0 2 1 0 1 22

Or,

cos cos 2 sin 2 sin 2 sin0

2 cos cos 2 cos

2 2 cos sin  cos

dAA a A A A A
da

u u uA a a a
a
u da a A a u u

da

+ − − +

∂ ∂ ∂
+ − + + − −

∂ ∂ ∂ ∂
∂

+ − − + + +
∂

ε ω θ ε θ ε ω θ ε θ θ ε ω θ

ε ω ω θ ω ε ω ε ε θ θ ω εθ θ
θ θ θ

θω θ ε ω ε θ θ ε θ ω θ ε ε
θ

( )3 3 2
1= cos 3 cosa u a− +ε θ ε θ

                        
(3.8.37)

 

 

 

2
2 2 2 2 3 31
0 0 0 0 1 0 1 12

2 2
2 2 22 1 1
0 0 2 0 1 1 0 2 12 2

2
2

1 1
1 1 0 2 1 0

2 2
1 0

1

Or,

cos cos 2 cos 2 sin cos0

2 cos 2 cos cos

2 sin 2 sin sin 2

co

3

s

ua a u a A a

u u dAu A a a
da

d uA A aA A
da

A

a

a

 ∂− + + − − + ∂ 

∂ ∂
+ + + − −

∂ ∂+
∂

− + − +

+

+
∂ ∂

ω θ ω θ ε ω ω ω εθ θ ε ω θ θ
θ

ω ω ω θ θ ω θ θ θ θ
θ θε

θθ θ

ω θ

ω θ θ ω
θ

2 2
1

=0
cosu a

 
 
 
 
 
 

θ

     
(3.8.38)

 

 
Now collecting the terms with different order of ε , one obtains the following equations. 

2
2 2 3 31
0 0 1 0 1 0 12 =2 cos 2 sin cosu u a A a∂

+ + −
∂

ω ω ω θ θ ω θ θ
θ                

(3.8.39) 

 
2

2 2 22 1 1
0 0 2 0 2 1 1 0 2 1 1 12

2 2
2 2 1 1

1 0 1 0 12

= cos sin(2 ) 2( )

3 cos 2 2

u dAu a A A A aA
da a

d u d uu a A
d a

∂ ∂   + ++ − + +   ∂ ∂   

− − −
∂ ∂

θω ω θ θω θ θ ω θ
θ

θ ω θ ω
θ θ

              (3.8.40) 

To eliminate Secular term 
2

1 1
0

30,     
8

aA = =θ
ω

                                                        (3.8.41) 
3

1 2
0

cos3  
32

θ
ω

=
au                                                      (3.8.42) 

( )
42 5

2 22
0 20 0 2 0 222 2

0 0

152 cos 2 sin 21cos3 3cos5128 128
au au a A

 ∂
++ = + + − ∂  

ω θω ω θ ω θ θ θωθ ω       
(3.8.43) 
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4

2 2 3
0

150,     
256

aA = = −θ
ω

                               (3.8.44) 

( )
5

2 4
0

a
21cos3 cos51024

u = − −θ θ
ω

                  (3.8.45) 

( )
3 2 5

3
2 2
0 0

cos cos3 O( )21cos3 cos532 1024
a au a= + − +−

ε εθ θ εθ θ
ω ω

              (3.8.46)  

0
a =0, or    constant
t

d a a
d

= =
 

2 2 4

0 2 3
0 0

3 15 
8 256

d a a
dt

= + −
θ ε εω

ω ω     
                                    (3.8.47)  

2 2 4
3

0 02 4
0 0

3 a 15 a1 = O( )
8 256

t
 
+ − + + 

 

ε εθ ω θ ε
ω ω

                              (3.8.48) 

The van der Pol’s Oscillator 
2(1 )u u u u+ = − ε                                 (3.8.49) 

 2
321

1 1 12

11=2 cos 2 sin sin sin 31
44

u u a A a aa
∂  + + − −− ∂  

θ θ θ θ θ
θ                     

(3.8.50)
  

( )

2
22 1 1

2 2 1 1 2 1 1 12

2 2 2
21 1 1

1 1 1112

secular term secular te

= cos sin(2 ) 2( )

2 2 sin 2si

rm

co n1 1 scos 22

u dA du a A A A aA
da da

u u uaA ua
a

A a

∂    + ++ − + +   ∂    

∂ ∂ ∂  − − + +− +−  + ∂ ∂ ∂ ∂  

 

θθ θθ θ θ
θ

θ θθ θθθ θ θ
θ

          
(3.8.51)

   

Elimination of secular terms from the right-hand side  
2

1 1
1 10, 1
2 4

A a a = = − 
 

θ
                                 

(3.8.52)
   

3

1 sin 3  
32

θ= −
au

                     
(3.8.53)

 
 

2 3
2 21

2 2 1 12

3 2 5

2

3 cos2 1
1284

( 8) 52 sin cos3 cos5
128 128

u dA au a A Aa
da

a a aA

∂   + = − + +−  ∂   
+

+ + +

θθ
θ

θ θ θ

                                             (3.8.54)
 

      
4

21 1
2 2

30,             1
2 2564
A adAA a
a da
 = = −− + 
 

θ                          (3.8.55)
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5 3 2

2
5 ( 8)cos5 cos3

3072 1024
θ θ+

= − −
a a au                                                                   (3.8.56)

 
         

3 2 5
32 25cos sin 3 O( )cos5 ( 8)cos3

32 1024 3
a au a a a = − − ++ +  

ε εθ θ εθ θ                      (3.8.57)
 

    
 

22

2

41 ,    1
42 4 1 1 t

da a aa
dt e

a
−

 = =−     + − 
 

ε

ε                            (3.8.58)
 

   
4

2 21 1 31  1
2 2564
Ad adA a

dt a da
  = + −− +    

θ ε                      (3.8.59)
 

     
2

271  1 a
16 8 4

d da
dt a dt

 = − − − 
 

θ ε ε                                 (3.8.60)
 

        
2

2
0

7ln +  
16 8 64
ε ε εθ ε= − − +t t a a                            (3.8.61)
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Module 3 Lecture 9 
 
METHOD OF NORMAL FORM 
 
In this lecture method of normal form will be used to determine the reduced equation which will 
be further used to find the response and stability of the nonlinear system. In case of normal form 
the solution of the linear equation with time varying coefficient is first considered. By 
substituting this solution with unknown coefficient in the governing equation of motion the 
normal form solution of the nonlinear equation has been obtained. This method is illustrated 
below using the nonlinear equation of a parametrically excited cantilever beam with axial load 
and magnetic field (Pratiher and Dwivedy, 2009). 
 
Example 3.9.1:  Find the normal form solution of the following equation. 

( ) ( ) ( )( )
1 2 3

2 2
4 1 1 5 1 2 6 2

23 2

2

2

cos   cos cos 0

q q q q q q q q

q q

 + + εζ + ε α +α +α + 
 

ε α ω ω τ +α ω ω τ +α ω τ =

   

       (3.9.1)                                                        

One may find that the non-dimensional temporal equation (3.9.1) has a linear forced term 

( τωωα
1

2
15 cos ), a linear parametric term ( ( )6 2cos qα ω τ ) and a nonlinear parametric excitation 

term ( ( )2
4 1 1

2cos qα ω ω τ ) along with cubic geometric ( 3
1

qα ) and inertial ( 2 2
2 3

q q q qα α+  ) 

nonlinear terms. Here method of normal form Nayfeh (1993) is used which is described in the 
following section. 
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Solution: 

To find the approximate solution of equation (3.9.1), one may use the method of normal form. In 
this method, one may transform the second order temporal equation of motion into a set of first 
order equations to determine the uniform expansions of the solutions of equation (3.9.1). The 
general solution of equation (3.9.1) by putting є equal to zero is as follows.  

( ) ( )exp expq A i A iτ τ= + − ,                                                  (3.9.2)                                                        

Here, A  is  a complex number and A is the complex conjugate of A .   
One may write the first time derivative of the q as  

( ) ( )( )exp expq i A i A iτ τ= − −                                     (3.9.3)                                                   

By replacing ( ) ( )τ−τ iA  ,iA expandexp  in terms of ξξ    and , respectively into equations (3.9.2) 
and (3.9.3), yields the following expression. 
                              ( )and  ,     q q iξ ξ ξ ξ= + = − ,                                                             (3.9.4) 

where, ξ  is  the complex number and ξ is the complex conjugate of ξ .   

