Memory Management

Prof. P.C.P. Bhatt

What is a Von-Neumann Architecture ?

» \VVon Neumann computing requires a program to reside in
main memory to run.

» Motivation The man motivation for management of
main memory comes from the fact we need to provide
support for several programs which are memory resident

as in a multiprogramming environment

P.C.P Bhat 0OS/M4/V1/2004

Main Memory Management - 1

| ssues that prompt main memory management:
» Allocation : processes must be allocated space in the main
memory.

» Swapping, Fragmentation and Compaction : If a program
terminates or is moved out, it creates a hole in the main
memory. The main memory is fragmented and needs to be

compacted for organized allocation..

P.C.P Bhat 0OS/M4/V1/2004

Main Memory Management - 2

» Virtual Memory :

VM support requires an address translation mechanism to
map a logical address to the physical address to access the

desired data or instruction.
» 1O Support :

Most block oriented devices are recognized as specialized
files. Their buffers need to be managed within main

memory alongside other processes.

P.C.P Bhat 0OS/M4/V1/2004

Main Memory Management - 3

» Garbage Collection : The area released by a process is
usually not accounted for immediately by the processor — its
garbage!!.

» Compaction or garbage collection is responsibility of the

(o

» Protection : checking for illegal access of data from another

process's memory area.

P.C.P Bhat 0OS/M4/V1/2004 5

Memory Relocation Concept - 1

Why do we need rel ocatable Processes ?
» Consider alinear map (1-D view) of main memory.

» Program Counter is set to the absolute address of the first
Instruction of the program.

» Data can aso fetched if we know its absolute address.

» In case that part of memory is currently in use then this
program can not be run.

» Note iIf we have program instructions then we should be able

to execute the program from starting at any location.

P.C.P Bhat 0OS/M4/V1/2004 6

P.C.P Bhat

PROCESS
COITENTTINEG

EITRY
PN
GF PROCRAM

The Relocation Concept - 2

PROCESS CONTROL BLOCK,
TUME
+—1 TATRUCTEN
THE EXECUTABLE CODE
REFEREICES
T0 AOCESS
THE DATA AREL +— ATA
-.|;

0OS/M4/V1/2004

ALL TISTRUCTENT AITD
DATA REFEREIICES ARE
RELATIVE TO THE EITHY
PONIT OF THE FROCESS

Memory Relocation Concept - 3

» With thisflexibility, we can allocate any area in the memory

to load this process.

» Note that this is most useful when processes move in and
out of main memory — recall that a hole created by a process
at the time of moving out of the main memory will not be

available when it is brought into main memory again.

P.C.P Bhat 0OS/M4/V1/2004

Compiler Generated Bindings

» The advantage of relocation can be seen in the light of

binding of addresses to variables in a program.

» For avariable x in a program P, a fixed address allocation
for x will mean that P can be run only when x is allocated

the same memory again.

P.C.P Bhat 0OS/M4/V1/2004

Linking and Loading Concepts - 1
Following the creation of a high level language (HLL) source program, there

are three stages of processing before we can get a process as shown in figure
below. RN

I'::" _ 1 S0OURCE FROGRAM
o & ¥

L4
' COMPILER

o SEVERAL I
vy L OBRIRCT JOBJECT (¢ =
— ~_ MODULES_OBIEC

A I x5

v LINKAGE FDITOR |

LOATHMODLUIL

SYSTEM ™ . _
.LIBRARY _ o

" *-\. i I
! —h

LOADTR

RELOCATABLE 3'”»”"1;_'1"&1'11'_ EM
PROGRAM = = T g ___---5]
F LI, _LIBRARY _
L de—==TLE |

A PROCESS IN MAIN MEMORY ._:l

=
i

P

P.C.P Bhat 0OS/M4/V1/2004

10

Linking and L oading Concepts - 2

» Stagel: In the first stage the HLL source program is compiled
and an object code is produced. Technically, depending upon
the program, this object code may by itself be sufficient to
generate a relocatable process. However, many programs are
compiled in parts, so this object code may have to link up with
other object modules. At this stage the compiler may also insert
stub at points where run time library modules may be linked.

» Sage2. All object modules which have sufficient linking
Information (generated by the compiler) for static linking are
taken up for linking. The linking editor generates a rel ocatable
code. At this stage, however, we still do not replace the stubs
placed by compilers for arun time library link up.

