Notations:

IVP: Initial Value Problem

**BVP: Boundary Value Problem** 

**Ordinary Differential Equations** 

(1) Find the region absolute stability of the finite difference method  $2y_{n+2}=y_{n+1}-\frac{h}{3}(2f_{n+1}-f_n)$ 

Ans:

$$\rho(z) = 2z^2 - z$$

$$\sigma(z) = -\frac{1}{3}(2z-1)$$

Characteristic equation:  $2z^2 - z + \frac{\overline{h}}{3}(2z - 1) = 0$ 

where  $\overline{h} = \lambda h$ 

Roots: 
$$z = \frac{1}{2}, -\frac{\overline{h}}{3}$$

region of absolute stability  $\left|\overline{h}\right| < 3$ 

(2) Consider the IVP  $y^1 = 2y - 2x^2 - 3$ 

$$y(0)=2$$

Use Picard's method to obtain y(0.2) upto 3 decimal places.

$$y^{(3)}(x) = 2 + x + x^2 - \frac{x^4}{3} - \frac{x^5}{15} + \dots$$

$$y_{(1)}(0.2) = 2.24$$

$$y_{(2)}(0.2) = 2.2416$$

$$y_{(3)}(0.2) = 2.24192$$

(3) Show that the 4<sup>th</sup> order Adams- Bash forth method

$$y_{n+1} = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3})$$

is strongly stable.

Ans:

Characteristic equation:  $\xi^4 - \xi^3 = 0$ 

Roots:  $\xi_i = 1, 0, 0, 0$ 

∴ Root condition is satisfied and hence strongly stable.

(4) Given  $y^1 = (1 + x^2)y^2$  and y(0) = 1, use Milne-Simpson's P-C method to obtain y at

x = 0.4 using h = 0.1. The required past values are given by

$$y(0.1) = 1.06, y(0.2) = 1.12, y(0.3) = 1.21$$

Ans:

$$y_{n+1}^{(p)} = y_{n-3} + \frac{4h}{3} (2y_{n-1}^1 - y_{n-2}^1 + 2y_n^1)$$

$$y_{(0.4)}^{(p)} = 1.5543$$

$$y_4^{(1)} = 1.4697$$

(5) Solve the initial value problem  $y^1 = -3xy^2$ , y(0) = 1, with h = 0.2 in  $\begin{bmatrix} 0, 0.4 \end{bmatrix}$  using the method

$$y_{n+1} = y_n + h y_{n+1}^1$$

Ans:

$$y(0.2) \approx 0.9023$$

$$y(0.4) \approx 0.7971$$

(6) Solve the system of equations

$$y' = -3y + 2x$$
,  $y(0) = 0.5$ 

$$x' = 3y - 4x$$
,  $x(0) = 0$ 

With h = 0.2 as the interval  $\left(0, 0.4\right)$  using Euler - Cauchy method

$$y_{n+1} = y_n + \frac{1}{2}(k_1 + k_2)$$

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + h, y_n + k_1)$$

$$x(0.2) \approx 0.96, y(0.2) \approx 0.35$$

$$x(0.4) \approx 0.6774, y(0.4) \approx 0.3602$$

(7) Use Adams-Bash forth third order method to use the IVP  $y' = -2xy^2$ , y(0) = 0.5 on [0,1] with h = 0.2

Ans:

$$y_{n+1} = y_n + \frac{h}{12} (23f_n - 16f_{n-1} + 5f_{n-2})$$

$$y(0.2) \approx 0.49, \ y(0.4) = 0.4624$$

$$y(0.6) \approx 0.4224, \ y(0.8) = 0.3779$$

$$y(1) \approx 0.3332$$

(8) Consider the heat conduction equation

$$u_{t} = \frac{1}{2}u_{xx}, 0 \le x \le 1$$

$$u(x,0) = 20 + 40x$$

$$u(0,t) = 20e^{-t}; u(1,t) = 60e^{-2t}$$

Obtain the solution  $\mu(x,t)$  at first time level using Grant-Nicolson method. Choose  $h=1/4, k=1/10\,{
m Ans}$  :

