
P.C.P Bhatt OS/M15/V1/2004 1

Make Tool in Unix

Prof. P.C.P. Bhatt

P.C.P Bhatt OS/M15/V1/2004 2

Introduction

Make is both a productivity enhancement utility

as well as a program management tool..

Individual as well as team productivity

enhancement tool.

make tool avoids wasteful re-compilations

It is also useful in the context of software

installations.

P.C.P Bhatt OS/M15/V1/2004 3

When to use make?

Make can be used in a context where tasks can be
expressed as (UNIX) shell commands which
need to be executed in the context of certain
forms of dependencies amongst file.

Make also helps to determine what definitions the
new software should assume during installation.

P.C.P Bhatt OS/M15/V1/2004 4

How make works?

Makefile structure: the basic structure of

makefile is a sequence of targets,

dependencies, and commands.

Linking with libraries: helps in creating a

customized computing environment

P.C.P Bhatt OS/M15/V1/2004 5

Makefile Structure

P.C.P Bhatt OS/M15/V1/2004 6

Example - 1
We will demonstrate the use of a make file through this

simple example.

Step1:
Create a program file helloWorld.c as shown below:

#include<stdio.h>
#include<ctype.h>
main
{
printf("HelloWorld \n");
}

P.C.P Bhatt OS/M15/V1/2004 7

Example – 1 continues

Step2: Prepare a file called “Makefile” as
follows:

This may be a comment
hello: helloWorld.c
cc -o hello helloWorld.c
this is all in this make file

P.C.P Bhatt OS/M15/V1/2004 8

Step3: Now give a command as follows:
make
Step4: Execute helloWorld to see the result.

To see the effect of make, first repeat the
command make and note how make responds
to indicate that files are up to date needing no
re-compilation. Now modify the program.

Example - 1

P.C.P Bhatt OS/M15/V1/2004 9

Example 1 Continues
Let us change the statement in printf to:
printf("helloWorld here I come ! \n") Execute make

again. One can also choose a name different from
Makefile. However, in that case we use –f option:

make -f given_file_name.
To force make to re-compile a certain file one can

simply update its time by a Unix touch command as
given below:

touch <filename> /* updates its modification time */

P.C.P Bhatt OS/M15/V1/2004 10

Make File Options

Make command has the following other useful
options:

-n option : With this option, make goes through
all the commands in makefile without
executing any of them. Such an option is
useful to just check out the makefile itself.

-p option: With this option, make prints all the
macros and targets

as it progresses.

P.C.P Bhatt OS/M15/V1/2004 11

More on Make file options

-s option: With this option, make is silent.
Essentially, it is the opposite of –p option.

-i option : With this option make ignores any
errors or exceptions which are thrown up. This
is indeed very helpful in a development
environment. During development, sometimes
one needs to focus on a certain part of a
program. One may have to do this with several
modules in place. In these situations, one often
wishes to ignore some obvious exceptions.

P.C.P Bhatt OS/M15/V1/2004 12

This time around we shall consider a two-level target
definition. Suppose our executable “fin” depends
upon two object files (a.o) and (b.o) as shown in
below figure. We may further have (a.o) depend upon
(a.cc) and (x.h) and (y.h). Similarly, (b.o) may
depend upon (b.cc, z.h) and (y.h).

Example - 2

P.C.P Bhatt OS/M15/V1/2004 13

These dependencies shown in the previous figure
dictate the following:

A change in x.h will result in re-compiling to get a
new a.o and fin. A change in y.h will result in re-
compiling to get a new a.o, b.o, and fin.A change in
z.h will result in re-compiling to get a new b.o and
fin.

A change in a.cc will result in re-compiling to get a
new a.o and fin.

A change in b.cc will result in re-compiling to get a
new b.o and fin.

Example - 2

P.C.P Bhatt OS/M15/V1/2004 14

Makefile for Example 2

fin : a.o b.o /* the top level of target */
g++ -o fin a.o b.o /* the action required */
a.o : a.c x.h y.h /* the next level of targets */
g++ -g -Wall -c a.cc -o a.o /* hard coded comd. line */
b.o : b.c z.h y.h /* the next level of targets */
g++ -g -Wall -c b.cc -o b.o
x.h : /* empty dependencies */
y.h :
z.h : /* these rules are not needed */

P.C.P Bhatt OS/M15/V1/2004 15

Linking with Libraries
Makefile

#
fin depends on a.o and a library libthelib.a
#
fin : a.o libthelib.a
g++ -o fin a.o -L -lthelib
#
a.o depends on three files a.c, x.h and y.h
The Wall option is a very thorough checking option
available under g++
a.o : a.cc x.h y.h
g++ -g -Wall -c a.cc
#
Now the empty action lines.
#
x.h :
y.h :
thelib.h :
#
Now the rules to rebuild the library libthelib.a
#
libthelib.a thelib.o
ar rv libthelib.a thelib.o
thelib.o: thelib.cc thelib.h
g++ -g -Wall thelib.cc
end of make file

Commands to run the makefile

If we run this make file we
should expect to see the
following sequence of actions
1. g++ -c a.cc
2. cc -c thelib.cc
3. ar rv libthelib.a thelib.o
4. a - thelib.o
5. g++ -o fin a.o -L -lthelib

P.C.P Bhatt OS/M15/V1/2004 16

Macros - 1

Variables in make are defined and interpreted exactly as
in shell scripts. For instance we could define a variable
as follows:

CC = g++ /* this is a variable definition */
the definition extends up to new line character or
up the beginning of the inline comment
In fact almost all environments support CC macro which

expands to appropriate compiler command, i.e., it
expands to cc in Unix, cl in MS and bcc for Borland. A
typical usage in a command is shown below:

$(CC) -o p p.c /* here p refers to an executable */

P.C.P Bhatt OS/M15/V1/2004 17

Let us look at flags first. Suppose we have a set of flags for c
compilation. We may define a new macro as shown below :
CFLAGS = -o -L -lthelib
These are now captured as follows:
$(CC) $(CFLAGS) p.c
Another typical usage is when we have targets that require many
objects as in the example below:
t : p1.o p2.o p3.o /* here t is the target and pi the program stems */
We can now define macros as follows:
TARGET = t
OBJS = p1.o p2.o p3.o
$(TARGET): $(OBJS)

Macros - 2

P.C.P Bhatt OS/M15/V1/2004 18

General Substitution Rules

So if we have a situation as follows:
target : several objects
cc cflags target target_stem.c

This can be encoded as follows :
$(TARGET): $(OBJS)
$(CC) $(CFLAGS) $@ $*.c

P.C.P Bhatt OS/M15/V1/2004 19

Inference Rules in Make
An inference rule begins with a (.) (period) symbol and
establishes the relationship. So a .c.o means we need an a .c file
for generating the a .o file and it may appear as follows:
.c.o :

$(CC) $(CFLAGS) $*.c
In fact because the name stems of .c and o. file is to be the same
we can use a built-in macro ($<) to code the above set of lines
as follows:
.c.o:

$(CC) $(CFLAGS) $<

P.C.P Bhatt OS/M15/V1/2004 20

Some Additional Options

Imake : program to generate platform

specific make files.

Imake.tmpl : set of general rules and

configuration properly, it yields a suitable

makefile for suitable platforms.

