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Module 2 
 

Development of Equation of Motion for Nonlinear vibrating systems 
 

In this module following points will be discussed for deriving the governing equation of 
motion of a system 
 
 Force and moment based approach  

• Newton’s 2nd Law 

• Generalized d’Alembert’s Principle 

 Energy based Approach 

• Lagrange Principle  

• Extended Hamilton’s Principle 

 Temporal equation using Galerkin’s method for continuous system 

 Ordering techniques, scaling parameters, book-keeping parameter 

 Examples of Commonly used nonlinear equations: Duffing  equation, Van der Pol’s 

oscillator, Mathieu’s and Hill’s equations 
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Lecture M2 L01 
 
Force and Momentum based Approach 
 
In this approach one uses Newton’s second law of motion or d’Alembert’s principle to 
derive the equation of motion. This is a vector based approach in which first one has to 
draw the free body diagrams of the system and then write the force and moment 
equilibrium equations by considering the inertia force and inertia moment of the system. 
 
According to Newton’s second law when a particle is acted upon by a force it moves so 
that the force vector is equal to the time rate of change of the linear momentum vector.  
 
Consider a body of mass m positioned at a distance r from the origin of the coordinate 
system XYZ as shown in Figure 2.1.1 is acted upon by a force F .  According to 
Newton’s 2nd Law, if the body has a linear velocity v , linear momentum vector p mv= , 
the external force is given by the following equation.  
 

( )                                                                                                          (2.1.1)= =
 

 dp d mvF
dt dt

   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1.1:  A body moving in XYZ plane under the action of a  force F 
 
 
Considering r  to be the absolute position vector of the particle in an inertial frame, the 
absolute velocity vector can be given by 

drv r
dt

= =


 

                                                                                                                 (2.1.2) 

the absolute acceleration vector is given by  

r
dt

rda 







== 2

2

                                                                                                              (2.1.3) 

Assuming mass to be time invariant,  

Hence 
2

2
 = = = 
 

 




d dr d rF m m ma
dt dt dt

                                                                   (2.1.4) 
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Equation (2.1.4) can also be written as , 0 , 0iF ma or F F− = + =
  

  where iF ma= −


  is 
the inertia force. This is d’ Alembert’s principle which states that a moving body can be 
brought to equilibrium by adding inertia force iF



to the system. In magnitude this inertia 
force is equal to the product of mass and acceleration and takes place in a direction 
opposite to that of acceleration. Now two examples are given below to show the 
application of Newton’s 2nd law or d’ Alembert’s principle to derive the non linear 
equation of motion of some systems. 
                                                           
Example 2.1.1: Use Newton’s 2nd law to derive equation of motion of a simple pendulum  
 

 
 
 
                                                                                                
 

                                                                                                   
                      θ                                                                                         
 l 
  
 
  m 
 
              
 

Figure 2.1. 2: (a)  simple pendulum (b) Free body diagram 
 

Solution: Figure 2.1.2 (a) shows a simple pendulum of length l and mass m and Figure 
2.1.2(b) shows the free body diagram of the system. The acceleration of the pendulum 
can be given by 2ˆ ˆl j l iθ θ−  .  From the free body diagram total external force acting on 
the mass  is given by 

                                                                            (2.1.5) 
Now using Newton’s second law’s of motion i.e.,  F ma=



  
 

ˆ ˆ( cos ) sinθ θ= − + −


F T mg i mg j 2ˆ ˆ( )θ θ= − m l j l i                                              (2.1.6) 
Now equating the real and imaginary parts one can get the equation of motion and the 
expression for the tension. The equation of motion is given by 

  sin 0 or sin 0gml mg
l

θ θ θ θ+ = + =                                                                         (2.1.7) 

and the expression for tension can be given by 

                                                                  (2.1.8) 
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Taking 
3 5 7

sin
3! 5! 7!
θ θ θθ θ= − + −  , the nonlinear equation of motion of the system up to 

7th order nonlinear term can be given by 
3 5 7

 0
3! 5! 7!
θ θ θθ θ

 
+ − + − + = 

 




g
l

                                                                          (2.1.9) 

Or, 
3 5 7

 0
6 120 5040
θ θ θθ θ

 
+ − + − + = 

 




g
l

                                                            (2.1.10) 

It may be noted that for higher power of θ , the coefficient become very small and hence 
the higher order terms can be neglected. 
 
Keeping up to 5th order, the equation can be written as  

3 5

 0
6 120
θ θθ θ

 
+ − + = 

 


g
l

                                                                                       (2.1.11) 

which is a form of Duffing equation with cubic and quintic nonlinearities. 
 
One may derive the same equation using the fact that the moment of a force about a fixed 
point 0M  is equal to the time rate of change of the angular momentum about poin 0H



 . In 

mathematical form it can be written as 0 0M H=
 

 . Refereeing to Figure 2.1.2(b) 
 

0 = ×


M r F                                                                                                                 (2.1.12) 

Or,  ( )0
ˆ ˆ ˆ( ) cos sinM li mg T i mg jθ θ = × − − 



                                                         (2.1.13) 

Now,  ( )2 2

0
ˆ ˆdH ml k ml k

dt
θ θ= =





                                                                               (2.1.14) 

 Or, kmlkmgl ˆˆsin 2θθ =−                                                                                       (2.1.15) 
 Or , 0sin2 =+ θθ mglml                                                                                          (2.1.16) 

 Or,      0sin =+ θθ
l
g

                                                                                             (2.1.17) 

Keeping up to cubic nonlinearity Eq. (2.1.17) can be written as 
  

3

 0
6
θθ θ+ − =

g g
l l

                                                                                                   (2.1.18) 

 
Taking the length of the pendulum 1 m and acceleration due to gravity as 10 m/s2 the 
equation of motion can be written as 
 

3 10 1.6667 0θ θ θ+ − =                                                                                             (2.1.19) 
 
 
It may be noted that the coefficient for the cubic order term is very less than that of the 
linear term. A MatLab code is given below to obtain the variation of restoring force 
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with  θ  which will give an idea regarding the approximation one has to take while 
writing the equation of motion. 
The equation is similar to a Duffing equations with soft type cubic nonlinearity. 
 
Matlab code for restoring force plot 
 
%Plot for restoring Force of a simple pendulum 
% Written by S. K. Dwivedy on 30th May 2012 
% th= theta 
%L= length of pendulum 
  
L=1; 
g=9.8; 
  
th=-pi:pi/100:pi; 
f=(g/L)*(th-(1/factorial(3))*th.^3);  %upto cubic order 
f3=(g/L)*sin(th);   % Actual  
f1=10*th;  % linear approximation 
f5=(g/L)*(th-(1/factorial(3))*th.^3+(1/120)*th.^5);  %uto quintic order 
f7=f5-(g/L)*(1/factorial(7))*th.^7;  %uto 7th  order 
  
plot(th,f,th,f1,'r',th,f3,'v',th,f5,'g',th,f7,'b') 
grid on 
  
xlabel('\theta') 
ylabel('Restoring force') 
 

 
 

Fig. 2.1.3: Different approximation of the restoring force. 
 
 

linear 

7th order 
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Figure 2.1.3 shows the restoring force for actual, linear, cubic, 5th order and 7th order 
approximation. It may clearly be noted that depending on the range of θ  one may take 
the approximation accordingly.  
 
Example 2.1.2:  Derive equation of motion for a nonlinear spring-mass-damper system 

as shown below. Consider the spring force in the form of  3α= +f kx xs  and damping 

force equal to 2β= + f cx xd  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
  

 
Figure 2.1.4 (a) Nonlinear spring-mass-damper system (b) free body diagram 

 
Solution: Taking unit vector along positive X direction as î , if a small displacement ( )x t  
is given to the mass m, as shown in Fig. 2.1.4(b), spring force, damping force and inertia 
force will act in a direction opposite to that of the external force  ( )f t . Now applying d’ 
Alembert’s principle one can write the following equation. 
 

ˆ ˆ( ) ( ) 0i s d iF F f t i F F F i+ = − + + =∑
 

                                                                (2.1.20) 
 

Or,                                                               (2.1.21) 
 
Or, 3 2 ( )mx cx kx x x f tα β+ + + + =                                                                       (2.1.22) 
                                                                    
 
 
 
 
 
 
 
 
 
 

x(t) 

 
f(t) 

Free body diagram 

m 
X sF  

dF  

iF  
m 

(a) (b) 

( )f t  
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Example 2.1.3: Derive the equation of motion of a pendulum of length l mass m which is 
attached to a mass less moving support as shown in Figure 2.1.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1.5: (a) Simple pendulum attached to a periodically translating support, (b) free body diagram of the mass. 
 
Solution: Considering the free body diagram as shown in Fig. 2.1.5 (b), the body is under 
dynamic equilibrium under the action of tension, apparent weight and inertia force.  
Fixing unit vector î and ĵ as shown in Figure 2.1.5(b) and applying Newton’s 2nd Law 
one can write 
  

( ) ( ) ( )2ˆ ˆ ˆ ˆ( cos ) sinF T m g Y i m g Y j m l j l iθ θ θ θ= − + − − − = −


                               (2.1.23) 

 
Separating the ith and jth component of the forces and  equating them to 0 one obtains the 
expression for the tension and the governing equation of motion as given below. 
 

( ) 2cosT m g Y mlθ θ= − +                                                                                         (2.1.24) 

( )sinm g Y mlθ θ− − = 

                                                                                            (2.1.25) 

Or, sin 0g Y
l l

θ θ
 

+ − = 
 



                                                                                          (2.1.26) 

Taking the oscillation to be very small, sinθ θ≈ and hence Eq.(2.1.26) reduces to 

 
( ) 0 

Y tg
l l

θ θ θ+ − =




                                                                                               
(2.1.27) 

It may be noted from the 3rd term in Eq. (2.1.27) that the coefficient of the response θ  is 
a time varying parameter. Hence this type of system is known as parametrically excited 
system and this equation is known as Mathieu-Hill type of equation. Taking cubic order 
nonlinear term, this equation will become the equation of a parametrically excited system 
with cubic nonlinearities. 
 