$$u_{1,1} = 29.42144$$
  
 $u_{2,1} = 39.29975$   
 $u_{3,1} = 47.42746$ 

(9) Consider a steel rod that is subjected to a temperature of  $50^{\circ}C$  on the left end and  $25^{\circ}C$  on the right. If the length of the rod is 0.05m, use implicit method to find the distribution in the rod from t=0 to t=6 seconds. Use  $\delta x=h=0.01m$ ;  $\delta t=k=3s$ . Given thermal conductivity k=54; density  $\rho=7800$ , specific heat c=490. Choose initial temperature as  $20^{\circ}C$ .

Ans:

If  $\theta(x,t)$  denote temperature

$$\theta(0,t) = 50; \theta(0.05,t) = 25$$

$$\theta_{i,0} = \theta(x_i, 0) = 20, i = 1, 2, 3, 4$$

$$\theta_{1,1} = 268.939$$
;  $\theta_{2,1} = 204.972$ ;  $\theta_{3,1} = 204.119$ ;  $\theta_{4,1} = 209.924$ 

$$\theta_{1,2} = 2003.4539; \; \theta_{2,2} = 1918.3812; \; \theta_{3,2} = 1915.3948$$

$$\theta_{4.2} = 1614.8802$$

(10) In order to solve the equation y' = f(x, y) the following method has been defined

$$y_{n+1} = y_n + W_1 K_1 + W_2 K_2$$
  

$$K_1 = hf(x_n, y_n), K_2 = hf(x_{n+h}, y_n + \beta K_1)$$

Find  $\beta$ ,  $w_1$ ,  $w_2$  such that the order of the method is two.

Ans: 
$$\beta = 1$$
,  $W_1 = \frac{1}{2}$ ,  $W_2 = \frac{1}{2}$ 

(11) Using central difference for the derivatives, discretize

$$y^{11} = xy, y(0) + y'(0) = 1, y(1) = 1$$

with  $h = \frac{1}{3}$  and then solve for y(0),  $y(\frac{1}{3})$  and  $y(\frac{2}{3})$ .

Ans: 
$$y(0) = -\frac{82}{83}$$
,  $y(1/3) = -\frac{27}{83}$ ,  $y(2/3) = \frac{27}{83}$ 

(12) For the parabolic equation,

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$u(x,0) = 1 \text{ for } 0 \le x \le 1$$

$$\frac{\partial u(0,t)}{\partial x} = u, \ \frac{\partial u(1,t)}{\partial x} = -u$$

Use explicit method with  $\Delta x = 0.1$  and  $\lambda = \frac{1}{4}$  where  $\lambda$  is the the usual grid parameter and compute

$$u(0,\Delta t), u(0.1,\Delta t), u(0,2\Delta t), u(0.1,2\Delta t)$$

Ans:

$$u(0,\Delta t) = 0.95$$

$$u(0.1, \Delta t) = 1$$

$$u(0, 2\Delta t) = 0.9275$$

$$u(0.1, 2\Delta t) = 0.9875$$

(13) If  $y(x_{n+1})$  is the exact solution and

$$y_{n+1} = y_n + (a+b)hf_n + (pf_n + qff_y)bh^2 + O(h^3)$$
 is a second order approximation to the I.V.P  $y' = f(x,y), y(x_0) = y_0$ 

Then find the relation that a, b, p, q satisfy.

**Ans:** 
$$a + b = 1, bp = \frac{1}{2}, bq = \frac{1}{2}$$

(14) If the error equation for a single step method to solve an IVP is given by

$$E_{j+1} = (E(\lambda h) - e^{\lambda h}) y_j + E(\lambda h) \in \mathcal{A}$$

then find the conditions so that, the method is (i) absolutely stable (ii) relatively stable.