P.C.P Bhat 0S/M4/V1/2004 11

Linking and Loading Concepts - 3

» Sage 3 . The final step Is to arrange to make
substitution for the stubs with run time library code
which is arelocatable code.

When all the three stages are completed we have an

executable. When this executable isresident in the main

memory it isa runable process.

P.C.P Bhat 0OS/M4/V1/2004 12

The First Fit Policy of Memory
Allocation

» We arefollowing FCFS (process management) and First

Fit (memory allocation) policies.

» First Fit main memory allocation policy is very easy to

Implement and is fast in execution.

» First Fit policy may leave many small holes.

P.C.P Bhat 0OS/M4/V1/2004 13

Memory Allocation Policies

» Best Fit Policy scans all available holes and chooses the
one with a size closest to the requirement.

» |t requires a scan of the whole memory and is slow.

» Next Fit has a search pointer continues from where the
previous search ended.

» Worst Fit method allocates the largest hole.

» First Fit and Next Fit are fastest and are hence preferred
methods.

» Worst Fit isthe poorest of all the four methods.

» To compare these policies, we shall examine the effect of
using various policies on a given set of data next.

P.C.P Bhat 0S/M4/V1/2004 14

» The given Data:
e Memory available 20 units
e OSresidesin 6 units

o User processes share 14 units.

» The user process data:

P.C.P Bhat

P1 P2 P3 PA P P6
Time of 0 0 0 0 10 15
arrival
Processing
time 8 5 20 i~ 10 S
required
e 3units | 7units = 2units | 4units | 2units = 2 units

required

0OS/M4/V1/2004

The Given Data For Policy Comparison

15

FCFS Policy

Statement: “ Jobs are processed in the order they arrive” .

P.C.P Bhat 0OS/M4/V1/2004

16

FCFS Memory Allocation

Time Programs A Programs on Holes with Figure
) Main , . Comments
units disk sizes 4.3
memory
- P4 requires more
0 Rl R2E RS P4 H1=2 (@ space than H1
P2 is Finished
5 P1, P4, P3 H1=2; H2=3 (b) P4 isloaded Hole
H2 is created
8 P4, P3 i _H2:3; (c) New hole created
H3=3
10 P4, P3 P5 P5 arrives
10+ PS5, P4, P3 Ei=2N o E e GeeiR@ s LS
space
15 PS, P4, P3 PG § P6 has arrived
H3=1
15+ | P5 P4, P6, P3 H1:Hz£12:1; © P6 i all ocated

P.C.P Bhat 0S/M4/V1/2004 17

.3]

» Statement: “Jobs are processed always fromone end and
find the first block of free space which islarge enough to

The First Fit Policy

accommodate the incoming process’ .
» Given Data

P.C.P Bhat

Pk

P4

Time of
arrival

10

1L5)

Processin
g time
required

20

12

10

Memory
required

3 units

7 units

2 units

4 units

2 units

2 units

0OS/M4/V1/2004

18

Program Program
Program Program Hole 3 units PS Ps
Pl Pl Hole 1 unit Hole | unit
Program Program izngram ;ring:ram ;ngam
P2 P4
Program
Hole 3 umts Hole 3 umts Hole 3 units P6
Hole 1 umnit
Program Program Program Program Program
P3 P3 P3 P3 P3
Hole 2 units Hole 2 units Hole 2 units Hole 2 units Hole 2 units
Operting Operting Ohperting Operting Chperting
system’s system's system’s system’s system'’s
— area area area area
(a) (b} (ch (dy (e)
OS/M4/V1/2004

P.C.P Bhat

¥ The First Fit Policy of Memory Allocation

19

-1

The Best Fit Policy

» Statement. “Jobs are selected after scanning the main
memory for all the available holes and having information
about all the holes in the memory, the job which is closest to
the size of the requirement of the process will be processed .

