
P.C.P Bhat OS/M4/V1/2004 1

Memory Management

Prof. P.C.P. Bhatt

P.C.P Bhat OS/M4/V1/2004 2

What is a Von-Neumann Architecture ?

Von Neumann computing requires a program to reside in

main memory to run.

Motivation The main motivation for management of

main memory comes from the fact we need to provide

support for several programs which are memory resident

as in a multiprogramming environment.

P.C.P Bhat OS/M4/V1/2004 3

Main Memory Management - 1

Issues that prompt main memory management:

Allocation : processes must be allocated space in the main

memory.

Swapping, Fragmentation and Compaction : If a program

terminates or is moved out, it creates a hole in the main

memory. The main memory is fragmented and needs to be

compacted for organized allocation..

P.C.P Bhat OS/M4/V1/2004 4

Main Memory Management - 2

Virtual Memory :

VM support requires an address translation mechanism to

map a logical address to the physical address to access the

desired data or instruction.

IO Support :

Most block oriented devices are recognized as specialized

files. Their buffers need to be managed within main

memory alongside other processes.

P.C.P Bhat OS/M4/V1/2004 5

Main Memory Management - 3

Garbage Collection : The area released by a process is

usually not accounted for immediately by the processor – its

garbage!!.

Compaction or garbage collection is responsibility of the

OS.

Protection : checking for illegal access of data from another

process’s memory area.

P.C.P Bhat OS/M4/V1/2004 6

Memory Relocation Concept - 1
Why do we need relocatable Processes ?

Consider a linear map (1-D view) of main memory.

Program Counter is set to the absolute address of the first

instruction of the program.

Data can also fetched if we know its absolute address.

In case that part of memory is currently in use then this

program can not be run.

Note if we have program instructions then we should be able

to execute the program from starting at any location.

P.C.P Bhat OS/M4/V1/2004 7

The Relocation Concept - 2

P.C.P Bhat OS/M4/V1/2004 8

Memory Relocation Concept - 3

With this flexibility, we can allocate any area in the memory

to load this process.

Note that this is most useful when processes move in and

out of main memory – recall that a hole created by a process

at the time of moving out of the main memory will not be

available when it is brought into main memory again.

P.C.P Bhat OS/M4/V1/2004 9

Compiler Generated Bindings

The advantage of relocation can be seen in the light of

binding of addresses to variables in a program.

For a variable x in a program P, a fixed address allocation

for x will mean that P can be run only when x is allocated

the same memory again.

P.C.P Bhat OS/M4/V1/2004 10

Linking and Loading Concepts - 1
Following the creation of a high level language (HLL) source program, there
are three stages of processing before we can get a process as shown in figure
below.

P.C.P Bhat OS/M4/V1/2004 11

Linking and Loading Concepts - 2
Stage1: In the first stage the HLL source program is compiled
and an object code is produced. Technically, depending upon
the program, this object code may by itself be sufficient to
generate a relocatable process. However, many programs are
compiled in parts, so this object code may have to link up with
other object modules. At this stage the compiler may also insert
stub at points where run time library modules may be linked.
Stage2: All object modules which have sufficient linking
information (generated by the compiler) for static linking are
taken up for linking. The linking editor generates a relocatable
code. At this stage, however, we still do not replace the stubs
placed by compilers for a run time library link up.

P.C.P Bhat OS/M4/V1/2004 12

Stage 3 : The final step is to arrange to make
substitution for the stubs with run time library code
which is a relocatable code.

When all the three stages are completed we have an

executable. When this executable is resident in the main

memory it is a runable process.

Linking and Loading Concepts - 3

P.C.P Bhat OS/M4/V1/2004 13

The First Fit Policy of Memory
Allocation

We are following FCFS (process management) and First

Fit (memory allocation) policies.

First Fit main memory allocation policy is very easy to

implement and is fast in execution.

First Fit policy may leave many small holes.