( )Y t  

l  

m  ( )m g Y−   

2T mlθ−   

mlθ 

î  

ĵ  
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( ) 3

6
Y tg

l l
θθ θ

   
+ − −  

  


                                                                                     
(2.1.28)   

     
         
Exercise Problems 
 
Problem 2.1.1 Derive the equation motion of a compound pendulum.  
Problem 2.1.2  Derive the equation of motion a tuned vibration absorber considering the 
primary spring force equal to  3

1 2sF k x k x= +  
Problem 2.1.3 Derive the equation motion of the following system. Consider the spring to 
be a nonlinear spring having the spring force ( )3

sF K x xε= − . Assume other elements to 
be linear. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1.6 System for exercise problem 2.1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 

L 
K 

C 

F(t)  

M 
m 

•  
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Lecture M 2 L02 
 
Derivation of Equation of motion for Multi-degree of freedom systems 
 
In this lecture the nonlinear governing equation of motions of multi-degree of freedom 
nonlinear systems will be derived by using Newton’s 2nd Law or d’Alembert’s principle. 
The approach is similar to that of the single degree of freedom system. One can derive 
the equation of motion by drawing the free body diagrams and then writing the force or 
moment equilibrium equations by including the inertia force. Let us consider following 
simple examples to derive the equation of motions.  
 
Example 2.2.1: Derive the equation motion of system shown in Fig. 2.2.1. Consider the 
last spring to be nonlinear where the spring force is given by 2

3 4sF k x k x= + . Consider 
other spring and damper behaviour to be linear. 
 

 
Figure 2.2.1. A multi degree of freedom system 

 
Solution 
Considering the equilibrium of the mass 1m ,  
 
 
 
 
 
 
 
 

Figure 2.2.2: Free body diagram of part with mass 1m  

 
 
 
 
 
 
 
 
 

Figure 2.2.3: Free body diagram of part with mass 2m  

 
 

1m  
1 1

1 1

k x

c x
 

( )

( )

2 1 2

1 1

2 1 2

−

−



 

k x x
m x
c x x

 

2m  
( )

( )

2 2 1

2 2 1

−

− 

k x x

c x x
 

( ) ( )

( )

2
3 2 3 4 2 3

2 2

3 2 3

k x x k x x
m x
c x x

− + −

−



 

 

3 4,k k  
 

1m  2m  3m  
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Equating the forces acting on mass  1m  as shown in Fig. 2.2.2 one obtains 
 

( ) ( )1 1 1 1 1 1 2 1 2 2 1 2+ + + − + −   m x k x c x k x x c x x =0.                                                      (2.2.1) 
 
Similarly considering the free body diagram for the 2nd mass the equation of motion can 
be written as 
 

                  (2.2.2) 
 
From the free body diagram shown in Fig. 2.2.4, the equation of motion for the 3rd mass 
can be given by 
 

=0                                                   (2.2.3) 
 
 
 
 
 
 
 
 
 
 

Figure 2.2.4: Free body diagram of part with mass 2m  

 
It may be noted that as the last spring is connected to both second and third masses, the 
obtained second and third equations are nonlinear. So the equation of motions of the 
system can be written as 
 

( ) ( )1 1 1 1 1 1 2 1 2 2 1 2 0m x k x c x k x x c x x+ + + − + − =                                                            (2.2.4) 

              (2.2.5) 

                                                     (2.2.6) 
 
 
 
 
 
 
 
 
 
 

3m  
3 3m x

 

( ) ( )

( )

2
3 3 2 4 3 2

3 3 2                   

k x x k x x

c x x

− + −

− 
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Exercise Problems:  
 
Prob. 2.2.1: Derive the equation of motion of the nonlinear vibration absorber as shown 
in Fig. 2.2.3. Consider spring k1 and k2 to be nonlinear with linear, quadratic and cubic 
nonlinear coefficients.  [Ref: Y.A. Amer, A.T. EL-Sayed,  Vibration suppression of non-
linear system via non-linear absorber, Communications in Nonlinear Science and 
Numerical Simulation, Volume 13, Issue 9, November 2008, Pages 1948-1963] 
 

 
Figure 2.2.5: Nonlinear Vibration absorber. 

 
Answer:   

(2.2.7) 
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Prob. 2.2.2:  Find the equation of motion of the following system which models the 
vibration control of ultrasonic cutting via dynamic absorber [Ref: Y.A. Amer, Vibration 
control of ultrasonic cutting via dynamic absorber, Chaos, Solitons & Fractals, Volume 
33, Issue 5, August 2007, Pages 1703-1710] 
 

 
Figure 2.2.6: System for vibration control of ultrasonic cutting via dynamic absorber. 

 
Prob. 2.2.3: Derive the equation of motion of a two stage gear system with mesh 
stiffness fluctuation, bearing flexibility and backlash [Ref: Lassâad Walha, Tahar 
Fakhfakh, Mohamed Haddar, Nonlinear dynamics of a two-stage gear system with mesh 
stiffness fluctuation, bearing flexibility and backlash, Mechanism and Machine Theory, 
Volume 44, Issue 5, May 2009, Pages 1058-1069 ] 
 

 
Figure 2.2.7: Two stage gear considering nonlinear coupling 
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Prob. 2.2.4: Derive the equation of motion of a pair of spur gear considering backlash. 
The system is shown in Fig. 2.2.7) [Ref: Hamed Moradi, Hassan Salarieh, Analysis of 
nonlinear oscillations in spur gear pairs with approximated modelling of backlash 
nonlinearity, Mechanism and Machine Theory, Volume 51, May 2012, Pages 14-31] 
 

 
Figure 2.2.8: Modeling of a pair of spur gear considering backlash 

 
Answer:  

( ) ( )

( ) ( )
1 1 1 1 1 2 2 1 1 1 2 2 1

2 2 2 1 1 2 2 2 1 1 2 2 2

I cr r r kr r r T

I cr r r kr r r T

θ θ θ θ θ

θ θ θ θ θ

+ − + − =

+ − − − =

  

  

                                   (2.2.8) 
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Lecture M 2 L03 
 
Derivation of the equation of motion of continuous system using d’Alembert’s 
principle. 
 
In this lecture, with help of example we will derive the governing equation of motion of a 
continuous or distributed mass system using d’Alembert’s principle. It may be noted that 
in previous two lectures we considered discrete system in which the governing equation 
of motions are in the form of ordinary differential equations. But in continuous system 
the governing equations are in the form of partial differential equation as the state vector 
(e.g., displacement) depends not only on time but also on the space co-ordinates. For 
example in case of axial vibration of a bar the axial displacement of the bar depends on 
the time and location of the point on the bar at which the displacement has to be 
measured. Also, it may be noted that, unlike discrete system where the natural 
frequencies of the system has a definite value, in case of continuous system the system 
has infinite number of natural frequencies. Depending on particular applications, one may 
convert the analysis of continuous system to that of a multi-degree of freedom system by 
considering finite participating modes in the analysis.  
 
Example 2.3.1: Figure 2.3.1 shows a roller-supported base excited cantilever beam with 
tip mass. In practical application it can be a single-link flexible Cartesian manipulator 
with a payload of mass M. The left end of the manipulator is roller-supported which is 
subjected to harmonically varying support motion 1( ) cosbY t Z t= Ω . The right end of the 
manipulator is subjected to a sinusoidally varying axial force 0 1 2( ) cosP t P P t= + Ω . The 
motion of the manipulator is considered to be in the vertical plane. Derive the governing 
equation of motion using d’Alembert’s principle. 
 
 

 

 

 

 

 

 

 

 
Figure 2.3.1 Schematic diagram of a single-link Cartesian manipulator with payload subjected to harmonically varying axial 

force. 

 

 

1cosbY Z t= Ω  

 

θ  v 

u 

s 

X 

Y P(t) 
M 
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Solution:  

Here, the Cartesian manipulator with payload is modeled as a roller-supported Euler–

Bernoulli beam with a tip mass. The thickness (h) of the beam is considered to be very 

small in comparison to the length of the beam (L). Hence, the effects of the shear 

deformation and rotary inertia of the beam are neglected. The transverse vibration (v) of 

the beam is assumed to be purely planar. The torsional mode of the beam is neglected in 

this analysis. Payload mass is considered as a point mass which is symmetrically placed 

with respect to the centerline of the beam. The harmonically varying tip load is acting 

always in the tangential direction of the elastic line and the amplitude of the axial force is 

taken less than the critical buckling load. 