Substituting ( )τω= 1exp iz , and ( )τω= 21 exp iz , respectively into equation (3.9.4), results in the 

following equation. 

( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( )( )1 1
( )

4 4

3 2 2

1 2 3

2
2

4 5 6

2
2

i i1        z z z z  z z              3.9.5

ii iξ ξ ε µ ξ ξ ε α ξ ξ α ξ ξ ξ ξ ξ α ξ ξ ξ ξ

ω
ε α ξ ξ α ε α ξ ξ

 = − − + + + + − + − − +  

 + + + + + + + +  

 

 

Here, introducing a nearly identify variableη , variable ξ  may be written as  

( ) ( )2
11 ε+ηηε+η=ξ Oz,z,z,z,,h , and 

 ( )2
1

1
1

1
ε+








∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+η
η∂
∂

+η
η∂
∂

ε+η=ξ Oz
z
hz

z
hz

z
hz

z
hhh













                                       (3.9.6) 

Substituting equation (3.9.6) into the equation (3.9.5), one may obtain 

( ) ( )

( ) ( ) ( ){ } ( ) ( )

( ) ( ) ( ) ( )( ) ( )

1 1
1 1

3 2 2
1 2 3

2
2 21

4 4 6 1 1

            2
2
i i            z z z z  z z O         (3.9.7)

4 4

h h h h h hi h z z z z
z z z z

i i

 ∂ ∂ ∂ ∂ ∂ ∂
η = η+ ε − εµ η−η − η+ η+ + + + ∂η ∂η ∂ ∂ ∂ ∂ 

 + ε α η+η +α η+η η−η + η −α η−η η+η 

ω  + ε α η+η + +α + + εα η+η + + ε 


 

 
 

  

As the temporal equation contains cubic nonlinear terms, assuming h to be of third order in η   
and η  one may write 
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h z z z z z z z z
z z z z

= ∆ + ∆ + ∆ + ∆ + Φ +Φ +Φ +Φ + Γ + Γ
+ Γ + Γ + Γ + Γ + Λ + Λ + Λ + Λ

2
1 2 3 4 1 1 2 1 3 1 4 1 1 2

2 2 2 3 2 2 3
3 4 5 6 1 2 3 4   .         (3.9.8)  
η η η η η η η ηη
η η ηη η η η η ηη η

 
 
From equation (3.9.7), the first order approximate solution may be written as  

                                              η=η i , and  η−=η i                                                       (3.9.9) 

Substituting equations (3.9.9) and (3.9.8) into equation (3.9.7), one may get the following 

expression. 

( ) ( )

( ) ( )

( )

( )

2 2
2 4 5 1 3 5 1

3 3
1 2 3 1 1 2 3 4

2 23
1 2 3 3 1 2

2 2
4 1 1 1

1 12 1
4 4

1 1    2 4
2 2
3 3    2
2 2 3
1    1
4

i i i z i z

i i

i i

i z i

   η = η− εµη+ ε µ + ∆ η+ ε ∆ + α ω + ε ∆ −ω + α ω   
   

   + ε α −α −α − Α η + ε α −α −α + Α η   
   

α  + ε α −α +α + Α ηη + ε α −α + η η   
   
 + ε α ω −Γ +ω η + 
 



( )

( ) ( )

( ) ( )

{ }

2
4 1 2 1

2 2 2 2
4 1 3 1 4 1 4 1

2 2 2
4 1 5 1 4 1 6 1

2 1 6 1 2 3 6 1

2 2

1 1
2

1 1    3 1
4 4

1 1   1 3
2 4

1 1    
4 4

1     i 2
4

z

i z i z

i z i z

i z i z

 ε α ω +Γ −ω ηη 
 

   + ε α ω +Γ −ω η + ε α ω −Γ −ω η   
   
   + ε α ω +Γ +ω ηη + ε α ω +Γ +ω η   
   
   + ε −ω Φ + α η + ε ω Φ + α η   
   

+ ε −ω Φ + α { } ( )2
6 1 2 4 6 1

12   O                  (3.9.10)
4

z i z   η + ε +ω Φ + α η + ε   
   

 
It may be noted that the above equation (3.9.10) does not depend on 1∆  and 2Λ ; hence both are 

arbitrary. It is observed that the terms containing 1
22 z,z,z,z, ηηηηηη have small divisor or 

secular terms for simple ( 11 ≈ω ), sub-harmonic ( 31 ≈ω ), principal parametric ( 22 ≈ω ), and 
simultaneous (i.e 11 ≈ω and 22 ≈ω  or, 31 ≈ω  and 22 ≈ω ) resonance conditions. One may 
choose 65143142 and ΓΓΓΛΛΛ∆∆   ,,,,,,, to eliminate the nonresonance terms as 

( ) ( )

( ) ( ) ( ) ( )

2
2 4 5 1 1 2 3 3 1 2 3

2 2 2
4 1 4 1 4 1

4 1 2 3 1 5 1
1 1 1

1 1 3,     ,    ,  
2 4 4 4

1 1 1
1 4 2 4,   ,  ,   and .           (3.9.11)  
4 1 1 3

i
µ

∆ = − ∆ = − α ω Λ = α −α −α Λ = − α −α +α

α ω α ω α ω
Λ = − α −α −α Γ = Γ = − Γ = −

+ω +ω +ω
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In the following sections, the simple resonance case i.e. when the nondimensional frequency of 
base excitation 1ω  is nearly equal to 1 and principal parametric resonance case i.e. when the 
nondimensional frequency of the axial load 2ω  is nearly equal to the 2 are studied. The  
simultaneous resonance case ( 11 ≈ω  and 22 ≈ω ), and the higher order resonance conditions i.e 
the sub harmonic ( 31 ≈ω ) and the simultaneous resonance conditions 31 ≈ω and 22 ≈ω  have 
not been studied and left as an exercise problem. 
 
 
Simple resonance Case ( 1 1ω ≈  and 2ω  is away from 2)  

For this simple resonance case, to express the nearness of 1ω to 1, one introduces the detuning 

parameter σ  as 

                                        ( )1and11 O      , =σσε+=ω                                                       (3.9.12)  

Substituting equation (3.9.12) into equation (3.9.10) yields the following expression. 

( ) 2 2 2 2 254 4
1 2 33 3         (3.9.13)

2 2 4 4
ii iii z z zεαεα εαε

η = η− εµη+ α − α +α η η+ ω ηη + ω η + ω  

Taking ( )1 exp
2

a iη= β  in equation (3.9.13) and separating the real and imaginary terms, one may 

find the following expression 

                                2 2
4 5

1 1 sin
8 2

a a a = −µ −ω α + α γ 
 

 ,                                                  (3.9.14)  

                            3 2 23
1 2 4 5

3 3 1 cos
8 3 8 2

a a a aα   γ = σ− α −α + −ω α + α γ  
  

  .                  (3.9.15) 

From equations (3.9.14)-( 3.9.15), one may observe that the trivial response (i.e. 0=a ) does not 

exist in this case. One may find the nontrivial response of the system by solving equations 

(3.9.14) and (3.9.15) simultaneously. For steady state solution, 0 and 0a = γ = . 

To find the stability of the steady state responses, one may perturb the above equations (3.9.14) 

and (3.9.15) by substituting 1oa a a= +  and 0 1γ = γ + γ  where 00 γ,a  are the equilibrium points, 

and then investigating the eigenvalues of the Jacobian matrix (J) which is given by 
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
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
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 α
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+
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 α
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
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a

Kaa
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a

Kaaa
                                       

a

a
       

J
            (3.9.16) 

 

 

 

Principal parametric resonance Case ( 2 2ω ≈ ) 

In this case, one may presents detuning parameter σ  to express the nearness of 2ω to 2, as 

                          ( )1and222 O      , =σσε+=ω                                                              (3.9.17) 

Substituting equation (3.9.17) into equation (3.9.10) yields the following expression. 

                 ( ) 2 4
1 2 3 13 3 z    

2 2
iii εαε

η = η− εµη+ α − α +α η η+ η                                   (3.9.18)        

Putting ( )1 exp
2

a iη= β  in equation (3.9.18) and separating the real and imaginary terms, yield 

sinγ6

4
a a aα

µ= − −                                                      (3.9.19)                              

cosγ33 6
1 2

62
8 3 2

a a a aα α
γ σ α α = − − + − 

 
                                       (3.9.20) 

By substituting 0a =  and 0γ = , one may note from the equation (3.9.19)-( 3.9.20) that the 

system possess both trivial and nontrivial responses. Hence one may obtain the both responses 

by solving the equations (3.9.19)-(3.9.20) simultaneously. 