P.C.P Bhat OS/M4/V1/2004 14

Memory Allocation Policies
Best Fit Policy scans all available holes and chooses the
one with a size closest to the requirement.
It requires a scan of the whole memory and is slow.
Next Fit has a search pointer continues from where the
previous search ended.
Worst Fit method allocates the largest hole.
First Fit and Next Fit are fastest and are hence preferred
methods.
Worst Fit is the poorest of all the four methods.
To compare these policies, we shall examine the effect of
using various policies on a given set of data next.

P.C.P Bhat OS/M4/V1/2004 15

The Given Data For Policy Comparison
The given Data:
• Memory available 20 units
• OS resides in 6 units
• User processes share 14 units.

The user process data:

2 units2 units4 units2 units7 units3 unitsMemory
required

510122058
Processing

time
required

15100000Time of
arrival

P6P5P4P3P2P1

P.C.P Bhat OS/M4/V1/2004 16

FCFS Policy
Statement: “Jobs are processed in the order they arrive”.

P.C.P Bhat OS/M4/V1/2004 17

FCFS Memory Allocation

P6 is allocated(e)H1=2; H2=1;
H3=1P5, P4, P6, P315+

P6 has arrivedH1=2; H2=3;
H3=1P6P5, P4, P315

P5 is allocated P1's
space(d)H1=2; H2=3 H3=1P5, P4, P310+

P5 arrivesP5P4, P310

New hole created(c)H1=2; H2=3;
H3=3P4, P38

P2 is Finished
P4 is loaded Hole

H2 is created
(b)H1=2; H2=3P1, P4, P35

P4 requires more
space than H1(a)H1=2P4P1, P2, P30

CommentsFigure
4.3

Holes with
sizes

Programs on
disk

Programs in
Main

memory

Time
units

P.C.P Bhat OS/M4/V1/2004 18

The First Fit Policy
Statement: “Jobs are processed always from one end and
find the first block of free space which is large enough to
accommodate the incoming process”.

Given Data:

2 units2 units4 units2 units7 units3 unitsMemory
required

510122058
Processin

g time
required

15100000Time of
arrival

P6P5P4P3P2P1

P.C.P Bhat OS/M4/V1/2004 19

The First Fit Policy of Memory Allocation

P.C.P Bhat OS/M4/V1/2004 20

The Best Fit Policy
Statement: “Jobs are selected after scanning the main
memory for all the available holes and having information
about all the holes in the memory, the job which is closest to
the size of the requirement of the process will be processed ”.
Given Data:

2 units2 units4 units2
units7 units3 unitsMemory

required

510122058
Processin

g time
required

15100000Time of
arrival

P6P5P4P3P2P1

P.C.P Bhat OS/M4/V1/2004 21

The Best Fit Policy of Memory Allocation

P.C.P Bhat OS/M4/V1/2004 22

Fixed and Variable Partition - 1
Fixed Partition : Memory is divided into chunks. For
example, 4K/8K/16K Bytes. All of these are same size.
Allocation : If a certain chunk can hold the program/data, then
the allocation. If a chunk can not hold program/data then
multiple chunks are allocated to accommodate the
program/data.

P.C.P Bhat OS/M4/V1/2004 23

Fixed and Variable Partition - 2
Variable Partition: Memory is divided into chunks of
various sizes. For Example there could be chunks of 8K,
some may be 16 K or even more.
Allocation: The program/Data are allocated to the chunks
that can accommodate the incoming program/Data.

P.C.P Bhat OS/M4/V1/2004 24

Buddy System - 1
The buddy system of partitioning relies on the fact that space
allocations can be conveniently handled in sizes of power of 2.
There are two ways in which the buddy system allocates space.

Suppose we have a hole which is the closest power
of two. In that case, that hole is used for allocation.
In case we do not have that situation then we look for the
next power of 2 hole size, split it in two equal halves and
allocate one of these.

Because we always split the holes in two equal sizes, the
two are “buddies”. Hence, the name buddy system.