The governing equation of motion of the present system is derived using d’ Alembert’s 

principle. Considering a small element at a distance s from the roller-supported end 

(Fig.2 3.1) along the elastic line of the beam, the bending moment ( )M s  of the beam can 

be expressed as: 

( ) 21
2ss s ssM s E I v v v ≈ + 

 
.                                                                                        (2.3.1) 

Here, v is the transverse displacement of the beam. ( )s  is the first derivative with respect 

to s along the beam. Following Zavodney and Nayfeh (1989), and Cuvalci (1996, 2000), 

one may write the inextensibility condition of the beam in terms of the longitudinal 

displacement ( )tu ,ξ and the transverse displacement ( )tv , ξ  as: 

( )22 1 1s sv u+ + = .      or,  ( ) ( )
1

2 2

0

, 1u t v d
ξ

ηξ = ξ − − η∫ .                                                (2.3.2) 

Here, ,ξ η are the integration variables. Considering the inertia forces per unit length of 

the beam ,Auρ  and ( ) ,bA v Yρ +   in longitudinal and transverse directions, respectively 

and inertia forces of the tip mass in longitudinal and transverse directions as 

( ) and bM u M v Y+   , respectively,  one may write equation (2.3.1) as follows: 

( ) ( ) ( ) 0LM s M s M sξ− − = .                                                                                     (2.3.3) 
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Here, ( )M sξ  is the moment due to inertia force at a distance ξ  from the roller-supported 

end and ( )LM s  is the moment due to inertia force for the payload at the tip of the 

manipulator and their expressions are given below: 

( ) ( )sin cos
L L

b
s s s s

M s Au d d A v Y d d
ξ ξ

ξ = − ρ θ η ξ − ρ + θ η ξ∫ ∫ ∫ ∫

  ,                                      (2.3.4)  

and, ( ) ( ) ( )sin cos sin
L L L

L b
s s s

M s M u d M v Y d P t d= − θ ξ − + θ ξ − θ ξ∫ ∫ ∫

  .                      (2.3.5) 

Considering equivalent viscous damping force dc v  due to interaction of the system with 

the environment and by differentiating Eq. (2.3.3) twice with respect to s, using the 

Leibniz’s rule and applying the binomial expansion, one may obtain the following 

governing differential equation of motion. 

( ) ( ) ( )2 3 2
ξ

1 3
2

s

ssss s ssss s ss sss ss s s ss s ss
0

v v v d v+Y +ξ ξ bEI v v v v v v v ρAv M v v v v  + ξ 
 

+ + + ∫+ + 

    

( )( ) ( ) ( )2 2
( )

L sL
L s db ss ξ ξ ξ ξ ξ ξ

s s 0 0

AY dρ Av v v d dη M dc ρA v v v v v v
ξ

−ρ + η ++ − ξ + ξ∫
 

+ + 
 
∫ ∫ ∫

       

( )( ) ( )2 ( ) 0
1

1
2

bs d sv+Y P t vsv ρA c v + =− + 
 
 



  .                                                              (2.3.6)      

Example- 2.3.2 

Derive the equation motion of a string fixed at one end and attached by a nonlinear spring 

at the other end.  

Solution 

( ) ( ) ( ) ( ) ( ) ( ) ( )2

2

, , ,
,

T x w x t w x t w x t
T x dx dx f x t dx T x

x x x x
 ∂ ∂ ∂ ∂ 

+ + + −  ∂ ∂ ∂ ∂   
 

    
( ) ( )2

2

,
,

w x t
x dx

t
ρ

∂
=

∂
  0 x L< <                              (2.3.7)        

( ) ( ) ( ) ( ) ( )2

2

, ,
, ,

w x t w x t
T x f x t x dx

x x t
ρ

∂ ∂ ∂
+ = ∂ ∂ ∂ 

                 0 x L< <                    (2.3.8) 

Subjected boundary conditions 

( ), 0,w x t =  at 0x =  and    ( ) ( ) ( ) ( )3
1 2

,
, , 0,

w x t
T x K w x t K w x t

x
∂

+ + =
∂

 at x L=      (2.3.9)  
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Equation (2.3.8) is partial differential equation of motion and (2.3.9) are the boundary 
conditions. 
 
To develop different nonlinear equations of motion for string systems, one may refer the 
following papers on nonlinear vibration of strings.  

1. G.S.S. Murthy, B.S. Ramakrishna, Non-linear character of resonance in stretched 
strings,  J. Acoust. Soc. Am., 38 (1965), p. 461 

2. J.W. Miles, Stability of forced oscillations of a vibrating string, J. Acoust. Soc. 
Am., 38 (1965), p. 855 

3. G.V. Anand, Non-linear resonance in stretched strings with viscous damping, J. 
Acoust. Soc. Am., 40 (1966), p. 1517. 

4. E.W. Lee, Non-linear forced vibration of a stretched string, Br. J. Appl. Phys., 8 
(1957), p. 411 

5. D.W. Oplinger, Frequency response of a non-linear stretched string, J. Acoust. Soc. 
Am., 32 (1960), p. 1529 

6. G.F. Carrier,  On the non-linear vibration problem of the elastic string, Q. Appl. 
Math., 3 (1945), p. 157 

 
Exercise Problems 
 
Prob. 2.3.1. Derive the equation of motion of a base excited cantilever with an attached 
mass at arbitrary position as shown in Fig. 2.3.2. (Ref: Zavodney and Nayfeh(1989),  
Prob.2.3.2: Derive the equation of motion of a dynamic vibration absorber as shown in 
Figure 2.3.3. 
Prob. 2.3.3: Derive the equation motion of the moving belt system shown in Fig. 2.3.4 
[C.A. Jones, P. Reynolds, A. Pavic, Vibrational power flow in the moving belt passing 
through a tensioner, Journal of Sound and Vibration, Volume 330, Issue 8, 2011, Pages 
1531-156 ] 

 
 
Answer: 
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Lecture M2 L04 
 
Derivation of equation of motion using Extended Hamilton’s Principle 
 
The purpose of this lecture is to use extended Hamilton’s principle to derive the equation 
of motion of different systems. According to this method, for a system with kinetic 
energy T, potential energy U and virtual work done by the non-conservative force δ ncW , 
the governing equation motion can be obtained by using the following equation. 

( )( ) ( ) ( )
2

1

1 20,  0, 1,2,....δ δ δ δ− + = = = =∫
t

nc i i
t

T U W dt r t r t i n                          (2.4.1) 

Here, 1t and 2t are the time at which it is assumed that the virtual displacements δ ir for a 
system represented by n physical co-ordinates ( ir ) vanishes. Using Lagrangian 
( = −L T U ) and m  generalized co-ordinates iq  of the system, the above equation can be 
written as  

( ) ( ) ( )
2

1

1 20,  0, 1,2,....δ δ δ δ+ = = = =∫
t

nc i i
t

L W dt q t q t i m                                  (2.4.2) 

Equation (2.4.1) and (2.4.2) are the equation for Extended Hamilton’s principle. For a 
conservative system as  0δ =ncW , Eq. (2.4.2) reduces to 

 ( ) ( )
2

1

1 20,   0δ δ δ= = =∫
t

k k
t

Ldt q t q t                                                                     (2.4.3) 

which is known as the Hamilton’s Principle. 
 
This method is particularly useful for continuous systems where one can obtain both 
governing equation of motion and boundary conditions of the system. 
 
Let us derive the equation of motion of few linear and nonlinear systems to get 
familiarize with the application of this method. 
 
Example 2.4.1: Derive the equation of motion of a simple pendulum using extended 
Hamilton’s principle. 
 
Solution: In this case the kinetic energy T  and potential energy U  of the system can be 
given by 

( )21 ,   (1 cos )
2

T m l U mglθ θ= = −                                                                       (2.4.4) 

( )21So,   (1 cos )
2

L T U m l mglθ θ= − = − −                                                          (2.4.5) 

Now, applying Hamilton’s principle one can write 
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 ( ) ( )
2

1

1 20,   0δ δθ δθ= = =∫
t

t

Ldt t t                                                                      (2.4.6)
 

( )

( ) ( )

( )

2

1

2

1

2

1

2

2

1  (1 cos ) 0,
2

1or,  2 sin 0,
2

or, sin 0

δ θ θ

θ δ θ θδθ

θ δθ θδθ

 − − = 
 

 − = 
 

 − = 
 

∫

∫

∫



 



t

t

t

t

t

t

m l mgl dt

m l l mgl dt

dml mgl dt
dt

 

                                                   (2.4.7) 
The first term (marked in red colour) tends to zero as ( ) ( )1 2 0δθ δθ= =t t . As the virtual 
displacement δθ is arbitrary, hence the coefficient of δθdt term should vanish. Therefore 
one obtains 

2 sin 0θ θ+ =ml mgl                                                                                        (2.4.8) 
as the equation of motion of the simple pendulum. Taking up to 5th  order terms this 
equation can be written as 

 
3 5

0
6 120
θ θθ θ

 
+ − + = 

 


g
l

                                                                                 (2.4.9) 

 
Example 2.4.2: Derive the equation of motion for the transverse vibration of an Euler-
Bernoulli beam with fixed-free boundary condition subjected to axial periodic load as 
shown in Fig. 2.4.1. 
Solution:  
Let us first derive the equation of motion of the system considering small displacement of 
the system. 

The kinetic energy T of the beam can be given as follows: 

2
,

0

1
2

L

tT mw dx= ∫                                                                                         (2.4.10) 

where, m is the mass of the beam per unit length and ( ),t
represents the differentiation 

with respect to time. 
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Fig: 2.4.1: Schematic diagram of a cantilever beam under transverse vibration due to application of a periodic axial load 

The potential energy of the system is due to the strain energy of the system and is given 

by 

2
,

0

1
2

L

xxU EIw dx= ∫                                                                                                  (2.4.11) 

Hence the Lagrangian of the system  2 2
, ,

0 0

1 1
2 2

L L

t xxL T U mw dx EIw dx= − = −∫ ∫           (2.4.12) 

Assuming inextensible beam condition, there will be no elongation in the axial direction 

along the neutral axis of the beam. The longitudinal deformation u of the beam due to 

transverse deformation w can be expressed as  

 
2 2

1 1du dw
dx dx

   + + =   
   

                                                                                       (2.4.13) 

Rearranging Eq. (2.4.13) and using a first order Taylor series expansion, the following 

relationship can be obtained. 