> Given Data:

P1 P2 P3 P4 P5 P6
AR 0 0 0 10 | 15
arriva

Processin
g time 8 5 20 2 10 3
required
Memory , : 2 : : :
: 3units| 7 units . 4 units | 2 units | 2 units
required units

P.C.P Bhat

0OS/M4/V1/2004

P.C.P Bhat

Program

Program Program EELE L H3 D
Pl Pl ole = units Hole 3 units Hole | unit Ha
Program Program Program Program Program

P4 P4 P4 P4
P2

H2 H2 H2 H2

Hole 3 units Hole 3 units Hole 3 units Hole 3 units
Program Program Program Program Program
P3 P3 P3 P3 P3
HI HI Hl Program Program
Hole 2 units Hole 2 units Hole 2 units Ps Ps
Operating Operating Operating DPEfﬂthE ':_}PEHTLE]E
System’s System's System’s System’s System’s
area area — area area

(a) (b) (c) (d) (e)
0OS/M4/V1/2004

¥ The Best Fit Policy of Memory Allocation

21

Fixed and Variable Partition - 1

» Fixed Partition : Memory Is divided into chunks. For
example, 4K/8K/16K Bytes. All of these are same size.

» Allocation : If a certain chunk can hold the program/data, then
the allocation. If a chunk can not hold program/data then
multiple chunks are allocated to accommodate the
program/data. Size—4

11

15

OS

P.C.P Bhat 0OS/M4/V1/2004 22

Fixed and Variable Partition - 2

» Variable Partition. Memory is divided into chunks of
various sizes. For Example there could be chunks of 8K,
some may be 16 K or even more.

» Allocation: The program/Data are allocated to the chunks
that can accommodate the incoming program/Data.

o
|
3

7

P.C.P Bhat

Size=] =—-1_ {luous L'\“‘\-.
Size=2 -=— Chienie

Size =4 =—7 CWIE |

.-I-l-"".]
D
g

Bize=6f =—m—] Ciene | ‘.,.r"

0OS/M4/V1/2004 23

Buddy System - 1

The buddy system of partitioning relies on the fact that space
allocations can be conveniently handled in sizes of power of 2.

There are two ways in which the buddy system all ocates space.

» Suppose we have a hole which is the closest power
of two. In that case, that hole is used for allocation.

> |n case we do not have that situation then we look for the
next power of 2 hole size, split it in two equal halves and

adlocate one of these.

Because we always split the holes in two equal sizes, the
two are “buddies’. Hence, the name buddy system.

P.C.P Bhat 0OS/M4/V1/2004 24

0 64 128 256 512 1024 K

I I I I I I I I I I |

- Initial hole size >

=E 256k - - - -mE -

S o o 512K i
PT Pr

. e o 256k L 512 K N
Fl Fa F.

%_L_, e L Sl2 K _

Pl : T Fa T F. o

%L_, o L Sl2 K -

: D T P! -

We assume that initially we have a space of 1024 K. We aso
assume that processes arrive and are allocated following a time
sequence as shown in figure.

In the figure we assume the requirements as (P1:80K); (P2: 312K);
(P3:164 K); (P4:38 K). These processes arrive in the order of
their index and P1 and P3 finish at the same time

P.C.P Bhat 0OS/M4/V1/2004 25

Buddy System - 3

» With 1024 K or (1M) storage space we split it into buddies of
512 K, splitting one of them to two 256 K buddies and so on till
we get the right size. Also, we assume scan of memory from the
beginning. We aways use the first hole which accommodates
the process.

» Otherwise, we split the next sized hole into buddies. Note that
the buddy system begins search for a hole as if we had a
number of holes of variable sizes. In fact, it turns into adynamic
partitioning scheme if we do not find the best-fit hole initially.

» The buddy system has the advantage that it minimizes the
internal fragmentation. In practice, some Linux flavors use it.
Earlier systems offered by Burroughs used this scheme.

P.C.P Bhat 0OS/M4/V1/2004 26

Concept of Virtual Storage - 1

» The directly addressable main memory is limited and is quite
small in comparison to the logical addressable space.

» The actual size of main memory is referred as the physical
memory. The logical addressable space is referred to as virtual
memory.

» The concept of virtual storage is to give an impression of a
large addressable storage space without necessarily having a
large primary memory

» The basic idea is to offer a seamless extension of primary
memory into the space within the secondary memory. The

address register generate addresses for a space much larger
than the primary memory.

» The notion of virtual memory is a bit of an illusion. The OS
supports and makes this illusion possible.