P.C.P Bhat OS/M4/V1/2004 25

Buddy System - 2

We assume that initially we have a space of 1024 K. We also
assume that processes arrive and are allocated following a time
sequence as shown in figure.
In the figure we assume the requirements as (P1:80K);(P2:312K);
(P3:164 K); (P4:38 K). These processes arrive in the order of
their index and P1 and P3 finish at the same time

P.C.P Bhat OS/M4/V1/2004 26

Buddy System - 3
With 1024 K or (1M) storage space we split it into buddies of
512 K, splitting one of them to two 256 K buddies and so on till
we get the right size. Also, we assume scan of memory from the
beginning. We always use the first hole which accommodates
the process.
Otherwise, we split the next sized hole into buddies. Note that
the buddy system begins search for a hole as if we had a
number of holes of variable sizes. In fact, it turns into a dynamic
partitioning scheme if we do not find the best-fit hole initially.
The buddy system has the advantage that it minimizes the
internal fragmentation. In practice, some Linux flavors use it.
Earlier systems offered by Burroughs used this scheme.

P.C.P Bhat OS/M4/V1/2004 27

Concept of Virtual Storage - 1
The directly addressable main memory is limited and is quite
small in comparison to the logical addressable space.
The actual size of main memory is referred as the physical
memory. The logical addressable space is referred to as virtual
memory.
The concept of virtual storage is to give an impression of a
large addressable storage space without necessarily having a
large primary memory
The basic idea is to offer a seamless extension of primary
memory into the space within the secondary memory. The
address register generate addresses for a space much larger
than the primary memory.
The notion of virtual memory is a bit of an illusion. The OS
supports and makes this illusion possible.

P.C.P Bhat OS/M4/V1/2004 28

Virtual Storage - 2
The OS creates this illusion by copying chunks of disk memory
into the main memory as shown in figure. In other words, the
processor is fooled into believing that it is accessing a large
addressable space. Hence, the name virtual storage space. The
disk area may map to the virtual space requirements and even
beyond.

P.C.P Bhat OS/M4/V1/2004 29

Virtual Memory: Paging-1

Once we have addressable segments in the secondary

memory-we need to bring it within the main memory for

physical access for process. Often mechanism of paging

helps.

Paging is like reading a book. At any time we do not need

all pages-except the ones we are reading. The analogy

suggest that pages we are reading are in the main memory

and the rest can be in the secondary memory.

P.C.P Bhat OS/M4/V1/2004 30

Virtual Memory: Paging-2
The primary idea is to always keep focus on that area of
memory from which instructions are executed. Once that
area is identified – it is loaded into the primary memory into
the fixed size pages.
To enable such a loading, page sizes have to be defined and
observed for both primary as well as secondary memory.
Paging support locality of reference for efficient access
For instance we have location of reference during execution
of while or for loop or a call to a procedure.

P.C.P Bhat OS/M4/V1/2004 31

Mapping the Pages - 1

Paging stipulates that main memory is partitioned into
frames of sufficiently small sizes.
Also, we require that the virtual space is divided into pages
of the same size as the frames.
This equality facilitates movement of a page from anywhere
in the virtual space (on disks) to a frame anywhere in the
physical memory.
The capability to map “any page” to “any frame” gives a lot
of flexibility of operation.

P.C.P Bhat OS/M4/V1/2004 32

Mapping the Pages - 2

Division of main memory into frames is like fixed partitioning.
So keeping the frame size small helps to keep the internal
fragmentation small.

Paging supports multi-programming. In general there can be
many processes in main memory, each with a different number
of pages. To that extent, paging is like dynamic variable
partitioning.

P.C.P Bhat OS/M4/V1/2004 33

Paging: Implementation

P.C.P Bhat OS/M4/V1/2004 34

Paging: Replacement - 1
When a page is no longer needed it can be replaced.
Consider an example shown in figure process P29 has all its
pages present in main memory.
Process P6 does not have all its pages in main memory. If a
page is present we record 1 against its entry. The OS also
records if a page has been referenced to read or to write. In
both these cases a reference is recorded.