 
2

0

1
2

L dwu dx
dx

 = −  
 ∫                                                                                                (2.4.14) 

The work done due to the nonconservative axial force can be given by 

2

0

1
2

L

ncW P u P w dxδ δ δ
 

′= − =  
 
∫

                                                                             
(2.4.15) 

Using Hamilton’s principle 

( ) ( ) ( )2

1
1 20, 0

t

nct
L W dt w t w tδ δ δ+ = = =∫                                                           (2.4.16) 

Using Eq (2.4.12) and Eq. (2.4.15) in Eq. (2.4.16) one can write 

( )P t  
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( )2 2

1 1

2 2 2
, , ,

0 0 0

1 1 1
2 2 2

L L L
t t

nc t xx xt t
L W dt mw dx EIw dx P w dx dtδ δ δ δ

    
+ = − +    

     
∫ ∫ ∫ ∫ ∫ (2.4.17)

2 2

1 1

2 2

2 2
0 0

or, 0
L L

t t

t t

w w w w w wm dxdt EI P dx dt
t t x x x x

δ δ δ
     ∂ ∂ ∂ ∂ ∂ ∂     − − =           ∂ ∂ ∂ ∂ ∂ ∂           

∫ ∫ ∫ ∫ (2.4.18)

( ) ( )
2

2

1
1

2

2
0 0

or,   
tL L

t

t
t

w w w wm w dt dx EI P w dx dt
t t x x x x x

δ δ δ
       ∂ ∂ ∂ ∂ ∂ ∂ ∂   − −           ∂ ∂ ∂ ∂ ∂ ∂ ∂         
∫ ∫ ∫ ∫ (2.4.19) 

Using integration by parts Eq.(2.4.19) can be written as,

 ( )

( ) ( )

2
2

1
1

= 0 as per defination

Boundary conditi

2

2

ons

3

2 3

0 0

0 0

2

0

tL L

t

t

t

L
L L

w wm dx m wdt d

w w w wEI EI w P w
x x x

t

x

t
w xδ

δ

δ

δ δ
     ∂ ∂ ∂ ∂   + −        ∂ ∂

  ∂ ∂  −      ∂ ∂   

∂ ∂        







−

∫ ∫ ∫






 

2

1

2

1

4 2

4 2
0

0

t

t

t L

t

dt

w wEI P wdx dt
x x

δ
  ∂ ∂

− + =   ∂ ∂  

∫

∫ ∫



                         (2.4.20) 

Or,

( ) ( )
2

1

Boundary condi

2 3

2 3 0 0
0

=0, Equation of motio

tions

2 4 2

2 4

n

2

L
L

t
L

t

dt

w w wm E

w w w wEI EI

I P
t x

w P
x x x

x

w
x

δ δ δ
     ∂ ∂ ∂ ∂   + −        ∂ ∂ ∂ ∂       

−


  ∂ ∂ ∂− + + ∂ ∂ ∂



  



 
∫












 

2

1 0

0
t L

t

wdxdtδ



 =




∫ ∫
                      (2.4.21) 

 

As the virtual displacement wδ is arbitrary, hence the right hand side of the equation will 

be zero only if  
2 4 2

2 4 2 0w w wm EI P
t x x

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ 

                                                                             (2.4.22) 

which is the equation of motion of the system. The boundary conditions can be obtained 

from the term marked in blue colour in Eq. (2.4.21). Now taking the periodic axial load 

as  

0 1 cosP P P t= + Ω , Eq. (2.4.22) can be written as 
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( )
22 4

0 212 4 cos 0w wm EI P P t
t x

w
x

∂
∂

Ω
∂ ∂

+ + + =
∂ ∂

                                                            (2.4.23) 

Due to the presence of a periodic term (marked in pink colour) as the coefficient of the 

term containing the response (marked in blue colour), the system is a parametrically 

excited system. 

 

Exercise Problems:  
 
Problem 2.4.1: Derive the equation of motion of a cantilever beam subjected to magnetic 

field using extended Hamilton’s principle. 

 

 

 
Fig. 2.4.2: Schematic diagram of a cantilever beam subjected to magnetic field. 

Hints: The expression  for kinetic and strain energy of the system can be taken similar to 

that taken in example 2.4.2.
  

2
,

0

1                                                      
2

L

tT mw dx= ∫                                                (2.4.24) 

 

( ) 2
,

0

1                       
2

L

t t t xxbending
U E I w dx= ∫                                                                (2.4.25) 

Considering conductive material, the magnetoelastic load applied to the beam is 

equivalent to the horizontal force n  and the distributed moment m which are expressed 

in terms of the longitudinal displacement (u ) and transverse displacement ( w ) as (Zhou 

and Wang [1] ), Moon and Pao [2]  
2

0
,xx

e

B bhn u
µ

=  and                                                                                      (2.4.26) 
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2 2 3
0 0

, , , ,
0

ln .
2 122ln

m
x xx x xxx

e

B bh B bhh xm u w w wx L x
L x

π
µ π µ

 
 

= − + − − 
− 

                      (2.4.27) 

Here, 0  and eµ µ are respectively the permeability of the free space and the beam 
materials.  
The non-conservative work done due to the applied axial periodic load and the above 
mentioned magnetoelastic loads and moments can be given by 

2
, , ,

0 0

1
2

L L
m m

nc x t t b b t x b xW Pw dx n u n u m w m w dxδ δ δ δ = + + + + ∫ ∫                                       (2.4.28) 

 
Problem. 2.4.2:  Derive the equation motion of a base excited cantilever beam with 
arbitrary mass position using extended Hamilton’s principle. (Refer:  Kar and Dwivedy 
1999 for the derivation using d’Alembert’s principle) 
 
 
References for Further Reading  
 
[1] G. Y. Zhou, Q. Wang, Use of Magnetorheological Elastomer in an Adaptive 

Sandwich Beam with Conductive Skins. Part I: Magnetoelastic Loads in Conductive 

Skins, International Journal of Solids and Structures 43, 5386-5402, 2006. 

[2] F.C.  Moon and Y. H. Pao, 1969, Vibration and dynamic instability of a beam-plate in 

a transverse magnetic field, Journal of Applied Mechanics 36, 92–100, 1969 

[3] R. C. Kar and S. K. Dwivedy, Non-linear dynamics of a slender beam carrying a 

lumped mass with principal parametric and internal resonances. International Journal of 

Nonlinear Mechanics, 34 (3)515-529, 1999. 
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Lecture M2 L05 
 
Derivation of Equation of motion using Lagrange Principle 

Both Hamilton’s principle and Lagrange principle are based on energy principle for deriving 
the equation of motion of a system. As energy is a scalar quantity, the derivation of equation 
of motion is more straight forward unlike the derivation based on Newton’s 2nd Law or d’ 
Alembert’s principle which are vector based approach. In the Newton’s or d’Alembert’s 
approach, with increase in degrees of freedom of the system it is very difficult and time 
consuming to draw the free body diagrams to find the equation of motion using force or 
moment equilibrium. Hence it is advantageous to go for energy based approach. While in 
Hamilton’s principle one uses a integral based approach, in Lagrange principle a differential 
approach is followed. Hence, use of Lagrange principle is easier than the Hamilton’s 
principle. Though all these methods in principle can be applied to any system, however it is 
better to use Newton’s 2nd Law or d’Alembert’s principle for single or two degree of freedom 
systems, Lagrange principle for multi degree of freedom and extended Hamilton’s principle 
for continuous systems. 
 
In Lagrange principle, generally the equations of motion are derived using generalized 
coordinates.  Let us consider a system with N physical coordinates and n generalized 
coordinates. The kinetic energy T for a system of particles can be given by 

( )1, 2, , 1, 2, ,........... ........N NT T r r r r r r=                                                                                  (2.5.1) 

Where ,  and i ir r  are the position and velocity vector of a typical particles of mass mi  (i=1,2,.., 
N).  Considering    and k kq q  as the displacement and velocity in terms of kth generalized 
coordinates, one may write, 

 
1=

∂
=

∂∑ 

n
i

i k
k k

rr q
q

                                                                                                           (2.5.2) 

So using generalized coordinate one may write, 
   ( )1 2 , 1 2 ,, ...... , ......=   

n nT T q q q q q q                                                                               (2.5.3) 

Hence, 
1

δ δ δ
=

 ∂ ∂
= + ∂ ∂ 
∑ 



n

k k
k k k

T TT q q
q q

                                                                         (2.5.4) 

The virtual work  (δW )performed by the applied force 


iF  can be written in terms of 
generalized forces and virtual displacement or 
 

 
1

δ δ
=

= ∑
n

k k
k

W Q q                                                                                                       (2.5.5)  

where, . , 1,2,....i
k i

k

rQ F k n
q
∂

= =
∂∑




.                                                                             (2.5.6) 

The over bar inδW  shows that the work done is a path function. Substituting (2.5.4) and 
(2.5.5) into the extended Hamilton’s Principle,  
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( )
2

1

0
t

t

T W dtδ δ+ =∫ ,  ( ) ( )1 2 0k kq t q tδ δ= = ,  k=1,2,…..n                                      (2.5.7) 

one obtains the following equation. 
2

1
1 1

0δ δ δ
= =

  ∂ ∂
+ + =  ∂ ∂  

∑ ∑∫ 



t n n

k k k k
k kk kt

T Tq q Q q dt
q q

                                                       (2.5.8) 

 
Now,  

( )


2 2 2

1

2

1
1

1

2

1 0

                                             

δ δδ δ

δ

=

 ∂ ∂ ∂ ∂
= = −  ∂ ∂ ∂ ∂ 

 ∂
= −  ∂ 

∫ ∫ ∫

∫



   



t t t

k k k
t

t
k k k kt t t

t

k
kt

T T d T d Tq dt q dt q dt
q q dt q dt q

d T q dt
dt q

q

                            (2.5.9) 

   
Substituting (2.5.9) in (2.5.8) we have 
 

2

1
1

0
t n

k k
k k kt

d T T Q q dt
dt q q

δ
=

  ∂ ∂
− + + =  ∂ ∂  

∑∫


                                                                (2.5.10) 

 
Considering the arbitrariness of the virtual displacement δ kq , equation ( 2.5.10) will be 
satisfied for all values of  kqδ  provided 