In this case, to determine the stability of the steady state response system one may convert the 

polar form of modulations (i.e. equation (3.9.19) and (3.9.20)) into Cartesian form of modulation 

by letting γ= cosap and γ= sinaq . One may obtain following Cartesian form of modulations 

as 
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                       ( )( )
( )2

1
22

4
22

2
16

8
12

qp

qpqpqpqpp
+

α+κ−η+−σ−µ−=                 (3.9.21) 

                       ( )( )
( )2

1
22

4
22

4
36

8
12

qp

qppqqppqq
+

α−κ+η+−σ−µ−=                          (3.9.22) 

Hence, to obtain the stability of the steady state fixed-point response ),( 00 qp , one may disturb the 

equilibrium point ),( 00 qp by substituting 10 ppp += , and 10 qqq += , in equations (3.9.21) and 

(3.9.22) and finding the eigenvalues of the resulting Jacobean matrix ( J ). One can express the 

Jacobian matrix as follows 
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             (3.9.23)  

In this resonance condition, the response of the  system will be stable if and only if the real part 

of all the eigenvalues are negative. 

 

Exercise problem: 

1. Use method of normal form to find the frequency response equations for the Duffing equation 

with cubic nonlinearity (refer book by Nayfeh 1993). 

2. Use method of normal form to find the frequency response equations for the Duffing equation 

with quadratic and cubic nonlinearity (refer book by Nayfeh 1993). 

3. Use method of normal form to find the frequency response equations for the van der Pol’s 

equation  (refer book by Nayfeh 1993). 

4. Find the simultaneous resonance case ( 11 ≈ω  and 22 ≈ω ), and the higher order resonance 

conditions i.e. the sub harmonic ( 31 ≈ω ) and the simultaneous resonance conditions 31 ≈ω and 

22 ≈ω  of the system discussed in example 3.9.1. 
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Module 3 Lecture 10 
INCREMENTAL HARMONIC BALANCE METHOD 
 
Lau and Cheung (1981) developed incremental harmonic balance method. A practical weakness 
of perturbation methods is that carrying out the expansion to higher order is very cumbersome, 
especially for multiple degree of freedom systems. In practice it is difficult to go beyond the 
third order unless the algebraic manipulations are performed by a computer (Cheung et al. 1990). 
In Incremental Harmonic Balance Method (IHB) one can deal with strongly non linear systems 
to any desired accuracy. This method is a combination of the incremental method (Newton-
Raphson procedure) with the harmonic balance method (Ritz and Galerkin’s averaging method). 
It is exactly equivalent to a Galerkin procedure followed by a Newton-Raphson method. 
 
The method possesses advantages in studying systems with severe nonlinearities and is easily 
applied to systems with harmonic (or, more generally, periodic) excitation. Some insight into the 
solution method is lost, however, since the problem of solving the original governing differential 
equations is replaced with that of solving a second "simpler" set of equations involving 
increments in the motion, exciting force and/or frequency of excitation. Ferri (1986) shown that 
the IHB method is exactly equivalent to the Harmonic Balance Newton Raphson Method 
(HBNR). Here this method is illustrated by taking the example of a multi degree of freedom 
nonlinear system. 
 
For a multi degree of freedom system with cubic non linearities, the non linear equations of 
motion in general can be written as  
 

n n n n n n
j j

ij ij ij j ijkl j k l
j j j j k l

i

d q dq
M C K q q q q

dtdt
f m t i n

= = = = = =

+ + +

= − =

∑ ∑ ∑ ∑∑∑
2

2
1 1 1 1 1 1

cos(2 1) , 1,2,..., .

α

ω
                          (3.10.1)  

 
by substituting tτ ω= one may write (3.10.1) as  
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n n n n n n

ij j ij j ij j ijkl j k l
j j j j k l

i

M q C q K q q q q

f m i n
= = = = = =

+ + +

= − =

∑ ∑ ∑ ∑∑∑ 

2

1 1 1 1 1 1
cos(2 1) , 1,2,..., .

ω ω α

τ
                             (3.10.2) 

 
The jq are the unknowns of the system, the dots denote derivatives with respect to the 
dimensionless time τ, and , , , ,ij ij ij ijkl iM C K fα and ω  are coefficients of the mass, damping, linear 
stiffness, cubic stiffness, and excitation amplitude and excitation frequency respectively. 
Equation (3.10.2) can be written in the matrix form as  
 
          2 ( ) cos(2 1)ω ω τ+ + + = −  nMq Cq K K q F m                (3.10.3) 
  
 
 
         
where 1 2 1 2[ , ,....., ] , [ , ,...., ] ,T T

n nq q q f f f= =q F M,C  and K  are mass, damping, linear stiffness 

matrices, with elements are denoted by , andij ijijM C K  respectively, and nK  is the cubic non- 
linear stiffness matrix, its element ijklα being taken in the form  

1 1

n n

nij ijkl k l
k l

K K q q
= =

=∑∑                     (3.10.3) 

 
The first step of the IHB Method is a Newton-Raphson procedure. Let , ωjo io oq f and denote a 
state of vibration; the neighboring state can be expressed by adding the corresponding 
increments to them as follows: 
      

, 1, 2,...., ,j jo jq q q j n= + ∆ =                      (3.10.4) 
, 1, 2,..., ,i io if f f i n= + ∆ =                     (3.10.5) 

0 .ω ω ω= + ∆                                          (3.10.6) 
Substituting expansions (3.10.4)-(3.10.6) into equation (3.10.2) and neglecting small terms of 
higher order, one obtains the following linearized incremental equation in matrix form: 

2
0 0 0 0 0( 3 ) (2 ) cos(2 1) ,nM q C q K K q R Mq Cq m Fω ω ω ω τ∆ + ∆ + + ∆ = − + ∆ + − ∆                (3.10.7) 

2
0 0 0 0 0 0 0cos(2 1) ( ),nR F m Mq Cq Kq K qτ ω ω= − − + + +                                      (3.10.8) 

      
in which 00 , , , and nijq q F F K∆ ∆  are given below. 

T
nq q q q=0 10 20 0[ , ,....., ] ,  1 2[ , ,....., ] ,T

nq q q q∆ = ∆ ∆ ∆ 0 10 20 0[ , ,....., ]= T
nF f f f ,  

1 2[ , ,....., ]∆ = ∆ ∆ ∆ T
nF f f f  and 10

1 1

n n

nij ijkl ko
k l

K q qα
= =

= ∑∑ . 

 
R  is a corrective vector which goes to zero when the solution is reached. 
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The second step of the IHB method is the Galerkin’s procedure. Because equation (3.10.2) is odd 
and the excitation force is periodic, one can assume for steady state response, 

0
1 1

cos(2 1) sin(2 1) ,
c sN N

j jk jk s j
k k

q a k b k C A
= =

= − + − =∑ ∑τ τ                                       (3.10.9) 

1 1
cos(2 1) sin(2 1) ,τ τ

= =

∆ = ∆ − + ∆ − = ∆∑ ∑
c sN N

j jk jk s j
k k

q a k b k C A              (3.10.10) 

Where 

1 2 1 2

1 2 1 2

[cos ,cos3 ,......., cos(2 1) ,sin ,sin 3 ,....,sin(2 1) ],

[ , ,...., , , ,......, ] ,

[ , ,...., , , ,......, ] .

τ τ τ τ τ τ= − −

=

∆ = ∆ ∆ ∆ ∆ ∆ ∆
c s

c s

s c s
T

j j j jN j j jN

T
j j j jN j j jN

C N N
A a a a b b b

A a a a b b b

 

 
Hence the vectors of unknowns and their increments can be expressed by the Fourier coefficients 
vector A and its increment ΔA as follows: 

0 ,=q SA                                                                                                                (3.10.11) 
∆ = ∆q S A                                                                                                               (3.10.12)  
 
where S, A and ΔA are given as follows. 