Ans:

$$(i) |E(\lambda h)| \le 1, (ii) |E(\lambda h)| \le e^{\lambda h}$$

(15) Use the method of characteristics to derive a solution of the quasi-linear equation

$$\frac{\partial^2 u}{\partial x^2} - u^2 \frac{\partial^2 u}{\partial y^2} = 0$$

At the first characteristic grid point  $R(x_R,0), x_R > 0$ 

Between x = 0.2 and x = 0.3, y > 0, where u satisfies the condition  $u = 0.2 + 5x^2$ ,  $\frac{\partial u}{\partial y} = 3x$  along the

initial line y = 0, for  $0 \le x \le 1$ .

(16) Solve the boundary value problem

$$u_{xx} + u_{yy} - 10u(u_{xx} - u_y) = -10e^{4x}\cos 2y(\cos 2y + \sin 2y)0 \le x, y \le 1$$

Using finite difference method with  $h=\frac{1}{2}$ . The Dirichlet boundary conditions are obtained from the exact solution  $u(x,y)=e^{2x}cos2y$ 

**Ans:**  $u_{11} = 0.894678$  (approx).

- (17) Solve the differential equation  $\Delta u = 16$  (where  $\Delta$  denotes the Laplacian) for a square with side 2, with u=0 on the boundary
- (a) Formulate the corresponding difference equation with mesh size  $\,h\,$  in both the directions.
- (b) Solve the difference equation for h=1 in x-direction, and  $h=\frac{1}{2}$  for y-direction.
- (18) Solve the partial differential equation

$$u_{tt} = u_{xx}$$

with 
$$u = f(x)$$
 at  $t = 0$ 

where 
$$f(x) = x$$
,  $0 \le x \le \frac{1}{2}$ 

$$=(1-x), \frac{1}{2} \le x \le 1$$

and u(0.t) = 0; u(1,t) = 0. Find the solution up to two time steps with h = 0.2,  $k = \frac{1}{2}$ .

Ans:

$$u_1^{(2)} = 0.19375$$
  $u_2^{(2)} = 0.30625$   $u_3^{(2)} = 0.30625$ 

 $u_4^{(2)} = 0.19375$  where the superscript (2) denotes the time step

(19) Find the solution of  $u_t + u_x = 0$ , subject to the initial condition u(x,0) = 0 x < 0

$$= x$$
  $0 \le x < 1$ 

$$=(3-x)$$
  $1 \le x < 2$ 

$$=0$$
  $x \ge 2$ 

Using the Lax-wendroff method with  $h = \frac{1}{2}$  and  $k = \frac{1}{2}$ . Compute the solution up to 1<sup>st</sup> time step.

Ans: 
$$x: 0 \quad \frac{1}{2} \quad 1 \quad \frac{3}{2} \quad 2 \quad \frac{5}{2}$$

$$u^{(1)}:-\frac{1}{16} \frac{1}{4} \frac{15}{16} \frac{17}{16} \frac{17}{8} 0$$

(20) If 
$$\frac{dy}{dx}\Big|_{x=x_j} \simeq Ay_j + By_{j+1} + Cy_{j+2} + O(h^2)$$

Then find the values of A, B, C.

**Ans:** 
$$A = -\frac{3}{2}$$
,  $B = 2$ ,  $C = -\frac{1}{2}$ .

(21) Compute an approximation to y(1), y'(1), y''(1) with Taylor series, of order 2, h = 1, when

$$y''' + 2y'' + y' - y = cosx$$

$$0 \le x \le 1$$
,  $y(0) = 0$ ,  $y'(0) = 1$ ,  $y''(0) = 2$ 

**Ans:** 
$$y(1) = 2$$
,  $y'(1) = 1$ ,  $y''(1) = \frac{3}{2}$ 

(22) Given the Laplacian and the corresponding boundary conditions as

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$u(x,0) = 0$$
,  $u(x,10) = 0$ ,  $u(0, y) = 0$ ,  $u(20, y) = 100$ 

Use five point formula and obtain the system of equations with  $\delta x = \delta y = 5$  and find the solution.

**Ans**: 
$$u(5,5) = 1.786$$
,  $u(5,10) = 7.143$ ,  $u(5,15) = 27.786$ 

(23) Consider the IVP y' = x(y+x)-2, y(0)=2. Use Euler's method with h=0.3, h=0.2 to compute y(0.6). If the true solution of y(0.6)=1, what is your conclusion?