P.C.P Bhat 0OS/M4/V1/2004 27

Virtual Storage - 2

> The OS creates this illusion by copying chunks of disk memory
Into the main memory as shown in figure. In other words, the
processor isfooled into believing that it is accessing a large
addressable space. Hence, the name virtual storage space. The
disk area may map to the virtual space requirements and even

beyond.

f_._,;""',:_"'_:“" o

P

THE e

ADDRESS e

REGISTER "

\ The []

|\:< Virtual T— 7

Storage
CPU Space

The Physical Storage

Disk area is copied
in to main memory

to give an illusion
of a large address space

P.C.P Bhat 0OS/M4/V1/2004

28

Virtual Memory: Paging-1

» Once we have addressable segments in the secondary
memory-we need to bring it within the main memory for
physical access for process. Often mechanism of paging
helps.

» Paging is like reading a book. At any time we do not need
all pages-except the ones we are reading. The anaogy
suggest that pages we are reading are in the main memory
and the rest can be in the secondary memory.

P.C.P Bhat 0OS/M4/V1/2004 29

Virtual Memory: Paging-2

» The primary idea is to always keep focus on that area of
memory from which instructions are executed. Once that
areais identified — it isloaded into the primary memory into
the fixed size pages.

» To enable such aloading, page sizes have to be defined and
observed for both primary as well as secondary memory.

» Paging support locality of reference for efficient access

» For instance we have location of reference during execution
of while or for loop or acall to a procedure.

P.C.P Bhat 0OS/M4/V1/2004 30

Mapping the Pages - 1

» Paging stipulates that main memory is partitioned into
frames of sufficiently small sizes.

» Also, we require that the virtual space is divided into pages
of the same size as the frames.

» This equality facilitates movement of a page from anywhere
In the virtual space (on disks) to a frame anywhere in the
physical memory.

» The capability to map “any page’ to “any frame” gives alot
of flexibility of operation.

P.C.P Bhat 0OS/M4/V1/2004 31

Mapping the Pages - 2

» Division of main memory into frames s like fixed partitioning.
S0 keeping the frame size small helps to keep the interna
fragmentation small.

» Paging supports multi-programming. In general there can be
many processes in main memory, each with a different number
of pages. To that extent, paging is like dynamic variable

partitioning.

P.C.P Bhat 0OS/M4/V1/2004 32

Paging: |mplementation

0 Process | may be in Disk 1

1 Disk 1 occupying 20 pages. Pages

7 2 and 3 at virtual address 20

3 and 21 Ell'j-ﬂ mappeg to gnilm

4 Dick | memory location 9 and 4.

E Process 6 may be in Disk 1

6 Occupying 30 pages. Pages

7 17 and 18 at virtual address 39

B and 40 are mapped to main

Tﬂ memory location | and 6.

11 e ———— | Disk | Process 24 may be in Disk |

12 occupying 4 pages, 77 to 80

13 ,ff’f’f, are mapped to main memory.

14 . The OS maintains a list of

15 free pages in main memory
i Disk n for allocating a new free page.

AGE TABLES FOR PROCESSESPL, . Po . P20
LOGICAL 20 21 .39 40 78 79 80
PHYSICAL b4 | 6 2 13 15
Pl . w—Po . - P29 -
P.C.P Bhat OS/M4/V1/2004

33

pages present in main memaory.

» Process P6 does not have al its pages in main memory. If a
page Is present we record 1 against its entry. The OS also
records if a page has been referenced to read or to write. In

both these cases areference is recorded.
Page tables for processes P1, .. Po, .. P29 .

Paging: Replacement - 1
» When apage is no longer needed it can be replaced.
» Consider an example shown in figure process P29 has all its

P Pa P29 .
Logical 20 21 39 40 77 78 79 80
Physical 9 4 - 1 6 112 13 15
Present 01 10 1 10 R T B
Referenced 11 01 10 1 0
Maodified {0 0 0 0 0 1 0
Protection W— I'w— — r——

P.C.P Bhat

0OS/M4/V1/2004

34

Paging: Replacement - 2

» |f apage frame iswritten into, then a modified bit is set. In our
example, frames 4, 9, 40, 77, 79 have been referenced and
page frames 9 and 13 have been modified.

» Sometimes OS may aso have some information about
protection using rwe information. If a reference is made to a
certain virtual address and its corresponding page is not
present in main memory, then we say a page fault has
occurred.