P.C.P Bhat OS/M4/V1/2004 35

Paging: Replacement - 2
If a page frame is written into, then a modified bit is set. In our
example, frames 4, 9, 40, 77, 79 have been referenced and
page frames 9 and 13 have been modified.
Sometimes OS may also have some information about
protection using rwe information. If a reference is made to a
certain virtual address and its corresponding page is not
present in main memory, then we say a page fault has
occurred.
Typically, a page fault is followed by moving in a page.
However, this may require that we move a page out to create a
space for it. Usually this is done by using an appropriate page
replacement policy to ensure that the throughput of a system
does not suffer. We shall next see how a page replacement
policy can affect performance of a system.

P.C.P Bhat OS/M4/V1/2004 36

Page Replacement Policies - 1
Towards understanding page replacement policies we shall
consider a simple example of a process P which gets an
allocation of four pages to execute.
Further, we assume that the OS collects some information
(depicted in figure) about the use of these pages as this process
progresses in execution.

P.C.P Bhat OS/M4/V1/2004 37

Page Replacement Policies - 2
Let us examine the information depicted in figure in some
detail to determine how this may help in evolving a page
replacement policy.
Note that we have the following information available about P.

The time of arrival of each page: We assume that the process
began at some time with value of time unit 100. During its
course of progression we now have pages that have been
loaded at times 112, 117 119, and 120.
The time of last usage: This indicates when was a certain
page last used. This entirely depends upon which part of the
process P is being executed at any time
The frequency of use: We have also maintained the
frequency of use over some fixed interval of time T in the
immediate past. This clearly depends upon the nature of
control flow in process P.

P.C.P Bhat OS/M4/V1/2004 38

Page Replacement Policies - 3
Based on the previous pieces of information if we now
assume that at time unit 135 the process P experiences a
page-fault, what should be done. Based on the choice of the
policy and the data collected for P, we shall be able to
decide which page to swap out to bring in a new page.

FIFO policy: This policy simply removes pages in the
order they arrived in the main memory. Using this policy
we simply remove a page based on the time of its arrival
in the memory. Clearly, use of this policy would suggest
that we swap page located at 14 as it arrived in the
memory earliest.

P.C.P Bhat OS/M4/V1/2004 39

Page Replacement Policies - 4
LRU policy: LRU expands to least recently used. This policy

suggests that we remove a page whose last usage is farthest
from current time. Note that the current time is 135 and the
least recently used page is the page located at 23. It was used
last at time unit 125 and every other page is more recently used.
So page 23 is the least recently used page and so it should be
swapped if LRU replacement policy is employed.

NFU policy: NFU expands to not frequently used. This policy
suggests to use the criterion of the count of usage of page over
the interval T. Note that process P has not made use of page
located at 9. Other pages have a count of usage like 2, 3 or even
5 times. So the basic argument is that these pages may still be
needed as compared to the page at 9. So page 9 should be
swapped.

P.C.P Bhat OS/M4/V1/2004 40

Page Hit and Page Miss
When we find that a page frame reference is in the main memory
then we have a page hit and when page fault occurs we say we
have a page miss.
Now let us consider the following two cases when we have 50%
and 80% page hits. We shall compute the average time to access.
Case 1 : With 50% page hits the average access time is

Case 2 : With 80% page hits the average access time is

Clearly, the case 2 is better. The OS designers attempt to offer a
page replacement policy which will try to minimize the page miss.
It is not unusual to be able to achieve over 90% page hits when
the application profile is very well known.

((10+40) 0.5)+(10+190) 0.5 =125 time units× ×

((10+40) 0.8)+(10+190) 0.2 = 80 time units× ×

P.C.P Bhat OS/M4/V1/2004 41

The page replacement policy may results in a
situation such that two pages alternatively move in
and out of the resident set. Clearly, this is an
undesirable situation.

Note that because pages are moved between main
memory and disk, this has an enormous overhead.
This can adversely affect the throughput of a system.

The drop in the level of system throughput resulting
from frequent page replacement is called thrashing.