Ans: 
$$y(0.6) = 0.953$$
 with  $h = 0.3$ ,  $y(0.6) = 1.00576$  with  $h = 0.1$ 

(24) Show that Euler's method applied to  $y' = \lambda y$ ,  $y(0) = 1, \lambda < 0$  is stable for step sizes  $-2 < \lambda h < 0$ Ans: hint  $|E(\lambda h)| \le 1$ 

(25) Find the solution at x = 0.3 for the differential equation  $y' = x - y^2$ , y(0) = 1 by Adams-Bash forth method of order 2 with h = 0.1. Determine the starting value using RK-method of second order.

Ans: 
$$y(0.1) = 0.9145$$
;  $y(0.2) = 0.85405$ ;  $(0.3) = 0.81146$ 

(26) Given the I.V.P  $y'=y-x^2$ , y(0)=1. Use Milne- Simpson Predictor-Corrector method with h=0.2 to compute y(0.8). Compute past values using any of the other methods you know.

**Ans:** 
$$y^{(p)}(0.8) = 2.01461$$
  $y^{(c)}(0.8) = 2.014434$ 

(27) Find the solution of the boundary value problem

$$y''(x) = y + x,$$
  $x \in [0,1]$   
 $y(0) = 0,$   $y(1) = 0$ 

Using shooting method. Use the Runge-Kutta method of  $2^{nd}$  order to solve the corresponding I.V.P with step size 0.2

$$y(0.2) \approx 0.0284$$
,  $y(0.4) \approx -0.050080$   
 $y(0.6) \approx -0.05776$ ,  $y(0.8) \approx -0.04389$   
 $y(0) = 1$ ,  $y(0.5) = \frac{4}{9}$ 

(28) Use shooting method to find the solution of Boundary Value Problem

$$y" = 6y^2$$

$$y(0) = 1$$
,  $y(0.5) = \frac{4}{9}$ 

Assume the initial approximation y'(0) = -1.8

Find the solution of the corresponding initial value problem using fourth order RK method with h=0.1.

The exact solution of the problem is  $y(x) = \frac{1}{(1+x)^2}$ 

Ans:

$$y(0.1) = 0.8468$$
,  $y(0.2) = 0.7372$ ,  $y(0.3) = 0.6606$ 

$$y(0.4) = 0.6103$$
  $y(0.5) = 0.5825$ 

(29) If the error of a finite difference scheme that was used to approximate  $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x^2}$  is

$$\frac{k}{2}\frac{\partial^2 \mu}{\partial t^2} - \frac{h^2}{12}\frac{\partial^3 \mu}{\partial t \partial x^2} + \frac{h^4}{360}\frac{\partial^6 \mu}{\partial x^6} + \frac{\mu \partial^3 \mu}{\partial t^3}$$

Then find the order of the truncation error.

Ans. Order of truncation error =  $O(k + h^2)$ 

(30) Given the initial value problem

$$y' = x^3 + 2\mu^2$$
,  $y(0) = 1$ 

Determine first four non zero terms in the Taylor's series for y(x) and hence obtain the value of y(1).

Also determine x when the error in y(x) obtained from first 3-non zero terms is to be less than  $10^{-3}$ .

$$y(1) = 13 \text{ (approx)}, \quad x < \frac{1}{20}$$

$$y(x) = 1 + 2x + 4x^2 + 6x^3 + 0(x^4)$$

(31) Given the initial value problem

$$y' = -2x^3y$$
,  $y(0) = 1$ 

Estimate y(0.4) using modified Euler-Cauchy's method and then compare the result with the exact solution.

Ans: 0.9942

$$Error = |0.9942 - Exact| = 0.00691$$

(32) Solve the initial value problem

 $u'=2t^4u$ , u(0)=1 with h=0.2 on the interval  $\begin{bmatrix} 0,0.4 \end{bmatrix}$ . Use the fourth order classical Runge - Kutta method. Compare with the exact solution.