» Typically, a page fault is followed by moving In a page.
However, this may require that we move a page out to create a
space for it. Usually this is done by using an appropriate page
replacement policy to ensure that the throughput of a system
does not suffer. We shall next see how a page replacement
policy can affect performance of a system.

P.C.P Bhat 0OS/M4/V1/2004 35

Page Replacement Policies- 1

» Towards understanding page replacement policies we shall
consider a simple example of a process P which gets an
allocation of four pages to execute.

» Further, we assume that the OS collects some information
(depicted in figure) about the use of these pages as this process
progresses in execution.

0 14 112 130 3
9 117 127 |
2 23 119 125 b
3 >< 56 126 132 5
The process The page Time of Time of Count
page frame in arrival last usage of usage

P.C.P Bhat

main memory

0OS/M4/V1/2004

Page Replacement Policies - 2

Let us examine the information depicted in figure in some

detail to determine how this may help in evolving a page

replacement policy.

Note that we have the following information available about P.

» Thetime of arrival of each page: We assume that the process
began at some time with value of time unit 100. During its
course of progression we now have pages that have been
loaded at times 112, 117 119, and 120.

» The time of last usage: This indicates when was a certain
page last used. This entirely depends upon which part of the
process P is being executed at any time

» The frequency of use. We have also maintained the
frequency of use over some fixed interval of time T in the
Immediate past. This clearly depends upon the nature of
control flow in process P.

P.C.P Bhat 0OS/M4/V1/2004

37

Page Replacement Policies - 3

Based on the previous pieces of information iIf we now
assume that at time unit 135 the process P experiences a
page-fault, what should be done. Based on the choice of the
policy and the data collected for P, we shall be able to
decide which page to swap out to bring in anew page.

» FIFO policy: This policy smply removes pages in the
order they arrived in the main memory. Using this policy
we ssmply remove a page based on the time of its arrival
In the memory. Clearly, use of this policy would suggest
that we swap page located at 14 as it arrived in the
memory earliest.

P.C.P Bhat 0OS/M4/V1/2004

38

Page Replacement Policies - 4

»|LRU policy: LRU expands to least recently used. This policy
suggests that we remove a page whose last usage is farthest
from current time. Note that the current time is 135 and the
least recently used page is the page located at 23. It was used
last at time unit 125 and every other page is more recently used.
SO page 23 is the least recently used page and so it should be
swapped iIf LRU replacement policy is employed.

»NFU policy: NFU expands to not frequently used. This policy
suggests to use the criterion of the count of usage of page over
the interval T. Note that process P has not made use of page
located at 9. Other pages have a count of usage like 2, 3 or even
5 times. So the basic argument is that these pages may still be
needed as compared to the page at 9. So page 9 should be
swapped.

P.C.P Bhat 0OS/M4/V1/2004 39

Page Hit and Page Miss

When we find that a page frame reference is in the main memory

then we have a page hit and when page fault occurs we say we
have a page miss.

Now let us consider the following two cases when we have 50%
and 80% page hits. We shall compute the average time to access.

Case 1 : With 50% page hits the average accesstime s
((10+40) x 0.5)+(10+190) x 0.5 =125 time units

Case 2 : With 80% page hits the average accesstime s
((10+40) % 0.8)+(10+190) x 0.2 = 80 time units

Clearly, the case 2 is better. The OS designers attempt to offer a
page replacement policy which will try to minimize the page miss.
It Is not unusual to be able to achieve over 90% page hits when
the application profile is very well known.

P.C.P Bhat 0OS/M4/V1/2004 40

Thrasning - 1

» The page replacement policy may results in a
Situation such that two pages alternatively move In
and out of the resident set. Clearly, this Is an
undesirable situation.

» Note that because pages are moved between main
memory and disk, this has an enormous overhead.
This can adversely affect the throughput of a system.

» The drop in the level of system throughput resulting
from freguent page replacement is called thrashing.

P.C.P Bhat 0S/M4/V1/2004 41

Thrashing - 2

» Note that the page size influences the number
of pages and hence it determines the number of
resident sets we may support. With more
programs in main memory or more pages of a
program we hope for better locality of
reference. This Is seen to happen (at least
Initially) as more pages are available.

