Self Evaluation Test

1. Let T be a L.O. on V. If $T^2 = 0$, what can you say about the relation of the range of T to the null space of T? Give an example of linear operator T of R^2 such that $T^2 = 0$, but $T \neq 0$.

Solution.

$$T^2 = 0 \quad \Rightarrow \quad T^2(v) = 0 \ \forall v \in V$$

$$\Rightarrow T(T(V)) = \quad 0 \ \forall v \in V$$

$$\Rightarrow T(V) \quad \in \quad \mathrm{Ker} T \ \forall v \in V$$
 i.e.
$$\mathrm{Range} T \quad \subseteq \quad \mathrm{Ker} T$$

Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that,

$$T(x_1, x_2) = (x_2, 0)$$

T is Linear Operator. Since $T(2,2)=(2,0)\neq(0,0)\Rightarrow T\neq0$. But

$$T^{2}(x_{1}, x_{2}) = T(T(x_{1}, x_{2}))$$

$$= T(x_{2}, 0)$$

$$= (0, 0)$$

$$\Rightarrow T^{2} = 0$$

2. Let T be a linear operator on V and let $RankT^2 = RankT$, show that

Range
$$T \cap \text{Ker } T = \{0\}$$

Solution. $T:V\to V,\, T^2:V\to V$ are Linear Transformations.

Rank $T^2 = \dim V - \dim \operatorname{Ker} T^2$ (: Rank $T^2 = \operatorname{Rank} T$)

 \Rightarrow dim Ker T=dim Ker T^2

Let
$$x \in \text{Ker} T \Rightarrow Tx = 0 \Rightarrow T^2(x) = T(0) = 0$$

$$\Rightarrow x \in \text{Ker}T^2 \Rightarrow \text{Ker}T \subseteq \text{Ker}T^2$$

 \Rightarrow Ker $T = \text{Ker}T^2$ (as they have the same dim).

Now $x \in \text{Range } T \cap \text{Ker} T$

$$\Rightarrow T(x) = 0 \text{ if } x = T(y) \text{ for some } y \in V$$

$$\Rightarrow T(Ty) = 0 \text{ i.e. } T^2(y) = 0$$

$$\Rightarrow y \in \ker T^2 = \operatorname{Ker} T$$

$$\text{i.e. } T(y) = 0$$

$$\Rightarrow x = 0$$

$$\Rightarrow \operatorname{Ker} T \cap \operatorname{Range} T = \{0\}$$

3. Let T be a linear operator on \mathbb{R}^2 defined by $T(x_1, x_2) = (-x_2, x_1)$.

Let $\beta = \{e_1 = (1,0), e_2 = (0,1)\}$ and $\beta' = \{\alpha_1 = (1,2), \alpha_2 = (1,-1)\}$ be ordered basis for R^2 . Find a matrix P such that $[T]_{\beta'} = P^{-1}[T]_{\beta}P$.

Solution.
$$T(1,0) = (0,1); T(0,1) = (-1,0)$$

 $T(1,0) = 0.e_1 + 1.e_2; T(0,1) = -1.e_1 + 0.e_2$
 $\therefore [T]_{\beta} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
 $T(\alpha_1) = T(1,2) = (-2,1) = \frac{-1}{3}\alpha_1 - \frac{5}{3}\alpha_2$
 $T(\alpha_2) = T(1,-1) = (1,1) = \frac{2}{3}\alpha_1 - \frac{1}{3}\alpha_2$
 $\therefore [T]_{\beta}' = \begin{bmatrix} \frac{-1}{3} & \frac{2}{3} \\ \frac{-5}{2} & \frac{-1}{3} \end{bmatrix}$

Define $S: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$S(e_i) = \alpha_i; i = 1, 2$$

Now
$$\alpha_1 = (1, 2) = 1 \cdot e_1 + 2 \cdot e_2$$
 and $\alpha_2 = (1, -1) = 1 \cdot e_1 + (-1)e_2$

$$S(\alpha_1) = 1.\alpha_1 + 2.\alpha_2; S(\alpha_1) = 1.\alpha_1 + (-1).\alpha_2$$

$$[S]_{\beta'} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$

$$\text{and } P^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{-1}{3} \end{bmatrix}$$

$$P^{-1}[T]_{\beta}P = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{-1}{3} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{-1}{3} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{-1}{3} & \frac{2}{3} \\ \frac{-5}{3} & \frac{-1}{3} \end{bmatrix}$$

$$= [T]_{\beta'}$$

4. Let f_1, f_2, f_3 be three linear functionals on \mathbb{R}^4 defined as follows:

$$f_1(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 2x_3 + x_4$$

$$f_2(x_1, x_2, x_3, x_4) = 2x_2 + x_4$$

$$f_3(x_1, x_2, x_3, x_4) = -2x_1 - 4x_3 + 3x_4$$

Determine the subspace W of R^4 such that $f_i(w) = 0 \ \forall \ w \in W; \ i = 1, 2, 3$

Solution Let $(x_1, x_2, x_3, x_4) \in W$. Then $f_i(x_1, x_2, x_3, x_4) = 0 \ \forall \ i = 1, 2, 3$

$$\Rightarrow x_1 + 2x_2 + 2x_3 + x_4 = 0$$

$$2x_2 - x_4 = 0$$

$$-2x_1 - 4x_3 + 3x_4 = 0$$

$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ -2 & 0 & -4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 0$$

By elementary row transformations we get:

$$\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 0$$

$$\Rightarrow x_1 + 2x_3 = 0; x_2 = 0; x_4 = 0$$

$$\therefore (x_1, x_2, x_3, x_4) = (-2x_3, 0, x_3, 0)$$

$$= x_3(-2,0,1,0)$$

 \therefore W is spanned by (-2,0,1,0).

5. Let $f, g \in V'$ such that $f(v) = 0 \implies g(v) = 0$, prove that g = cf for some $c \in F, (V')$ is dual space of V.

Solution. If f = 0, then g = 0 = cf; for any $c \in F$.

Let $f \neq 0$, then there exist $v \neq 0$ in V such that $f(v) \neq 0$.

let
$$c = \frac{g(v)}{f(v)}, h = g - cf$$
 and $x \in V$ and $\alpha = \frac{f(x)}{f(v)}$.

Then
$$f(x - \alpha v) = f(x) - \alpha f(v) = 0$$

 $\Rightarrow x - \alpha v \in \text{Ker} f$
 $\Rightarrow x - \alpha v = y \in \text{Ker} f$
 $\Rightarrow x = y + \alpha v$
 $h(x) = g(x) - cf(x)$
 $= g(y) + \alpha g(v) - cf(y) - c\alpha f(v) \cdot$
 $= \alpha g(v) - c\alpha f(v)$ as
 $y \in \text{Ker} f \Rightarrow y \in \text{Ker} g$
 $= \frac{f(x)}{f(v)}g(v) - \frac{g(v)}{f(v)}.f(x)$
 $= 0 \ \forall \ x \in V$

$$\therefore h = 0 \Rightarrow g = cf$$

Hence the result follows.