 , 1,2, ..  
 ∂ ∂

− = = … ∂ ∂ 
k

k k

d T T Q k n
dt q q

                                                                  (2.5.11) 

Equation (2.5.11) is known as Lagrange’s equation . 
Considering both conservative force kcQ  and nonconservative force nkcQ , the total generalized 
force kQ  can be written as   

k kc kncQ Q Q= +                                                                                                       (2.5.12) 
and recalling potential energy depends on coordinates alone, the work done by the 
conservative force cW  is equal to the negative of the potential energy V . Hence, one may 
write 
 

1 1
δ δ δ δ

= =

∂
= − = − =

∂∑ ∑
n n

c k kc k
k kk

vW U q Q q
q

.                                                                (2.5.13) 

So the conservative generalized forces have the form 
 

∂
= −

∂kc
k

UQ
q

, k=1, 2,…..n                                                                                             (2.5.14) 
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Substituting Eq. (2.5.12) and Eq. (2.5.13) in Eq. (2.5.10) we have 

, 1,2, , .
 ∂ ∂ ∂

− + = = ∂ ∂ ∂ 




knc
k k k

d T T U Q k n
dt q q q

                                                      (2.5.15) 

As the potential energy does not depend on velocity, using Lagrangian = −L T U , Eq. 
(2.5.15)  can be rewritten as 

knc
k k

d L L Q
dt q q
   ∂ ∂

− =   ∂ ∂   

                                                                                          (2.5.16) 

 
Using dissipation energy D, this equation further can be written as  

knc
k k

d L L D Q
dt q q q
     ∂ ∂ ∂

− + =     ∂ ∂ ∂     

                                                                             (2.5.17) 

Using both external forces and moments one may write the generalized force as  
 

. . , 1,2 , 1,2,....,ω∂ ∂
= + = =

∂ ∂∑ ∑






i i
k i i

i ik k

rQ F M i N k n
q q

                                         (2.5.18) 

Mi is the vector representation of the externally applied moments, iω is the system angular 
velocity about the axis along which the considered moment is applied.  
 

− Lagrange equation can be used for any discrete system whose motion 
lends itself to a description in terms of generalized coordinates, which 
include rigid bodies. 

− can be extended to distributed parameter system, but such system, they 
are not as versatile as the extended Hamilton’s Principle 

 
Let us take some examples to derive the equation of motion using Lagrange principle. 
 
Example 2.5.1: Derive the equation of motion of a spring-mass-damper system with spring 
force given by 3

sF kx xα= − and damping force given by 2
dF cx x xβ= −  . The external force 

acting on the system is given by 1 1 2 2sin sinF f t f tω ω= + . Consider mass of the system as m 
and displacement from the static equilibrium point as x . 
 
Solution: In this single degree of freedom system one can take x as the generalized co-
ordinate. From the given expressions for different forces acting on the system, the expressions 
for kinetic energyT, potential energy V, dissipation energy D can be given by the following 
expressions. 
 

 
( )

2

3 2 4

1 ,
2

1 1
2 4s

T mx

V F dx kx x dx kx xα α

=

= = − = −∫ ∫



                                                      (2.5.19) 
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2 2 41 1 1
2 2 4

L T V mx kx xα = − = − − 
 

                                                                   (2.5.20) 

( )2
dD F dx cx x x dxβ= = −∫ ∫                                                                                    (2.5.21) 

1 1 2 2sin sinkncQ F f t f tω ω= = +                                                                              (2.5.22) 
 
Using Lagrange equation (2.5.17) 

knc
k k

d L L D Q
dt q q q
     ∂ ∂ ∂

− + =     ∂ ∂ ∂     

                                                                              (2.5.23) 

 
2 2 4 2 2 41 1 1 1 1 1

2 2 4 2 2 4
d

mx kx x mx kx x
d F F
dt x x

α α
         ∂ − − ∂ − −                  − + =
   ∂ ∂
   
   

 



      (2.5.24) 

 

 ( ) ( )or, s d
d mx F F F
dt

− − + =                                                                                    (2.5.25) 

 
( )3 2

1 1 2 2or, sin sinmx kx x cx x x f t f tα β ω ω+ − + − = +                                                (2.5.26) 
 
Example 2.5.2  
 Use Lagrange Principle to derive equation of motion of the following system. 

 
 

 
 

Figure 2.5.1: Vibration of a spring-mass system with a pivoted link 
Solution: 
Let A is the position of the mass M at time t =0 when the link is in vertical position. Now it 
has come to position marked O after some time t. The motion can be completely described in 
terms of a physical coordinate system fixed at the fixed end. Also, one may use translation x 
of mass M and rotation θ  of the link as the generalized coordinates. Here, 

θ= =1 2 and  q x q .  î  and ĵ are the unit vector along the horizontal and vertical direction as 
shown in the figure. To find the kinetic energy of the link, first we have to determine the 
velocity of the mass center of the link. The position vector of the mass center of the link is   

 ˆ ˆsin cos
2 2

θ θ = + + − 
 



c
L Lr a x i j                                                                    (2.5.27) 

M  
1 1

ˆsin ,ωF t i  

2 2sinωF t  
,m L  

x  a  

A  O  

P  
θ  
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So the velocity 

 ˆ ˆcos   sin
2 2

θ θ θ θ = + + 
 



 



c
L Lv x i j .                                                                     (2.5.28) 

 

Similarly velocity of mass M is ( )1
ˆ

ˆ+
= =





d a x idr xi
dt dt

                                            (2.5.29) 

Hence, kinetic energy of the system which is due to the kinetic energy of the mass M and the 
kinetic energy of link with mass m is 

 2
1 1

Translational KE Rotational KE

1 1 1.
2 2 2

θ= ⋅ + + Ι
   

 



 

c c cT Mr r mv v                                                                       (2.5.30) 

( ) 2 2 21 1   cos
2 3

M m x mLx mLθ θ θ = + + +  
 

                                                          (2.5.31) 

The potential energy of the system is due to the spring element and also due to the change in 
height of the link. Considering a hard spring with cubic nonlinearity, the potential energyV  of 
the system can be given by the following equation. 

( )2 41 1 1 cos
2 4 2

α θ= + + −
LV kx x mg                                                                        (2.5.32) 

As two forces are acting on the system, to find the generalized force first we have to find the 
position vector of the point where the forces are acting. For the force 1 1sinωF t the position 

vector from the fixed coordinate system is ( )1
ˆ= +



r a x i . Similarly, for the second force which 

is acting on the pivoted link is  ( ) ( )2
ˆ ˆsin cosθ θ= + + + −



r a x L i L j . So the generalized 
forces can be obtained by using Eq. (2.5.18) as follows. 

2

1
.

=

∂
=

∂∑




i
knc i

l k

rQ F
q

                                                                                                          (2.5.33) 

( ) ( ) ( )( )
1 1 1 2 2

1 1 2 2

ˆ ˆˆ sin cos
ˆ ˆsin . sin .

sin sin

θ θ
ω ω

ω ω

 ∂ + + + −∂ + = +
 ∂ ∂
 

= +

nc

a x L i L ja x i
Q F ti F ti

x x

F t F t

    (2.5.34) 

( ) ( ) ( )( )
2 1 1 2 2

2 2 2 2

0

ˆ ˆˆ sin cos
ˆ ˆsin . sin .

0 sin cos sin cos

θ θ
ω ω

θ θ

ω θ ω θ
=

 ∂ + + + −∂ + = + ∂ ∂  
= + =



nc

a x L i L ja x i
Q F ti F ti

F L t F L t

   (2.5.35) 

 
Now using Lagrange Principle 
 
 

knc
k k

d L L Q
dt q q

 ∂ ∂
− = ∂ ∂ 

                                                                                                (2.5.36) 
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Where 

( ) ( )2 2 2 2 41 1 1 1cos 1 cos
2 3 2 4 2

θ θ θ α θ   = + + + − + + −      
 

 

LL M m x mLx mL kx x mg (2.5.37) 

 
For k=1 

 ( ) 3
1 1 2 2cos sin sinθ θ α ω ω + + + + = + 





d M m x mL kx x F t F t
dt

                          (2.5.38) 

For k=2 

 2
2 2

1 1cos sin sin cos sin
3 2 2

θ θ θ θ θ θ ω + + + = 
 

 

 

d lmlx mL mlx mg F L t
dt

              (2.5.39) 

( )2
2 2

1 1or,  cos sin cos sin
3 2

θ θ θ θ θ ω + + + = 
 

 

 

d mlx mL ml x g F L t
dt

                   (2.5.40) 

 
Example 2.5.2:  Using Lagrange Principle to find the equation of motion of the system shown 
in Figure 2.5.2 . Spring  K1 is under pretension T for small amplitude of vertical Oscillation 

i.e., . Spring K2 is a soft spring with cubic nonlinearity. 
 

 
Figure 2.5.2: Vibration of a spring mass system with additional pre-tensioned horizontal spring. 

 
Solution 
 As spring 1K is under pretension 0T  which is produced by an initial extension of the spring 
by an amount 0δ , one may write 
  0 1 0δ=T K                                                                                                                   (2.5.41) 

The kinetic energy of the system  is   21
2

T mx=                                                          (2.5.42) 

The potential energy of the system is due to the potential energy of the nonlinear spring 2K  
and due to the linear spring 1K . Considering oscillations about the static equilibrium position, 
the potential energy can be obtained as follows. 