  
0

,
0

 
 =  
  

s

s

C
S

C
1 2[ , ,......, ] ,= T

nA A A A and 1 2[ , ,......, ] ,∆ = ∆ ∆ ∆ T
nA A A A  

2

0

,
π

τ= ∫ 

TM S MSd  
2

0

,
π

τ= ∫ 

TC S CSd  
2

0

,
π

τ= ∫ TK S KSd  

2
(3)(3)

0

,
π

τ= ∫ TK S K Sd  
2

0

0

cos(2 1) ,
π

τ τ= −∫ TF S F m d  
2

0

cos(2 1) ,
π

τ τ= −∫ T
fR S m d  

Substituting equations (3.10.11) and (3.10.12) into equation (3.10.7) and using the Galerkin’s 
procedure gives 
2

(3)2
0 0

0
2

0 0 0
0

( ) [ ( 3 ) ]

( ) [ (2 ) cos(2 1) ] .

T

T

q M q C q K K q d

q R Mq Cq m F d

π

π

δ ω ω τ

δ ω ω τ τ

∆ ∆ + ∆ + + ∆

= ∆ − + ∆ + − ∆

∫

∫

 

 

             (3.10.13) 

One can easily obtain a set of linear equations in terms of∆A , ω∆  and∆F , 
,ω∆ = − ∆ + ∆mc mc fK A R R R F                                                                  (3.10.14)  

in which  
2
0 0 3mc nK M C Kω ω= + +                                                                      (3.10.15) 

2 (3)
0 0( ) ,ω ω= − + + +R F M C K K A                                             (3.10.16) 

0(2 ) ,ω= +mcR M C A                   (3.10.17) 
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It is worth mentioning that in equation (3.10.14) the number of incremental unknowns is greater 
than the number of equations available due to the existence of ∆F  and ω∆ . Since one is 
primarily interested in the frequency-response curves of the system for a constant level, F is 
fixed as a parameter vector, which implies 0F∆ = . Hence equation (3.10.14) is reduced to  

.mc mcK A R R ω∆ = − ∆                  (3.10.18) 
The solution process starts from a suggested solution (in general, from a corresponding known 
linear solution), and then the non-linear amplitude frequency response is solved point by point by 
incrementing frequency ω or incrementing one component of the amplitudes A. The Newton-
Raphson iteration can be applied within an incremental step. In the incremental process, an 
increment which is prescribed a priori is called a control or active increment. If ∆ω  is specified 
as a control increment, then ω remains constant through the iterative process: i.e. ∆ = 0ω , while 
other increments are solved from the equation  

mcK A R∆ =                   (3.10.19) 
The process is repeated until the magnitude of the corrected vector R is acceptably small-in 
which case a solution is obtained. This process is called iteration. The value of ω is then 
augmented an increment ∆ω  artificially, and a new iteration is repeated with the new value of ω 
until a new solution is obtained. The above process is called an augmentation. The whole 
solution process is an alternative application of augmentation and iteration. 
The above incremental process in which ∆ω  is taken as active increment is called ω-
incrementation. Similarly, it is equally possible to have amplitude incrementation. In this case, 
one component of ΔA, say jka∆ , is specified as the control increment; then jka  remains 

constant. 0jka∆ =  through the iteration and one has to solve equation (3.10.18) to obtain other 

increments of ΔA and ∆ω . After the amplitude of R has reached the desired accuracy, the 
iteration is terminated and a new augmentation can be started by adding an increment on jka . 

This process is called jka  incrementation. In practice, the active increment is chosen as the one 

that varies faster and therefore the ω-incrementation or the jka  incrementation can be adopted 

along the response curves. 
If one is interested in the forcing amplitude response curves of the system for a constant 
frequency level, then ∆ = 0ω  and 0if∆ = , j i≠ , and hence equation (3.10.14) is reduced to  

mc fK A R R F∆ = + ∆                  (3.10.20) 
Example 3.10.1: 
Consider a two degree of freedom system consisting of two point masses and two springs with a 
linear damper, under a harmonic excitation shown in Figure 3.10.1. Find the solution of the 
system using incremental harmonic balance method. 
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Fig 3.10.1: Schematic diagram of a two degree of freedom system with cubic nonlinear spring. 
 
Solution:  
One of the springs is linear with the stiffness coefficient 10k and the other has a cubic non 
linearity. Its restoring force is defined as  

3
12 12 1 2 1 2( ) ( )f k q q q q= − + −µ                  (3.10.21) 

 
 
 
The differential equations of motion of the system can be written in non dimensional form as 

2 3
1 1 1 2 1 2 1 2( ) ( ) ( ) cos ,γ µγ µγ+ + − + − + − = Ω  q k q q q l q q q q p t                                 (3.10.22) 

3
2 2 1 1 2 1 2( ) ( ) ( ) 0,µ µγ+ − − − − − =  q q q l q q q q                                                                   (3.10.23) 

Where 

1 2/ ,γ = m m  12 2( / )=t t k m , 2
10 12/ ,γ=k k k  12 2( / ),=l l k m  

/=q dq dt , 12/ ,µ µ= k  and 12/p p kγ= . 

1q  , 2q  are displacements of point masses, t  is time and 1m , 2m , 10k , 12k , µ , l  , Ω  and p  are 
the masses of the system, coefficient of linear stiffness, coefficient of non linear stiffness, 
coefficient of damping, excitation frequency and excitation amplitude respectively. 
 
In the solution process, the number of harmonic terms is taken as 2c sN N= = : 

1 11 12 11 12 11 11 12 12cos cos3 sin sin 3 cos( ) cos(3 ),τ τ τ τ τ φ τ φ= + + + = + + +q a a b b A A           (3.10.24) 
       

2 12 22 21 22 21 11 22 22cos cos3 sin sin 3 cos( ) cos(3 ),τ τ τ τ τ φ τ φ= + + + = + + +q a a b b A A           (3.10.25) 
Where 

2 2 1, tan ( / ), 1, 2, 1, 2.ij ij ij ij ij ijA a b b a i j−= + = − = =φ  
There exist two types of non trivial solutions: 

a) Fundamental resonance only, i.e. 1 12 12cos(3 ),τ φ= +q A  2 22 22cos(3 ),τ φ= +q A  

b) Both fundamental resonance and sub harmonic resonance occur simultaneously: i.e. 1q  and 

2q take the form of the equations (3.10.24) and (3.10.25). 

Exercise problems: 
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1. Use incremental harmonic balance method to find the frequency response equations for the 
Duffing equation with cubic nonlinearity. 
 
2. Use incremental harmonic balance method to find the frequency response equations for the 
Duffing equation with quadratic and cubic nonlinearity. 
 
3. Use incremental harmonic balance method to find the frequency response equations for the 
van der Pol’s equation. 
 
4. The equation of motion of a bimaterial beam with alternating magnetic field and thermal loads 
can be given by following equation. Use incremental harmonic balance method to solve this 
equation (refer Wu, 2009). 

( ) ( ) ( ) ( )
2 4 2

2 4 20
0

x

d t t l l t t l l
v v v c v vm C E I E I pd A T A T

t t x x x x x
ξ γ γ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + + + ∆ + ∆ =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∫  

The equation in its temporal form can be written as  

( ) ( )
2

2 2
1 22 2 1 cos 2 1 2 cos 2 0d w dwk k w w

d d
τ ϕ τ

τ τ
 Ω + Ω + + + − =   
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Module 3 Lecture 11 
 
INTRINSIC MULTIPLE SCALE HARMONIC BALANCE METHOD 
 
In this lecture both the method of multiple scale and harmonic balance method will be combined 
to obtain the solution of the nonlinear system. This method is explained with the help of free 
vibration of a system with cubic and quadratic nonlinearities of Duffing type. Consider the 
following non linear system  
 

2 2 3
0 2 3 0u u u u+ + + = ω α α                                                                                                    (3.11.1) 

  
Here the dot ‘.’ denotes differentiation with respect to time. An intrinsic multiple-scale harmonic 
balancing method (IMSHB) can be applied to system (3.11.1) as follows. Similar to method of 
multiple scales, one may consider different time scales 0 1 2 3, ,  ,  ,  T T T T   as given below. 

, 0,1, 2,........n
nT t nε= =                                                     (3.11.2) 

So one can write 

 2
0 1 2 ......d D D D

dt
ε ε= + + +                                                                                               (3.11.3) 

and 
2

2 2 2
0 0 1 0 2 12 2 (2 ) ...........d D D D D D D

dt
ε ε= + + + +                                                           (3.11.4) 

where .
m

m
n m

n

D
T
∂

=
∂

 To separate the linear and nonlinear terms one may introduce the 

scalingu x= ε  and write Eq. (3.11.1) as 
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2 2 2 3
0 2 3 0x x x xω εα ε α+ + + =                                                                                                (3.11.5) 

 
Now using Eqs. (3.11.2-4) in Eq. (3.11.5) one obtains the following equation. 