Thrashing - 1

P.C.P Bhat OS/M4/V1/2004 42

Thrashing - 2

Note that the page size influences the number
of pages and hence it determines the number of
resident sets we may support. With more
programs in main memory or more pages of a
program we hope for better locality of
reference. This is seen to happen (at least
initially) as more pages are available.

P.C.P Bhat OS/M4/V1/2004 43

Thrashing - 3
Page-faults result in frequent disk IO. With more disk IO the
throughput drops. At this point we say thrashing has occurred.
Note: the basic advantage of higher throughput from a greater
level of utilisation of processor and more effective multi-
programming does not accrue any more. The advantages
derived from locality of reference and multi-programming
begins to vanish and thrashing manifests as shown in figure.

P.C.P Bhat OS/M4/V1/2004 44

Recall the point we need HW within CPU to support
paging. The CPU generates a logical address which must
get translated to a physical address. In Figure we indicate
the basic address generation and translation.

Paging: HW Support - 1

P.C.P Bhat OS/M4/V1/2004 45

The sequence of steps in generation of address is as
follows:

The process generates a logical address. This

address is interpreted in two parts.

The first part of the logical address identifies the

virtual page.

The second part of the logical address gives the

offset within the page.

Paging: HW Support - 2

P.C.P Bhat OS/M4/V1/2004 46

The first part is used as an input to the page table to
find out the following:

Is the page in the main memory;
What is the page frame number for this
virtual page;

The page frame number is the first part of the

physical memory address.

The offset is the second part of the correct physical

memory location.

Paging: HW Support - 3

P.C.P Bhat OS/M4/V1/2004 47

A page fault is generated if the page is not in the

physical memory – trap.

The trap suspends the regular sequence of

operations and brings the required page from disc to

main memory.

Paging: HW Support - 4

P.C.P Bhat OS/M4/V1/2004 48

Segmentation also supports virtual memory concept.

One view of segmentation could be that each part like

its code segment, its stack requirements (of data,

nested procedure calls), its different object modules etc.

has a contiguous space. This view is uni- dimensional.

Segmentation - 1

P.C.P Bhat OS/M4/V1/2004 49

Each segment has requirements that vary over time –
stacks grow or shrink, memory requirements of
object and data segments may change during the
process’s lifetime.

We, therefore, have a two dimensional view of a
process’s memory requirement - each process segment
can acquire a variable amount of space over time.

Segmentation - 2

P.C.P Bhat OS/M4/V1/2004 50

Segmentation is similar to paging, except that we have

a segment table look ups to identify address values.

Comparing segmentation and paging :

Paging offers the simplest mechanism to effect

virtual addressing.

Paging suffers from internal fragmentation,

segmentation from external fragmentation.

Segmentation - 3

P.C.P Bhat OS/M4/V1/2004 51

Segmentation affords separate compilation of each

segment with a view to link up later.

A user may develop a code segment and share it

amongst many applications.

In paging, a process address space is linear and hence, uni-

dimensional. For segmentation each procedure and data segment

has its own virtual space mapping. Therefore this offers a greater

degree of protection.

Segmentation - 4

P.C.P Bhat OS/M4/V1/2004 52

In case a program’s address space fluctuates

considerably, paging may result in frequent page

faults. Segmentation offers no such problems.

Paging partitions a program and data space uniformly

and hence simpler to manage; difficult to distinguish

data and program space. In segmentation, space

required is partitioned according to logical division of

program segments.

Segmentation - 5

P.C.P Bhat OS/M4/V1/2004 53

Segmentation and Paging

In practice, there are segments for the code(s), data and

stack.

Each segment carries the raw information as well.

Usually, stack and data have read and write permissions

only; code has read and execute permissions only.

P.C.P Bhat OS/M4/V1/2004 54

Segmentation & Paging:
A clever scheme with advantages of both would be
segmentation with paging. In such a scheme each segment
would have a descriptor with its pages identified. Such a
scheme is shown in figure.