 ( ) ( )2 2 4
1 0 2 2

1 1 1
2 2 4

δ ε= + ∆ + −V x K l K x K x                                                            (2.5.43) 
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where ∆L is the change in length of the spring with stiffness K1 due to the motion  x of the 
mass. The coefficient of the cubic nonlinear term is assumed to be 2εK .  The negative sign is 

due to the soft spring assumption.  For , from Fig. 2.5.3 one may write 

 ( )2
2 2 1∆ = + − = + −xL L x L L LL                                                                    (2.5.44) 

 
2 4 6 2 4 61 1 1 1 1 11

2 8 16 2 8 16
              ≈ + − + − = − +                               

x x x x x xL L L
L L L L L L

        (2.5.45) 

Hence the expression for potential energy is 
 
 
 
                                                                                                                  Figure 2.5.3 
 

( )
22 4 6

2 4
1 0 2 2

1 1 1 1 1 1
2 2 8 16 2 4

δ ε
        = + − + + −               

x x xV x K L K x K x
L L L

           (2.5.46) 

Taking the generalized coordinate =q x , the Lagrangian of the system can be written as                                                                                                            
22

2 2 4
1

6

0 2

4

2
1 1
8 16

1 1 1 1 1
2 2 2 2 4

δ ε   +   
      = − = − + − − −              



xL T V mx K L K xx
L

K x
L

x
L

 

                                                                                                                                         (2.5.47) 
As no external force is acting on the system, the Lagrange Equation can be given by

 0d L L
dt x x

∂ ∂  − = ∂ ∂ 
                                                                                                          (2.5.48) 

Neglecting the two higher order terms marked in blue in Eq. (2.5.47) and applying (2.5.48) 
one can get the following equation. 

1
2

d
dt

. 2m
3

1 02

1 2 .
2

δ
 

− − + 
 



x Lx K
L 2

2.
2

x
L

1
2

 
− 

 
2.2K 3

2
1 .4 0
4
ε

  + = 
  

x K x                (2.5.49) 

Or,
3

3
1 0 2 22

1 2 0
2

δ ε
   − − + − + =  
   



x xmx K K x K x
L L

                                                     (2.5.50) 

Or, 31 1
0 2 22 0

2
δ ε   + + + − =   
   



K Kmx K x K x
L L

                                                            (2.5.51) 

Or, 30 1 1
2 22

1

0
2

ε
   + + + − =   

  


T K Kmx K x K x
K L L

                                                          (2.5.52) 

Or, 30 1
2 22 0

2
ε   + + + − =  

  


T Kmx K x K x
L L

                                                                 (2.5.53) 

 
 
 

L  

+ ∆L L
 x
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Exercise Problems 
 
Problem 2.5.1 Use Lagrange equation to derive the equation of motion of the following 
system. Here, mass 2m is subjected to a periodic force sinf tω . Also, it is connected to a 
nonlinear spring in the right side.  
 
 
  

 
Figure 2.5.4: Multi degree of freedom system with nonlinear spring. 

Hints:  

 Kinetic energy: ( )2 2
1 1 2 2

1
2

= + T m q m q  

 Potential energy: ( )22 2 4
1 1 2 2 1 3 2 4 2

1 1
2 2
 = + − + +  

V k q k q q k q k q  

 
Rayleigh’s dissipation function can be written 
  

 ( )22 2
1 1 2 2 1 3 2

1
2
 = + − + 
   D c q c q q c q  

  
Problem 2.5.2: Derive the equation of motion of the following system using Lagrange 
principle. Consider the spring force as ( )30.1= +sf k x x and the damping force as 

( )2 30.1 0.1= + +  

df c x x x x . 

 
Figure 2.5.5: Vibration isolator with cubic nonlinear spring and damper 

(Ref:  Zhenlong Xiao, Xingjian Jing,  Li Cheng, The transmissibility of vibration isolators 
with cubic nonlinear damping under both force and base excitations, Journal of Sound and 
Vibration, 332(5),1335-1354, 2013. ) 
 

1m  2m  

1x  
2x  
sinf tω  
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Problem 2.5.3: Derive the equation of motion of a vibration isolator modeled by a linear 
spring and nonlinear damping. The nonlinear damping force can be given by 

( )2 30.1 0.01df c x x x x= + +    
 

 
 

Figure 2.5.6: vibration isolators with cubic nonlinear damping under both force and base excitations 
 

Answer: Governing equation of motion 
 

( ) ( ) ( ) ( ) ( )2 3
1 1 1 1 1 10.1 0.01mx k c c cu x u x u x u x u x= + + +− − − − −        

(Ref:  Zhenlong Xiao, Xingjian Jing,  Li Cheng, The transmissibility of vibration isolators 
with cubic nonlinear damping under both force and base excitations, Journal of Sound and 
Vibration, 332(5),1335-1354, 2013. ) 
 
Problem 2.5.4: Using Lagrange principle, derive the equation of motion of the shown system. 
The variation of spring force with displacement (x) of the mass M is given by  

35 0.5sF x x= + kN, the damping force is given by 0.2dF x=   kN and the external applied 
force 2sin 5 5sin 4tF t t= + kN. 
 Take 10 kg, 1m, 0.25mM L a b= = = = . Write the equation of the system using book-
keeping parameter. Consider the beam to be of negligible mass 
 
 
 
 
 
 
 
 
 
 
 

 
 

a b 

L 
K 

C 

Ft  

M 
m 

•  
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Lecture M2 L06 
 
Development of temporal equation of motion using Galerkin’s method for continuous 
system  
 
In this lecture one will learn the development of temporal equation of motion using 
generalized Galerkin’s method for continuous system. It may be noted that unlike discrete 
system where the equations are ordinary differential equations, in case of continuous or 
distributed mass system the governing equations are partial differential equation as they 
depend on both time and space variables. Hence it is required to reduce the partial differential 
equation to ordinary differential equation for finding the solution of the system easily. In case 
of vibrating system these equations are generally reduced to their temporal form by using 
Galerkin’s method. In this method following steps have to be followed.  
 

• Assume an approximate function for the mode shape of the continuous system. Here 
one may take single or multi-mode approximation. 

• Substitute the mode shape(s) in the governing partial differential equation of motion to 
obtain the residue. 

• Minimize the residue by using a weight function and equate it to zero to obtain the 
temporal equation of motion. 

 
One may take orthogonal functions for mode shapes and weight function to simplify the 
integration to obtain the coefficients of the temporal equation. In nonlinear systems with many 
terms, one may use symbolic software like Mathematica and Mapple to derive the equation of 
motion. One may write a Matlab program having inbuilt integration schemes to obtain the 
coefficients. The method is illustrated with the help of the following example. 
 
Example 2.6.1: Consider the transverse vibration of a beam with roller supported at one end 
and attached mass and periodically varying load at the other end. The roller supported end is 
subjected to periodic motion. The governing equation of motion using d’Alembert’s principle 
is given in Eq. (2.3.6). We have to derive the temporal equation of motion of the system.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.6.1: Schematic diagram of a roller supported beam with tip mass and transverse follower load. 
 

P(t) 
M 

v 

u 

s 

X 

Y 

θ  

1cosbY Z t= Ω  
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Solution 
Figure 2.6.1 shows the system with a payload of mass m at the tip where a compressive force 

P = tPP 210 cosΩ+  is applied. Also this system is subjected to a harmonic base 

excitation )(tYb = tcosZ 1Ω  at the roller supported left end. Here Z  and 1Ω  are the amplitude 

and frequency of the base excitation, 0P , 1P  are the static and dynamic force amplitude, and 

2Ω  is the frequency of the periodic force acting at the free end of the manipulator. The 

motion is considered to be in the vertical plane.  

Using d’Alembert principle the equation of this system can be given by  

ssvsvξvξv
s

0
2
ξvsρAv3

ssvsssvssvsvssssv2
svssssvEI +














+∫+






 +++ 3

2
1  

( ) ( ) ( ) 












ξ














+∫+ξ














∫ +∫−++−+








∫ + dξvξv

s

0

2
ξvMdηd

L

s
ξvξv

ξ

0

2
ξvρAssvbYvMsLbρAYdη

L

s
vdcvAρ 





( )( ) ( ) 0cos
2
11 210 =Ω++++





 − ssvtPPvcbYvρA2

sv d 

     

 
Here, LAIE ,,,, ρ  and dc  are the Young modulus, moment of inertia, mass density, area of 

cross-section, length of the cantilever beam and damping factor of the system and 

ηζ, respectively, are used as integration variables. To determine the temporal equation of 

motion, one may discretize the governing equation of motion (2.6.1) by using following 

assumed mode expression. 

( ) ( ) ( )
1

,
n

i i
i

v s t r s q tψ
=

= ∑ .                                             (2.6.2)                                                        

Here, r is the scaling factor; ( )iq t is the time modulation of the ith  mode and ( )i sψ  is the 

eigenfunction of the cantilever beam with tip mass which is given by  

( ) ( )sin sinh( ) cos cosh sin sinh
cos cosh

i i
i i i i i

i i

L Ls s s s s
L L

β β
ψ β β β β

β β
 +

= − − + − + 
              (2.6.3)                  

One may determine Lβ from the following equation. 

( )1 cos cosh cos sinh sin cosh 0L L m L L L L Lβ β β β β β β+ + − =                                 (2.6.4)                         

 

 

(2.6.1) 
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The following non-dimensional parameters are used in the further analysis. 

L
sx = , tω=τ , 

ω
Ω

=ω 1
1 , 

ω
Ω

=ω 2
2 , 

L
r

=λ , 
AL
Mm
ρ

= , 4AL
EI
ρ

χ = , 
r
Zr = , and 

L
ZZ = .                                                                          

Substituting the above mentioned nondimensional parameters and equation (2.6.2) into 

equation (2.6.1) one may obtain the residue equation R. Now taking ( )i sψ  as the weight 

function and using the generalized Galerkin’s method, one may write the following equation.  

( ) 0iR s dxψ =∫                                                   (2.6.5)                                                      

This equation can be written in the following form which is the non-dimensional temporal 

equation of motion of the system. 