2 2 2 2 2 2 3
0 0 1 0 2 1 0 2 32 (2 ) ....... 0D x D D x D D D x x x xε ε ω εα ε α+ + + + + + + =                                (3.11.6)  

Now let the solution be expressed in the parametric form as  
0 1 2( , , ; ).x x T T T ε=                                                                                                            (3.11.7) 

      
Substituting Eq. (3.11.7) in (3.11.6) and putting 0ε =  one will obtain the zeroth order 
perturbation equation as follows.  
Order of 0ε , 2 2

0 0 0,D x x+ =ω                                                                          (3.11.8) 

To obtain thn   order perturbation equations, it is proposed to differentiate Eq. (3.11.6) n  times 
with respect to ε and set 0ε = . So one will obtained the following perturbation equation of order 

1ε  and 2ε .   
Order of 1 2 2 2

0 0 1 0 2: ( ) 2( ) 0,D x D D x x xε ω α′ ′+ + + =                                                         (3.11.9) 
                       
Order of 2 2 2 2 2 3

0 0 1 0 2 1 0 2 3: ( ) 4( ) 2(2 ) 2 ( ) 2 0D x D D x D D D x x x x′′ ′ ′′ ′+ + + + + + =ε ω α α           (3.11.10)  
Here ()′ represent differentiation with respect toε . 
One may assume a general solution of two time scale expansions in the following form 

[ ]1 2 0 0 1 2 1 2 0 0 1 2
0

( ; , ) cos ( ( ; , )) ( ; , )sin ( ( ; , ))
M

m m
m

x a T T m T T T b T T m T T Tε ω θ ε ε ω θ ε
=

= + + +∑         

(3.11.11) 
                                                                                                                                   
 The amplitudes and phases are given in the form  

0 1 2 2
1 2 1 2 1 2( , ) ( , ) ( , ) .....m m m ma a T T a T T a T Tε ε= + + +                                                                 (3.11.12) 

 0 1 2 2
1 2 1 2 1 2( , ) ( , ) ( , ) .......m m m mb b T T b T T b T Tε ε= + + +                                                                (3.11.13) 

0 1 2 2
1 2 1 2 1 2( , ) ( , ) ( , ) .......T T T T T Tθ θ εθ ε θ= + + +                                                                 (3.11.14)  

In these expansions 0 1 0 1, ,......; , ,....;m m m ma a b b and 0 1, ,.....θ θ are to be determined through steps of 
perturbations. 
Introducing expression (3.11.11) into the zero order perturbation equation gives 

( ) 1 2 0 0 1 22 2
0 0

0 1 2 0 0 1 2

( ; , ) cos ( ( ; , ))
0

( ; , ) sin ( ( ; , ))

M
m

m m

a T T m T T T
D

b T T m T T T
ε ω θ ε

ω
ε ω θ ε=

+ 
+ = + + 

∑                                                 (3.11.15) 

2 2 0 0
0 0 0

0
( 1) cos ( ) 0

M

m
m

m a m Tω ω θ
=

− + =∑                                                 (3.11.16) 

and  2 2 0 0
0 0 0

0
( 1) sin ( ) 0;

M

m
m

m b m Tω ω θ
=

− + =∑                                                                       (3.11.17) 

     
Hence, for 0m = , 0 0

0 0 0a b= = . Also for 2m ≥ , 0 0 0m ma b= = .                                 (3.11.18) 
Since the system is autonomous one can assume  
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1 1 2( ; , ) 0b T Tε ≡                                                                                                               (3.11.19) 
In the IHB Method the process is simplified if the perturbation parameter is selected as one of 
the appropriate amplitudes (e.g. 1a ). In the analogy with this approach, it is assumed here that 1a  
is not a function ofε ; i.e. 

1 1 2 1 2( ; , ) ( , ).a T T a T Tε                                       (3.11.20) 
Substituting Eqs. (3.11.11) - (3.11.14) and Eqs. (3.11.18) - (3.11.20) in Eq.(3.11.10) one obtains  

1 1 2 0 0 1 2( ; , ) cos( ( ; , )x a T T T T T= +ε ω θ ε                                                                               (3.11.21) 
As 0 1 2 2

1 1 1 2 1 1 2 1 1 2( , ) ( , ) ( , ) .....a a T T a T T a T T= + + +ε ε                                                              (3.11.22) 

So, ( ) ( )0 1 2 2
1 1 2 1 1 2 1 1 2 0 0 1 2( , ) ( , ) ( , ) cos ( ; , )x a T T a T T a T T T T T= + + +ε ε ω θ ε                                 (3.11.23) 

 
Now substituting (3.11.23) in the first order perturbation equation, the term by term expansion is 
given below.  

( )( ) ( )0 1 2 2
0 1 1 2 1 1 2 1 1 2 0 0 0 1 2( , ) ( , ) ( , ) sin ( ; , )D x a T T a T T a T T T T T= + + − +ε ε ω ω θ ε                       (3.11.24) 

( ) ( )2 2 0 1 2 2
0 0 1 1 2 1 1 2 1 1 2 0 0 1 2( , ) ( , ) ( , ) cos ( ; , )D x a T T a T T a T T T T T= − + + +ω ε ε ω θ ε                      (3.11.25) 

( )
( ) ( )

2 2 1 2
0 0 1 1 2 1 1 2 0 0 1 2

1 2 2 0 1 2 2
0 1 1 2 1 1 2 1 1 2 0 0 1 2

( ) ( , ) 2 ( , ) cos( ( ; , )

   + 2 ( , ) ( , ) ( , ) sin( ( ; , ))

D x a T T a T T T T T

a T T a T T a T T T T T

ω ε ω θ ε

θ εθ ω ε ε ω θ ε

′ = − + +

+ + + +
              (3.11.26) 

 

( )

( )

0 1 1 0

0 1 2 2
1 1 1 2 1 1 1 2 1 1 1 2 0 0 1 2

0 1
0 1 1 2 1 1 20 1 2 2

1 1 1 0 0 1 22 2
1 1 2

2( ) 2 ( )

( , ) ( , ) ( , ) sin( ( ; , ))

2 ( , ) ( , )
cos( ( ; , ))

( , )

D D x D D x

D a T T D a T T D a T T T T T

a T T a T T
D D D T T T

a T T

ε ε ω θ ε

ω ε
θ ε θ ε θ ω θ ε

ε

= =

 + + + +
 

−   + +
+ + +      

          (3.11.27) 

 

( )
( )( )

2 2 1 2
0 0 1 1 2 1 1 2 0 0 1 2

2 1 2 0 1 2 2
0 1 1 2 1 1 2 1 1 2 0 0 1 2

( , ) 2 ( , ) cos( ( ; , ))

       2 ( , ) ( , ) ( , ) sin( ( ; , ))

x a T T a T T T T T

a T T a T T a T T T T T

ω ω ε ω θ ε

ω θ εθ ε ε ω θ ε

′ = + +

+ + + + +
          (3.11.28) 

 

( ) ( )( ) ( )( )2 22 0 0 1 2 1 2 0 22
2 1 1 1 1 1 1 0 0 1 22 2 1 cos 2 ( ; , )

2
x a a a a a a T T T= + + + + +

αα ε ε ε ω θ ε                  (3.11.29) 

 

( )
0 1 2 2

1 2 1 2 1 2

0 1 2 2 0 1 2 2
1 1 1 2 1 2 1 2 1 1 1

( , ) ( , ) ( , ) .......

( , ) ( , ) ( , ) ....