Ans: Exact Solution = 0.99591

$$u(2) = 0.9961$$

Error = 
$$|0.9961 - 0.9959| \approx 0.0019$$

33. Consider the discretized equation

$$u_{i,j+1} = Au_{i,j} + Bu_{i-1,j} + Cu_{i+1,j} - Du_{i,j-1}$$

That approximates a particular PDE (which need not be known for now) whose solution is u(x,t), A,B,C being known constants. If  $u_t(x,0) = g(x)$ , where t=0 represents initial time, obtain the corresponding approximation for  $u_i^1$  which is explicit, however, independent of any "fictitious values".

Ans: 
$$u_{i,1}(1+D) = Au_{i,0} + Bu_{i-1,0} + Cu_{i+1,0} + 2KDg_i$$

34. Consider the hyperbolic equation  $u_{tt} = u_{xx}$  subject to the boundary conditions u(0,t) = 0, u(1,t) = 0, t > 0 and the initial conditions  $u_{tt}(x,0) = 0, u(x,0) = 1 - x^2, 0 \le x \le 1$ . Use the explicit method to obtain solution at the grid points generated by h = 1/4, k = 0.2 for first time level.

Ans: 
$$u_{1,0} = 0.9375$$
;  $u_{2,0} = 0.75$ ;  $u_{3,0} = 0.4375$ ;  $u_{1,1} = 0.8975$ ;  $u_{2,1} = 0.71$ ;  $u_{3,1} = 0.3975$ 

35. If  $u(r,\theta)$  denote the solution of the Laplace equation in  $(r,\theta)$  polar coordinates given by

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0,$$

obtain the corresponding finite difference scheme that is implicit. Consider central difference approximation for both first and second derivatives. Given the data on the boundary as  $u(r,\theta)=1, u\left(r,\frac{\pi}{2}\right)=1$  and  $u(3,\theta)=-1$ , solve for  $u(r,\theta)$  along  $\theta=\frac{\pi}{6},\frac{\pi}{3}$  at r=1,2. Assume the step size as  $h=\delta r=1$  for radial coordinate and  $k=\delta\theta=\frac{\pi}{6}$  for angular coordinate.

Ans: 
$$u\left(1, \frac{\pi}{6}\right) = 0.7541$$
;  $u\left(1, \frac{\pi}{3}\right) = 0.7535$ ;  $u\left(2, \frac{\pi}{6}\right) = 0.0756$ ;  $u\left(2, \frac{\pi}{3}\right) = 0.0753$ 

## 36. Consider the second order PDE given by

$$au_{yy} + bu_{yt} + cu_{tt} + e = 0,$$

wherea,b,c are constants and e=e(x,t). Assuming that the given PDE is hyperbolic, consider the two characteristics f and g intersecting at a point  $R(x_R,t_R)$ . Derive the corresponding discretized equation for the characteristics and hence obtain the solution for  $u_{xx}-uu_{tt}+(1-x^2)=0, u(x,0)=x(1-x), u_t(x,0)=0, u(0,t)=0, u(1,t)=0.$  If P(0,2,0) and Q(0,4,0) are the points on the initial datum, obtain u at the point  $R(x_R,t_R)$ .

Ans: 
$$f_P = 0.4$$
,  $f_Q = 0.490$ ,  $g_P = -0.4$ ,  $g_Q = -0.490$   
 $(x_R, t_R) = (0.310, 0.044)$   
 $p_R = 0.399$ ,  $q_R = -0.246$   
 $u_R$  along PR = 0.2095  
 $u_R$  along QR = 0.2076

37. Find the interval of absolute stability for the method

$$u_{j+1} = u_j + \frac{h}{2} \left( u'_{j+1} + u'_j \right) + \frac{h^2}{12} \left( u''_j - u''_{j+1} \right)$$

used for solving the IVP  $u' = f(x, u), u(x_0) = u_0$ .

Ans: 
$$\sum = \frac{1 + \frac{\lambda h}{2} + \frac{\lambda^2 h^2}{12}}{1 - \frac{\lambda h}{2} + \frac{\lambda^2 h^2}{12}}$$
$$\lambda h \in (-\infty, 0)$$