( )

( ) ( ) ( )

1 2 3
1 1 1

2 2
4 1 1 5 1 2 6 2

1 1

2

cos   cos cos 0 

m m m

n n nijk i j k nijk i j k nijk i j k
i j k

m m

nijk i j nijk nijk
i j

q q q q q q q q q q q q

q q q

= = =

= =

 
+ + εζ + ε α + α + α + 

 
 
ε α ω ω τ + α ω ω τ + α ω τ = 
 

∑∑∑

∑∑

    

        (2.6.6)                                                      

[Derivation of only one/two terms are shown below. Taking only the first two terms in Eq. 

(2.6.1) and substituting (2.6.2) one may obtain the residue equation 

2EI v v vssss s ssss
 + + 
 



1
2

                                        (2.6.7)                           

Substituting ( ) ( ) ( )
m

i i
i

v s t r s q tψ
=

= ∑
1

,  in the above equation 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

n m m m
iv iv
i i i j k

i i j k
n m m m

iv iv
i i i j k i j k

i i j k

EI r s q t r r r

rEI r s q t q q q

ψ ψ ψ ψ

ψ ψψ ψ

= = = =

= = = =

 
+  

 
 

= +  
 

∑ ∑ ∑ ∑

∑ ∑∑∑

' '

1 1 1 1
3

' '

1 1 1 1

1
2

2

                     (2.6.8)                                                      

Taking weight function as nψ , multiplying nψ in the above equation and integrating over the 

domain one obtains 

( ) ( ) ( )

( ) ( ) ( )

l m m m m
iv iv
i i i j k i j k n

i i j k
l m m m m

iv iv
i n i i j k n i j k

i i j k
m m m

n ijk i j k
i j k

rEI r s q t q q q ds

rEI r s q t q q q ds

rrEIh q q q q

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

α

= = = =

= = = =

= = =

 
+  

 
 

= +  
 

= +

∑ ∑∑∑∫

∑ ∑∑∑∫

∑∑∑

3
' '

1 1 1 10
3

' '

1 1 1 10
3

* *
1 1

1 1 1

2

2

2

              (2.6.9)           
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Where  

( ) ( )

*
1

10 0
2

4
0

1 3

13
0

0 due to orthogonality principle
1 1

l lm
iv iv
i n n n

i

l l
iv i

iv iv i

v
n n

n

n n

v
n nh ds ds

ds ldx hs s
l l

ψ ψ ψ ψ ψψ ψ ψ ψ

ψ ψ ψ ψ

ψ
=

 
   = = + +   
   



+



= = =

+ +

=
∑∫ ∫

∫ ∫

 



       (2.6.10)                           

( )

( ) ( ) ( )( ) ( )

* ' '
1

1 1 1 10
1

' '
5

1 1 1 10

15

1

1

l m m m m
iv

ijk i j k n
i i j k

m m m m
iv

i j k n
i i j k

ijk

EI ds

EI dxx x x x
l

l

α ψ ψ ψ ψ

ψ ψ ψ ψ

α

= = = =

= = = =

 
=   

 
 

=   
 

=

∑∑∑∑∫

∑∑∑∑∫                     (2.6.11)                           

 It may be noted that while *
1h  is in dimensional form 1h  is in the nondimensional form. 

Similar procedures have to be followed to find all other terms. 

Considering single mode discretization i.e. by substituting m=1, the above equation reduces to 

( ) ( ) ( )( )
1 2 3

2 2
4 1 1 5 1 2 6 2

23 2

2

2

cos   cos cos 0 

q q q q q q q q

q q

 + + εζ + ε α + α + α + 
 

ε α ω ω τ + α ω ω τ + α ω τ =

   

                  (2.6.12)                           

Eq. (2.6.12) is the required temporal equation of motion. The coefficients used in this 
equation are described below. 
 
The natural frequency ( eω ) of the lateral vibration of an elastic beam 

 







+=








+








=

2

21
0

2

14

2

21
2

0

2

14
4 h

hP
h
h

h
h

LA
P

h
h

AL
EI

e χ
ρρ

ω                                                   (2.6.13)  

    

Damping ratio ( ζ )
e

d

A
C

ωρε2
= ,                                                                                (2.6.14) 

Coefficient of the nonlinear geometric term 3q  

= 







++

εω
λχ

=α
2

20

2

18

2

19
2

2

1 3
2 h

h
h

h
h
h

e
                                          (2.6.15) 
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Coefficient of the nonlinear inertia term 2q q  

= 







−−−++

ε
λ

=α
2

8

2

7

2

6

2

5

2

4

2

3
2

2 h
h

h
hm

h
h

h
hm

h
h

h
h ,                          (2.6.16) 

Coefficient of the nonlinear inertia term 2q q  

= 







−−

ε
λ

=α
2

13

2

12

2

11
2

3 h
hm

h
h

h
h                                               (2.6.17) 

Coefficient of the term 1(ω τ)2 cosq  

= 







−+

ε
λ

=α
2

17

2

16

2

15
4 2h

h
h
hm

h
hZ                                                    (2.6.18) 

Coefficient of the direct forced term ( ))cos( 2τω , 







ε

=α
2

1
5 h

hr ,                                        (2.6.19) 

Coefficient of the parametric excitation ( )q ω τ2cos( ) , 







=








=

2

21
1

2

21
22

1
6 h

hP
h
h

LM
P

eω
α .  (2.6.20) 

Where  

iv
n nh dsψ ψ= ∫

1

1
0

,   ( )[ ]∫ ψ=
1

0

2
2 xdxh ,   ( ) ( ) xd)x(d

d
d

xd
xdh

x
∫ ∫














ψ












ξ








ξ
ξψψ

=
1

0 0

2

3 , 

( ) ( ) ( ) ( ) xdxd
xd

xd
xd
xdh

x
∫ ∫ 








ψ



 ξξψ

ψψ
=

1

0

1

2

2

4 ,  ( ) ( ) ( )[ ] xdx
xd

xd
xd
xdh y

∫











ψ

ψψ
=

1

0

2
2

2

5 , 

( ) ( ) ( ) xdxdd
d

xd
xd

xdh
x

∫ ∫∫











ψ













ηξ








ξ

ψψ
=

η1

0 0

2
1

2

2

6 ,  ( ) ( ) ( ) xdxd
d

d
xd

xdh
x

∫ ∫













ψ












ξ








ξ
ξψψ

=
1

0 0

2

2

2

7 , 

( ) ( )[ ] xdx
xd
xdh 2

21

0
8 ψ



 ψ

= ∫ ,   ( ) ( ) ( ) ( ) xdxd
xd

xd
xd
xdh

x
∫ ∫ 








ψ



 ξξψ

ψψ
=

1

0

1

2

2

9 , 

( ) ( )[ ] xdx
xd
xdh 2

21

0
10 ψ



 ψ

= ∫ ,      ( ) ( ) ( ) xdxd
d

d
xd
xdh

x
∫ ∫














ψ












ξ








ξ
ξψψ

=
1

0 0

2

11 , 

( ) ( ) ( ) xdxdd
d

d
xd

xdh
x

∫ ∫∫













ψ












ηξ








ξ
ξψψ

=
η1

0 0

2
1

2

2

12 ,   ( ) ( ) ( ) xdxd
d

d
xd

xdh
x

∫ ∫













ψ












ξ








ξ
ξψψ

=
1

0 0

2

2

2

13 ,  
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( ) ( )∫ 







ψ

ψ
=

1

0
4

4

14 xdx
xd

xdh ,  ( ) ( ) ( ) xdx
xd

xd
xd
xd)x(h ∫ 








ψ

ψψ
−=

1

0
2

2

15 1 ,  

( ) ( ) ( ) xdx
xd

xd
xd
xdh ∫ 








ψ

ψψ
=

1

0
2

2

16 ,  ( ) ( ) xdx
xd
xdh ψ



 ψ

= ∫

21

0
17 , ( ) ( ) ( ) xdx

xd
xd

xd
xdh ∫












ψ

ψ






 ψ

=
1

0
4

42

18 , 

( ) ( ) xdx
xd

xdh ∫ 







ψ

ψ
=

1

0
2

2

19 ,   ( ) ( ) ( ) ( ) xdx
xd

xd
xd

xd
xd
xdh ∫ 








ψ

ψψψ
=

1

0
3

3

2

2

20 ,  

and  ( ) ( ) xdx
xd

xdh ∫ 







=

1

0
2

2

21 ψψ . 

One may find that the non-dimensional temporal equation (2.6.12) has a linear forced 

term ( )2
5 1 1cosα ω ωτ , a linear parametric term ( )( )6 2cos qα ω τ  and a nonlinear parametric 

excitation term ( )( )2
4 1 1

2cos qα ω ω τ  along with cubic geometric ( )3
1a q  and inertial 

( )q q q qα α+ 

2 2
2 3

 nonlinear terms. Here the system is subjected to a two-frequency 

excitation. One may note that the temporal equation of motion contains many nonlinear terms 

and it is very difficult to find the exact solution. Hence one may go for approximate solution 

by solving equation (2.6.12) using perturbation method.  

 
Exercise Problems: 
 
Problem 2.6.1:  
Derive the temporal equation of motion of a micro-beam system whose spatio-temporal 
equation is given below [1]  
 

 
Fig 2.6.2: Schematic diagram of a clamped-clamped micro-beam. 
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( ) ( ) ( )

( ) ( ) ( )

l
tt xxxx xxi x

gap gap gap gap

gap gap gap gap

w w wb V x t x t x tEbhbhw EIw wN w dx
d d d dl

w w wV x t x t x t
d d d d

   + + + ++ − −  +      
 

+ + + +− =  
 

∫ 



2 32
2

2 3 4 50

2 32

2 3 4

2 3 41 , , ,
22

1 , , , 0
2

ερ

εβ

 
Answer: 
 

( ) ( )( ) ( )( ) ( )( )
d q q q q q
d

β β β β βτ τ τ ττ
 + + =+ + + 

2
2 3 4

12 2 3 4 51 0  

 
Problem 2.6.2:  
The equation of motion of a base excited cantilever beam with arbitrary mass position can be 
given by the following equation. Derive the temporal equation of motion using single mode 
approximation. 