T T T T T T

D D T T T T T T D D D

= + + +

′ = = + + + = + +

θ θ εθ ε θ

θ θ θ εθ ε θ θ ε θ ε θ
             (3.11.30) 

 
So, balancing the harmonics in the first order perturbation equation gives 
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( ) ( )( )
( ) ( )( )
( )

( )

( )( ) ( )
( )( )

2 20 0 1 2 1 2 0 22
1 1 1 1 1 1

2 1 2 0 1 2 2 0 1 2 2
0 1 1 0 1 1 1 1 1 1

0 0 1 22 1 2
0 1 1

2 1 2 0 1 2 2 0 1 2 2
0 1 1 1 0 1 1 1 1 1 1

2 1 2 0 1 2 2
0 1 1 1

2 2
2

2 2
cos ( ; , )

2

2 2

2

a a a a a a

a a D D D a a a
T T T

a a

a a a D a D a D a

a a a

+ + +

 − + − + + + +
 + +
 + + 
 + + + − + +
+
+ + + +

α ε ε ε

ω ε ω θ ε θ ε θ ε ε
ω θ ε

ω ε

ω θ εθ ε ε ω ε ε

ω θ εθ ε ε
( )

( ) ( )( ) ( )

0 0 1 2

2 20 0 1 2 1 2 0 22
1 1 1 1 1 1 0 0 1 2

sin ( ; , )

2 2 cos 2 ( ; , )
2

T T T

a a a a a a T T T

 +



+ + + + +

ω θ ε

α ε ε ε ω θ ε

  (3.11.31) 

 
 

( ) ( )( )( )
( )

( )( )
( )( )

( )

2 20 0 1 2 1 0 22
1 1 1 1 1 1

2 1 0 0 2 1
0 1 0 1 1 0 1

2 2 1 0 0 1 2 2
0 1 0 1 1 1 1 0 1 0 0 1 2

2 2 0 0 2 1 1
0 1 1 1 1 1 1

2 1 0 0 2 1 0
0 1 0 1 1 0 1

2 1 1 2 2
0 1 0

2 2
2

2

2 2 2 cos ( ; , )

2

2

2

a a a a a a

a D a a

a a D a D a T T T

a D a D D a

a D a a

a

+ + +

 − − +
 
 + + − − + + + 
 + − + +  

− + +

+ +

α ε ε

ω ω θ ω

ε ω ω θ θ ω ω θ ε

ε ω θ θ θ

ω θ ω ω θ

ε ω θ ω θ( )
( )( )

( )

( ) ( )( ) ( )

0 1 2 2 0 2 1 1
1 0 1 1 0 1 0 1 0 0 1 2

2 2 1 2 2 1 2
0 1 1 0 1 1

2 20 0 1 2 1 2 0 22
1 1 1 1 1 1 0 0 1 2

2 2 sin ( ; , )

2 2 2

2 2 cos 2 ( ; , ) 0
2

a D a a a T T T

a a D a

a a a a a a T T T

 
 
 − + + +
 
 + + − 

+ + + + + =

ω ω θ ω θ ω θ ε

ε ω θ θ ω

α ε ε ε ω θ ε

               (3.11.32) 

 
 
 

( ) ( )( )( )
( ) ( )( )

( )( )
( )

( )
( )( )

2 20 0 1 2 1 0 22
1 1 1 1 1 1

0 0 1 0 0 1
0 1 1 0 1 1 1 1

0 0 1 22 2 0 0 2 1 1
0 1 1 1 1 1 1

2 1 0 0 2 1 1 2 2 0 1
0 1 0 1 1 0 1 0 1 0 1 1

2 2 1 2 2 1 2
0 1 1 0 1 1

2 2
2

2 2
cos ( ; , )

2

2 2 2 4 2

2 2 2

a a a a a a

a D a D a D
T T T

a D a D D a

a D a a a D a

a a D a

+ + + +

 − + − +
  + +
 + − + + 
 − + + − +

+ + −

α ε ε

ω θ ε ω θ θ
ω θ ε

ε ω θ θ θ

ω θ ω ε ω θ ω θ ω

ε ω θ θ ω
( )

( ) ( )( ) ( )

0 0 1 2

2 20 0 1 2 1 2 0 22
1 1 1 1 1 1 0 0 1 2

sin ( ; , )

2 2 cos 2 ( ; , ) 0
2

T T T

a a a a a a T T T


  +
 



+ + + + + =

ω θ ε

α ε ε ε ω θ ε

           (3.11.33) 
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0 0 0
1 1 1 1 10, 2 0,c cD a a D− = − =ω ω θ                           (3.11.34) 

 1 2 2 1 2 2
0 2 0 2 2 0/ (2 ), / (6 ),a a a a= − =α ω α ω                           (3.11.35) 

1 1 1 1 1 1 1
1 3 4 0 1 2..... 0, ...... 0, 0a a a b b b θ= = = = = = = = =                                    (3.11.36) 

 
The substitution of solution (3.11.26) and expressions (3.11.33) - (3.11.36) into the second order 
perturbation yields  

2 2 2 2 2 0 2 2 2 2
0 0 1 1 0

1 0 0 0 0 1
1 0 2 1 0 1 1 0 2 1 2 1 1

0 2 1 0 3 0 3
2 1 1 1 3 1 1 3 1 3

2(1 ) 2(1 ) 2(1 )

4 4 4 4

4 ( ) 1.5 ( ) 0.5 ( ) 0

m m m m

m m m m

m a c m a s m b s
D a m s D a s a D c a a c c

a c s a c a c

− − − + −

− − − +

− + + =

ω ω θ ω

ω ω ω θ α

α θ α α

                        (3.11.37) 

Where 

1

0
2 1: 0s D a =

0 0 0 0
1 0 0 1 0 0 0 0 0 0cos( ), sin( ), cos ( ) and sin ( ).m mc T s T c m T s m T= + = + = + = +ω θ ω θ ω θ ω θ  

Balancing various harmonics in equation (3.11.37) gives 

1

0
2 1: 0s D a =                              (3.11.38) 

0 0 0 1 0 1 0 3
1 1 0 2 2 1 0 2 1 2 3 14 4 2 1.5 ( ) .c a D a a a a a= = + +ω θ α α α                         (3.11.39) 

Substituting Eq. (3.11.35) in Eq. (3.11.39) one obtains  
2 2 2

0 3 2
2 3

0 0

3 5
8 12

a aD = −
α αθ
ω ω

                            (3.11.40) 

Using (3.11.3) the differential equation of phase θ can be derived as 

( )
2 2 2

2 2 32 3 2
0 1 2 3

0 0

3 5 ( ).
8 12

a ad OD D D
dt

= = − ++ +
α αθ θ ε ε εε ε
ω ω

                        (3.11.41) 

Therefore the amplitude frequency relation can be given by  
2 2 2 2 2

33 2
2

3 5 ( )
8 12c

c c

a a Oα ε α εω ω ε
ω ω

= + − +                            (3.11.42) 

Thus the above expression is in full agreement with the following equation 
 2 2 2

1 3 1 2 1 1[1 {(9 10 ) / (24 )} ] .......Aω α α α α α= + − +                          (3.11.43) 
 which was obtained from the conventional harmonic balance method. 
 
Exercise problem: 
 
1. Use intrinsic multiple scale harmonic balance method to find the frequency response equations 
for primary resonance of the Duffing equation with cubic nonlinearity and a weak forcing 
function. Write a Matlab code and plot the frequency response curves.    
 
2. Use intrinsic multiple scale harmonic balance method to find the frequency response equations 
for the Duffing equation with quadratic and cubic nonlinearity. Use any symbolic software 
(Maple/Mathmatica) to derive the equations. 
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3. Use intrinsic multiple scale harmonic balance method to find the frequency response equations 
for the van der Pol’s equation. Use any symbolic software (Maple/Mathmatica) to derive the 
equations. Also plot the time response and phase portrait to show the limit cycle. 
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Module 3 Lecture 12 
 
HIGHER ORDER METHOD OF MULTIPLE SCALES 

 
In this lecture higher order method of multiple scales proposed by Rahman and Burton [1] 
will be discussed with the help of a example of parametrically excited system. The 
obtained equations will be compared with the commonly used method of multiple scales.  
 
A uniform cantilever beam of length L carrying a mass m at an arbitrary position d from 
the fixed end and subjected to base motion is considered as an example of a parametrically 
excited system. Similar system has been considered by Zavodney and Nayfeh [7] and 
Dwivedy and Kar [3]. When the system is given a base motion ( ) ,cos0 tZtz Ω= the 
temporal equation of the motion of the beam is given by  

{ } { }2 3 2 2
0 0 0 0 02 cos 0u u f t u u uu u u+ ξ + ω − φ + α +β +Γ =                 (3.12.1) 

Here u is the non dimensional transverse displacement of the beam, 0ξ  and  0f  are the 
damping and forcing parameters and φ  is the non dimensional frequency of external 

excitation. The coefficient of geometrical non linear term ( )0α  and inertia non linear 

terms ( )0 0,β Γ  are introduced in the system due to the large transverse deflection during 

base excitation. Introducing the new time parameter ( )tτ τ = φ  and taking into account the 

smallness of damping, forcing and nonlinear terms through the bookkeeping parameterε , 
Eq. (3.12.1) reduces to the non dimensional form 

{ } ( ){ }2 2 3 2 2 22 cos 0u u f u u uu u uφ + εξφ + ω − ε τ + ε α + φ β +Γ =       (3.12.2) 
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Where ( ) ( ) εββεααεξξτ /,/,/,/ 000
. ==== dd  and ε/0Γ=Γ . 