P.C.P Bhat 0OS/M4/V1/2004 42

Thrashing - 3
Page-faults result in frequent disk 10. With more disk 10 the
throughput drops. At this point we say thrashing has occurred.
Note: the basic advantage of higher throughput from a greater
level of utilisation of processor and more effective multi-
programming does not accrue any more. The advantages

derived from locality of reference and multi-programming
begins to vanish and thrashing manifests as shown in figure.

Thrashing ocecurs here

| T

Throughput
of the system

e REr Page fault frequency i

Paging: HW Support - 1
Recall the point we need HW within CPU to support
paging. The CPU generates a logical address which must

get trandated to a physical address. In Figure we indicate
the basic address generation and trandl ation.

Address generation and translation

C.P.LL

| | Offsel | Main
o [OIfe | ‘ MEmory

.| Pa
tahle

The Offset 15 same because the page and frame size are same

The page table provides the mapping of virutal page to frame number

P.C.P Bhat 0OS/M4/V1/2004

44

Paging: HW Support - 2

» The sequence of steps in generation of addressis as
follows:

v The process generates a logical address. This
address is interpreted in two parts

v Thefirst part of the logical address identifies the
virtual page

v The second part of the logical address givesthe

offset within the page.

P.C.P Bhat 0OS/M4/V1/2004

45

- |

Paging: HW Support - 3

v Thefirst part is used as an input to the page table to
find out the following:
¢ Isthe page in the main memory;,
*+ What is the page frame number for this
virtual page;

v The page frame number isthefirst part of the
physical memory address.

v The offset is the second part of the correct physical
memory location.

P.C.P Bhat 0OS/M4/V1/2004

46

e]

Paging: HW Support - 4

» A page fault is generated if the pageis not in the
physical memory — trap.

» The trap suspends the regular sequence of
operations and brings the required page from disc to

main memory.

P.C.P Bhat 0S/M4/V1/2004 47

Segmentation - 1

> Segmentation also supports virtual memory concept.

» One view of segmentation could be that each part like
Its code segment, its stack requirements (of data,
nested procedure calls), its different object modules etc.

has a contiguous space. Thisview is uni- dimensional.

P.C.P Bhat 0OS/M4/V1/2004 48

Segmentation - 2

» Each segment has requirements that vary over time —
stacks grow or shrink, memory requirements of
object and data segments may change during the
process' s lifetime.

We, therefore, have atwo dimensional view of a

process s memory requirement - each process segment

can acquire a variable amount of space over time.

Data part

]
t}tmhgr Code Data Rome other
part part part

4

Code part

Varying address space

P.C.P Bhat 0OS/M4/V1/2004 49

Segmentation - 3

Segmentation is similar to paging, except that we have

a segment table ook ups to identify address values.

Comparing segmentation and paging :

» Paging offers the simplest mechanism to effect
virtual addressing.

» Paging suffers from internal fragmentation,

segmentation from external fragmentation.

P.C.P Bhat 0OS/M4/V1/2004

50

Segmentation - 4

» Segmentation affords separate compilation of each

segment with aview to link up later.

» A user may develop a code segment and share it

amongst many applications.

» |In paging, aprocess address space is linear and hence, uni-
dimensional For segmentation each procedure and data segment
has its own virtual space mapping. Therefore this offers a greater

tlegree of protection. o 3

Segmentation - 5

»In case a progran’'s address gpace fluctuates
considerably, paging may result in freguent page
faults. Segmentation offers no such problems.

» Paging partitions a program and data space uniformly
and hence smpler to manage; difficult to distinguish
data and program space. In segmentation, Space
required is partitioned according to logical division of

program segments.

P.C.P Bhat 0OS/M4/V1/2004

52

Segmentation and Paging

» In practice, there are segments for the code(s), data and

stack.

» Each segment carries the raw information as well.

» Usually, stack and data have read and write permissions

only; code has read and execute permissions only.

P.C.P Bhat 0OS/M4/V1/2004 53

Segmentation & Paging:
A clever scheme with advantages of both would be
segmentation with paging. In such a scheme each segment

would have a descriptor with its pages identified. Such a
scheme is shown in figure.

A wvirtual address

Segment # Page # Offset #

¥
+

—{D L

_rl"/"
..-I"""'F
¥ el
. _)@/
Segment to page Segments page table Main memory

P.C.P Bhat 0S/M4/V1/2004 54