 
 

Fig 2.6.3: Schematic diagram of a base excited cantilever beam with arbitrary mass position. 
 

( ) ( ) ( )( ){ }

( )( ){ } ( )( ) ( )

2 3 21 3 1 0.5
2

0

ssss s ssss s ss sss ss s

L

s ss
s

v cvm s d

J v Nvs d s stts s

EI v v v v v v v v

v v dv cvm s d

+ρ+ δ −

∂ ∂δ − − ∂ ∂

+ + + −

ζ − =∫

+ +

+ρ + δ −

 

 

 

Where  

( ) ( ) ( )

( ) ( ) ( )

2 2
0 0

1 1
2 2

1

L L

s stt tts s

L

s

mN d dd

dd

d dv v

sm Lz g z g
L

ζ ζ
= ζ − ζζ −

ζ +ζ −

   ρ δη η   
 + δ ρ− −− 
 

∫ ∫∫ ∫

∫ 

 

Answer:  
( ) ( )2 3 2 2

1 2 32 01 cosq q q q q q q qf t+ εζ + ω + ε α + α + α =− ε Ω     
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Problem 2.6.3:  
For the same system given in problem 2.6.2, carryout two mode approximation to derive the 
temporal equation of motion. [3] 
 
Answer:  

( )
2 2 2 2

2

1 1 1 1
2 cos 0

where 1,2.

n n n
n n n n nm m klm k l m klm k l m klm k l m

m k l m
q q q f q t q q q q q q q q q

n
= = = =

+ εζ + ω − ε Ω + ε α +β + γ =

=

∑ ∑∑∑    
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Lecture M2 L07 
 
Ordering and scaling technique in nonlinear equations 
 
In the previous lectures we learned about the derivation of equation of motion of both discrete 
and distributed mass system. In the later case the equation has been reduced to its temporal 
form. In these equations the coefficients of different terms used in the differential equations 
may not be of the same order and hence sometimes some terms get neglected in comparison to 
other terms.  But for accurate solution one should take as many term as possible and hence it 
is required to know the ordering and scaling techniques. So in this lecture following points 
will be discussed with the help of examples. 
 

• Ordering techniques,  
• scaling parameters, 
• Book-keeping parameter.  
• Commonly used nonlinear equations: Duffing  equation, Van der Pol’s oscillator, Mathieu’s and 

Hill’s equations 
 

Let us consider the equation we have derived for the simple pendulum. It can be written as  

0sin =+ θθ
l
g

                                                                                                              (2.7.1) 

Keeping up to quintic nonlinearity Eq. (2.7.1) can be written as 
  

3 5

 0
6 120

g g g
l l l

θ θθ θ+ − + =                                                                                         (2.7.2) 

 
Taking the length of the pendulum 1 m and acceleration due to gravity as 10 m/s2 , the 
equation of motion can be written as 
 

3 5 10 1.6667 0.0083 0θ θ θ θ+ − + =                                                                              (2.7.3)    
 
    In Eq. (2.7.3), the coefficient of the linear term  θ  is 10, the coefficient of cubic nonlinear 
term is -1.667 and the coefficient of quintic term is 0.008. As the coefficients of quintic and 
cubic terms are very very less than the linear term, one can neglect these terms to obtain the 
approximate solution. But to obtain the accurate solution one should consider these terms. 
One can use scaling parameter and book-keeping parameters to make the coefficient of 
nonlinear and linear terms of the same order so that the effect of these nonlinear terms can be 
taken into account. 
 
To use scaling factor, let us take pyθ = and substitute this in Eq. (2.7.3). Now the resulting 
equation can be written as 
 

3 3 5 5 10 1.6667 0.0083 0py py p y p y+ − + =                                                                     (2.7.4) 
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Or, 2 3 4 5 10 1.6667 0.0083 0y y p y p y+ − + =                                                                  (2.7.5) 
 
Now by taking different values of p , the coefficient of the nonlinear terms can be changed 
significantly without changing the coefficient of the linear part. For example, taking 10,p =  
the above equation becomes 

3 5 10 166.67 83 0y y y y+ − + =                                                                                       (2.7.6) 
Taking 5,p =  Eq. (2.7.5) can be written as 

3 5 10 41.667 5.1875 0y y y y+ − + =                                                                               (2.7.7) 
 
While in Eq. (2.7.6) the coefficient of linear and non-linear terms have large differences, in 
Eq. (2.7.7), these coefficients are closer to each other. Hence by suitably choosing the value of 
p , it is possible to bring the coefficient of the linear and nonlinear terms to the same order 

and in that case, instead of neglecting the higher order terms, one can consider these terms and 
solve the equation to obtain more accurate response.  
                   
Considering Eq. (2.7.3), as the coefficients of the cubic and quintic order terms are very very 
small in comparison to the coefficient of the linear term, one can use a book-keeping 
parameter ε  ( ) to order the coefficients. In this case one may write Eq. (2.7.3) as 
 

3 3 5
3

1.6667 0.008310 0θ θ ε θ ε θ
ε ε

   + − + =   
   

                                                              (2.7.8) 

Taking 0.1ε = , Eq. (2.7.8) can be rewritten as 
 
 3 3 510 16.667 8.3 0θ θ ε θ ε θ+ − + =                                                                            (2.7.9) 
 
In Eq. (2.7.9) now the numerical part of the coefficients (16.667 and 8.3) are approximately 
same orders as that of the linear terms (i.e. 10). So in this way one can use the book-keeping 
parameter to order the nonlinear terms in a given nonlinear differential equation of motion. 
 
Commonly used nonlinear equation of motion  
  
Duffing equation (Free vibration with quadratic nonlinear term) 

2
2 2
02 0d u u u

dt
ω εα+ + =

                                           
(2.7.10)

 
Duffing equation (Free vibration with cubic nonlinear term) 

2
2 3
02 0d u u u

dt
ω εα+ + =

                                           
(2.7.11)
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Duffing equation (Free vibration with both quadratic and cubic nonlinear terms) 
2

2 2 3
0 1 22 0d u u u u

dt
ω εα εα+ + + =

                                     
(2.7.12)

 
Duffing equation with damping and weak forcing terms 

2 32 cosn nx x x x f tω εζω εα ε+ + + = Ω                                  (2.7.13) 
Duffing equation with damping and strong forcing terms 

2 32 cosn nx x x x f tω εζω εα+ + + = Ω                                   (2.7.14) 
Duffing equation with multi-frequency excitation 

2 3
1 1 2 2 3 32 cos cos cosn nx x x x f t f t f tω εζω εα+ + + = Ω + Ω + Ω + 

               (2.7.15) 
Rayleigh’s equation 

2
2 3

02
( ) 0d u u u u

dt
+ − − = ω ε

                                         
(2.7.16) 

Substituting 3v u=  in Eq. (2.7.16) and differentiating the resulting equation with respect to 
time one will obtain the van der Pol’s equation as follows

 2
2 2

02
(1 )d v dvv v

dt dt
+ = −ω ε

   
                                       (2.7.17)

 
Hill’s equation 

( ) 0x p t x+ =                                                 (2.7.18) 
Mathieu’s equation 

( )2 2 cos 0nx f t xω ε+ + Ω =                                        (2.7.19) 

Mathieu’s equation with cubic nonlinearies and forcing terms  

( )2 3
1 1 2 22 cos cosnx f t x x f tω ε εα ε+ + Ω + = Ω                            (2.7.20) 

Lorentz equation 
( )x y x

y rx y xz
z xy bz

σ= −

= − −
= −







                                               (2.7.21) 

Here , , 0r bσ >  are parameters 
Generic equation for one dimensional pitchfork bifurcation 

2x x= − µ  
Generic equation for saddle-node bifurcation 

3x x x= + µ α  
Generic equation for transcritical bifurcation 

2x x x= − µ  
Equation for Hopf bifurcation 

3

2

r r r
r

= +

= +





µ α

θ ω β
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Exercise problems 
Problem 2.7.1: 
Use scaling parameter to order the following equation.  
 
( )

( )

( )
( ) ( )

( ) ( )

( ) ( )

2 3

2 3

2 3

2

3

3 30 0.1 0.05 0i
20 0.5 0.05 10sin 5ii
50 0.5 0.3 0.1sin 2iii
50 0iv 0.1sin 2
50 0.25 0v 0.1sin 2
50 0.25 0vi 0.1sin 2

x x x x
x x x x t
x x x x t
x x xt
x x x xt
x x x xt

+ − + =

+ − + =

+ − + =
+ − =

+ − − =

+ + + =













 

 
Problem 2.7.2: 

Figure 2.7.1 shows a two-stage nonlinear vibration isolation system whose equation of motion 
is given below. Using book-keeping parameter, write the equation of motion by taking 
different values of 1 3 1 1 1, , , , , ,v hm k k k k c ω .  

( )3
1 1 3

0
1 1 2 2

cos

1where 2

e

e v h

mx c x k x k x F t
l

F k x k x
x l

+ + + =

 −= +  
+ 

  ω
  

 
 
 
 
 
Problem 2.7.3:   

Write the equation of motion for system with (a) fractional order, (b) time delay, (c) piece-
wise nonlinearity, (d) random excitation, (e) gyroscopic effect, (f) contact, (g) backlash (h) 
friction and wear. 
 
Problem 2.7.4:   
 
Study the nonlinear systems given in the references [2-13].  Taking numerical values and 
using ordering and scaling parameters write the equation of motion. Use Matlab to solve the 
temporal equation of motion in each case.  
 
 
 
 
 
 

 
Fig. 2.7.1: Two-stage nonlinear vibration isolation system [1] 
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