 
Method of Multiple Scales: Version II 
Following [1-3], the displacement u , the external excitation φ , the dampingξ , the new 
time scale ( )...,2,1,0=nTn , and the time derivatives are expanded as 

,2
2

10 uuuu εε ++=          (3.12.3) 
2 2 2

1 24 ,φ = ω + εσ + ε σ         (3.12.4) 

1 2 ,φξ = ξ + εξ                                 (3.12.5) 

τε n
nT =           (3.12.6) 

,2
2

10 DDD
d
d εε
τ

++=         (3.12.7) 

( )2 2 2
0 0 1 1 0 22 2 2 ,d D D D D D D

d
= + ε + ε +

τ
      (3.12.8) 

Where 
n

n T
D

∂
∂

=           

Substituting the above in Eq. (3.12.2), collecting the coefficients of nε  and equating them 
to zero, one obtains for 

0order of ε  
2 2 2

0 0 04 0D u uω +ω =          (3.12.9) 
1order of ε  

( ){ }
2 2 2 2

0 1 1 1 0 0 1 0 0 0
22 3 2 2 2

0 1 0 0 0 0 0 0 0 0

4 2 cos
8 4 0

D u u D u d U fu
D D u u D u u u D u

ω +ω +σ + ξ − τ
+ ω +α + ω β +Γ =                         (3.12.10) 

2order of ε  

( )
( ) ( ) ( )( ){ } ( ){ }

( ) ( ){ }

2 2 2 2 2 2 2
0 2 2 1 0 1 1 0 1 0 0 1 1 1 0

2 2 2
0 2 0 2 0 0 2 0 0 1 1 0 0 1 1 0

22 2 2 2
0 0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 1 0 0

2 2 2
1 0 0 0 0 0 0

4 2 8 4
8 2 2 cos 3
4 2 2 2

0

D u u D u D D u D D u D u
D D u D u D u D u D u fu u

u D u D u D u D u u u D u D D u u u D u

D u u u D u

ω +ω +σ + σ + ω + ω
+ ω +σ + ξ + ξ + − τ+ α

 + ω β + + +Γ + +  
+σ β +Γ =

 

          (3.12.11) 
The solution of Eq. (3.12.9) is given by 

( ) ( )0 1 2 0, exp / 2u A T T iT cc= +                 (3.12.12) 

Where

 

1−=i and ‘cc’ indicates the complex conjugate of the preceding terms. 
Substituting the above equation in Eq. (3.12.10) we get
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( )
{ } ( )

21 1
1 1 02 2 2

0 1 1
3

2 0

2 exp / 21
4 16

4 2 exp 3 / 2

c e

e c

i A A f A iD A A A iT
D u u cc

A f A iT

 ξ σ  − + + +α  + = +ω ω  
+ α +  

          (3.12.13)

 

Where 
( ) 4/34/4/3 2

1 Γ−+= βωαα e                 (3.12.14)

 ( )Γ−−= βωαα 2
2 /

8
1

e                  (3.12.15)

 216/ ωff c −=                   (3.12.16) 
 
To eliminate the secular terms from Eq. (3.12.13) 

02
164

2
12

1
2

1
1 =







 ++−+ AAAfAAiAiD ec α

ω
σ

ω
ξ               (3.12.17) 

Hence from eqn  (3.12.13) one may write 
{ } ( ) cciTAAfu ec ++= 2/3exp 0

3
21 α                 (3.12.18) 

Substituting the expressions for 1u  in to Eq. (3.12.11) and eliminating the secular terms, 
one obtains 

( ){ } ( )

( ) ( )2

2 2
2 1 1 1 1

3
2 2 2

3 2
1 3 2

4 2
1 1 1
4 2 2

1 3 0
4

c e

e c e

iD A D A i A i D A

i ff A f A

A A f A A A

ω + + β−Γ + σ + ξ
 + ξ − σ − α 
 

+ σ Γ −β +α +α =

              (3.12.19) 

Where ( )Γ−+= 1153 2
3 βωαα e  

In the above equation, the terms containing 1D  vanish as they are independent of the 2T  
time scale [1-4]. 
Now, Eq. (3.12.17) and (3.12.19) can be combined to describe the modulation of the 
complex amplitude to the second non linear order with respect to the original time scale τ  
using 

ADAD
d
dA

2
2

1 εε
τ

+=                   (3.12.20) 

Hence, one has 
2 2 3 3 2

1 1 2 1 2 3 4o o o f f f f
dAi i A A A A A AA A A A
d

− = − ξ + φ + φ +α +α +α +α
τ

           (3.12.21) 

Where  
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( ) ( ){ }
( ){ } ( ){ }

( ){ } ( ){ } ( )

2 22 2
0 0 0

1 1 22 2 2 2
2

20 0
1 0 0 2 0 0 02 2 4

2 20 0
2 0 0 0 3 0 0 04 4

2 2 4
47 0 0 0 0 0 0

4, , ,
4 16 128 8

3 3 , 3 11 ,
4 16 64

3 11 , 11 ,
64 64

3 5 11 / 32

o o o

f f

f f

f

f f

f

f f

ξ φ − ω
ξ = φ = − φ =

ω ω ω ω
α φ

α = − + −β + Γ α = α +ω β + Γ
ω ω ω

α = α +ω β + Γ α = α −ω β + Γ
ω ω

α = − α +ω β − Γ α −ω β +Γ ω
           

(3.12.22) 

Here, all the expansion terms recombine in to the original expression. Substituting the

 
complex amplitude ( ) ( )1/ 2 expA a i= θ  (where a and θ  are real), in Eq. (3.12.21) and 
separating the real and imaginary parts, one obtains 

( ) ( )3
1 3 2 02

1 sin 2
4o f fa a a a = −ξ + α −α −φ φ 

 


              

(3.12.23)

 ( ) ( )3 5 3
1 1 4 3 2 2

1 1 1 cos 2
4 16 4o f f f f oa a a a a a   θ = − φ + α + α − α +α + φ θ   

   


           

(3.12.24)

 Steady-state responses can be determined by setting the time derivatives to zero. Use of 
the trigonometric identity ( ) ( ) 12cos2sin 22 =+ θθ , yields 

01
2

2
4

3
6

4
8

5
10

6
12

7 =++++++ kakakakakakak                   (3.12.25) 

whose solution will give rise to the non linear response of the system. The coefficients 1k , 

2k , … 7k  are defined in Appendix . this equation is solved numerically to find the six 

roots of 2a , out of which only two roots are real and the other roots are either negative or 
complex. 
Now, the displacement u  can be expressed as 

( ) ( ) ( )2/33cos25.02/3cos2/cos 3
200 τθατθτθ +++++= aafau ec             (3.12.26) 

Where 2
00 16/ ωff c −=  and ( ) 8// 00

2
020 Γ−= βωαα e  

The stability of the system is studied in the usual manner by finding the egen values of the 
Jacobian matrix obtained by perturbing Eq. (3.12.23) and (3.12.24). 
 
Method of Multiple Scales: Version I (original method) 
Here, instead of expanding the detuning up to the second non linear order of ε , the 
detuning in the excitation is introduced as 

2 2
14φ = ω + εσ                                         (3.12.27) 

Also, substituting in Eq. (3.12.2) the same expressions for time scales 0T , 1T , 2T  and 
displacement u  as in the case of MMS version II, and equating the coefficients of 

( )...,2,1,0=nnε  to zero , one gets 
order of 0ε  

2 2 2
0 0 04 0D u uω +ω =

            
(3.12.28)

 



NPTEL – Mechanical Engineering – Nonlinear Vibration 
 
 

Joint initiative of IITs and IISc – Funded by MHRD                                                            Page 63 of 67 
 
 

1order of ε  

( )
( ){ }

2 2 2 2
0 1 0 1 0 1 1 0 0 1 0 0

23 2 2 2
0 0 0 0 0 0 0 0

4 2 2
cos 4 0
D u D D u u D u D u

fu u D u u u D u
ω + ω + ξ +σ

− τ+α + ω β +Γ =
            

(3.12.29)

 2order of ε
 

( )
( ) ( ) ( )( ){ }
( ){ }

( ) ( ){ }

2 2 2 2 2 2 2
0 2 2 1 0 1 1 0 1 0 0 1 1 1 0

2 2
0 2 0 1 1 0 0 1 1 0 1

2
0 0 0 0 1 1 0 1 0 12
2 2 2
0 0 1 0 1 0 0 1 0 0

2 2 2
1 0 0 0 0 0 0

4 2 8 4
8 2 cos 3

2
4

2 2

0

D u u D u D D u D D u D u
D D u D u D u fu u u

u D u D u D u D u u

u D u D D u u u D u

D u u u D u

ω +ω +σ + σ + ω + ω
+ ω + ξ + − τ+ α

 β + + + ω
 +Γ + + 

+σ β +Γ =

            (3.12.30) 

where  1ξ = φξ .  
One may note that Eq. (3.12.28) and (3.12.29) are identical to Eq. (3.12.10) and (3.12.11), 
respectively. However, the detuning used in both cases are different. Hence, in the case of 
MMS version I 

( ) ( ) cciTTTAu += 2/exp, 0210             (3.12.31) 
{ } ( ) cciTAAfu ec ++= 2/3exp 0

3
21 α             (3.12.32) 

02
164

2
12

1
2

1
1 =







 ++−+ AAAfAAiAiDS ec α

ω
σ

ω
ξ

            (3.12.33) 

where ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2
1 2/ 16 , 3 3 / 4 and / 8c e ef f= − ω α = α +ω β− ω Γ ω α = α −ω β−ω Γ ω  

as in the previous version.  
Substituting of the expressions for 0u  and 1u  in Eq. (3.12.30) and elimination of the 
secular terms yield. 

( ) ( ) ( )
( ) ( )( ) ( )

2 2 2 2 2
2 1 1 1 1 1

3 3 2 2 2 21
2 2

4 2 8 4
1 3 5 11 3 0
2 4c e c e

iD A D A i AA D A i A D AA

f f A A f A A A A A

ω + + σ + ξ + ω Γ + ω β−Γ
σ

− +α + +α α + ω β ω Γ + β− Γ =
   (3.12.34) 

Inserting the expressions for AD1  from Eq. (3.12.33) in Eq. (3.12.34) and using 

ADAD
d
dA

2
2

1 εε
τ

+=             (3.12.35) 

One obtains 
2 2 2 2 2 2 2

1 1 1 1 1 1
2 4 2 4 4 4

2
2 2 211 1

4 12 4 2 2

2 2 35 5
1 72 2

3 3
4 16 16 256 16 128

8 32 4 8

16 16

e
e e

e e
e e

fA i A

ffi A i A A

f fi AA A

    −εξ ε σ ξ −εξ ε σ ε ξ ε = + + + − +    ω ω ω ω ω ω     
   ασ ε σ ξε  + + + ε α + εα − ε    ω ω ω ω   

α α   + ε + + α α +α   ω ω   



( ) 3 2
2 3e e A A 
α 

 

            (3.12.36) 

Where 
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4 52 2

6 72 2

3 3 3 3, 21
2 2 2 4 4 4

7 9 15 3 3 9,
8 8 8 4 4 4

e e

e e

α β Γ α β Γ
α = + − α = − +

ω ω
− α β Γ − α β Γ

α = − + α = + −
ω ω

            (3.12.37) 

Now, to find the nonlinear response, as in the previous case, substituting 
( ) ( )θiaA exp2/1=  (where a  and θ   are real), and separating the real and imaginary 

parts, one arrives at 
( ){ } ( )θ2sin3

524222
3

3111 aKKaKaKaKa −+++=             (3.12.38) 

( ){ } ( )θθ 2cos3
524222

5
62

3
3212 aKKaKaKaKaKa +++++=             (3.12.39) 

For a steady-state response, 0== θa . Using the trigonometric 
identity ( ) ( ) 12cos2sin 22 =+ θθ , one has the following polynomial expressions for 
amplitude a  

01
2

2
4

3
6

4
8

5
10

6
12

7 =++++++ BaBaBaBaBaBaB             (3.12.40) 

Where the expressions for 6211 ,...., KK  and 71 ....,, BB  are given in Appendix . The steady 
state response of the system is found by numerically solving the above equation. Out of 
the six roots obtained for 2a , only two roots have physical significance as the other roots 
are either complex or negative real numbers. The stability of the steady-state response is 
studied by perturbing Eq. (3.12.38) and (3.12.39) and finding the egenvalues of the 
resulting Jacobian matrix. 
Appendix: 

1 01 2 3 2 3 02 4 01 5 1 6 4 7 2 34 , , 4 , 4 , , 0.25 ,f f f f f fc c c c c c c= ξ = α −α = φ = φ = α = α = α +α  
( ) ( )2 2 2 2 2 2 2

1 3 1 4 3 2 1 3 7 4 3 2 3 4 5 2 3 3 7, 2 2 2k c c c c k c c c c c c c c c c c c c= + − = − + + −  
( ) 7

2
32

2
7

2
2

2
35423

2
.5

2
364

2
3

2
2

2
4

2
7

2
13 442 ccccccccccccccccccck +−−+++=  

2
273

2
732

2
5236423

2
25465

2
34 222422 ccccccccccccccccccck −+−−+=  

( )22 2 2 2 2 2 2 2 2
5 3 6 5 2 4 6 2 3 2 5 6 2 7 6 3 2 6 5 6 2 7 2 62 4 , 2 2 ,k c c c c c c c c c c c c c k c c c c c c k c c= + + − − = − + =  

( ) ( ) ( )22 2 2 2 2 2 2 2
00 0 0

11 122 4 2 4 4 4

4 4 3 4 3,
4 16 16 256 16 128

fk k
φ − ω ξ φ − ω φ − ω−ξ ξ

= + = + + +
ω ω ω ω ω ω

 

( )2 2
10 0

22 31 4 32 12 22 2
2

2

4
, ,

16 4 848 1
4

e
e e

fk k k
 φ − ω αξ ε  = = ε α = α −
 ω ω φ − ω  ω + ω 

 

( )20 5 0 6
42 52 62 1 7 2 32 2, , /16

64 32
e e

e e e e
f fk k kα α   = ε = ε = ε α α +α α   ω ω   

 

( )2
22

2
12

2
11

2
221 KkKKB −+=  

( ) ( ) ( )2 2 2
2 11 42 52 22 12 22 42 52 22 11 31 32 12 22 422 2 2B K K K K K K K K K K K K K K K= + + − + + −   
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( ) ( ) ( )
( ) ( )

22 2 2 2 2 2
3 22 31 32 12 62 42 52 22 32 12 42 52 11 42 52

22
11 31 22 42 52 12 42 52

2 6 2 4
4

B K K K K K K K K K K K K K K K
K K K K K K K K

= + + − + + − + +
+ + + −

( ) ( )
( ) ( ) ( ) ( )

22 2
4 31 22 42 52 11 31 42 52 22 32 62

2 22 2 2
32 12 62 22 42 52 12 32 42 52 22 42 42 52

2 2 2
2 2 2 4

B K K K K K K K K K K K
K K K K K K K K K K K K K K

= − + + + +
+ + + + − − −

  

( ) ( ) ( )
( )( ) ( )

2 22
5 31 42 52 62 22 32 62 22 42 52

222 2 2
32 12 62 42 52 42 52

4
2

B K K K K K K K K K K
K K K K K K K

= + + + −
+ + − − −

  

( ) ( ){ }6 62 42 52 62 22 32 42 522B K K K K K K K K= + −  

( ){ }2
7 62 42 52B K K K= −  

 
Exercise problem: 
 
1. Use second order method of multiple scale (version II) to find the frequency response 
equations for primary resonance of the Duffing equation with cubic nonlinearity and a weak 
forcing function.   

2 32 cosu u u u f+ εξ +ω + εα = ε τ   
Taking 0.2, 1, 0.8 and 0.5fξ = ω = α = = , write a Matlab code to plot the frequency response 
curves for different values of book-keeping parameter. 
 
2. Use second order method of multiple scale (version II) method to find the frequency response 
equations for the Duffing equation with quadratic and cubic nonlinearity.  
 
3. Use second order method of multiple scale (version II) method to find the equations for 
frequency response for the Rayleigh equation. Use any symbolic software (Maple/Mathematica) 
to derive the equations. Also plot the time response and phase portrait to show the limit cycle. 
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