

Module
1

Introduction to Software
Engineering

Version 2 CSE IIT, Kharagpur

Lesson
1

Basic Issues in Software
Engineering

Version 2 CSE IIT, Kharagpur

Specific Instructional Objectives
At the end of this lesson the student will be able to:

• Identify the scope and necessity of software engineering.
• Identify the causes of and solutions for software crisis.
• Differentiate a piece of program from a software product.

Scope and necessity of software engineering

Software engineering is an engineering approach for software development. We
can alternatively view it as a systematic collection of past experience. The
experience is arranged in the form of methodologies and guidelines. A small
program can be written without using software engineering principles. But if one
wants to develop a large software product, then software engineering principles
are indispensable to achieve a good quality software cost effectively. These
definitions can be elaborated with the help of a building construction analogy.

Suppose you have a friend who asked you to build a small wall as shown in fig.
1.1. You would be able to do that using your common sense. You will get building
materials like bricks; cement etc. and you will then build the wall.

Fig. 1.1: A Small Wall

But what would happen if the same friend asked you to build a large multistoried
building as shown in fig. 1.2?

Fig. 1.2: A Multistoried Building
You don't have a very good idea about building such a huge complex. It would be
very difficult to extend your idea about a small wall construction into constructing
a large building. Even if you tried to build a large building, it would collapse
because you would not have the requisite knowledge about the strength of
materials, testing, planning, architectural design, etc. Building a small wall and
building a large building are entirely different ball games. You can use your
intuition and still be successful in building a small wall, but building a large

Version 2 CSE IIT, Kharagpur

building requires knowledge of civil, architectural and other engineering
principles.

Without using software engineering principles it would be difficult to develop large
programs. In industry it is usually needed to develop large programs to
accommodate multiple functions. A problem with developing such large
commercial programs is that the complexity and difficulty levels of the programs
increase exponentially with their sizes as shown in fig. 1.3. For example, a
program of size 1,000 lines of code has some complexity. But a program with
10,000 LOC is not just 10 times more difficult to develop, but may as well turn out
to be 100 times more difficult unless software engineering principles are used. In
such situations software engineering techniques come to rescue. Software
engineering helps to reduce the programming complexity. Software engineering
principles use two important techniques to reduce problem complexity:
abstraction and decomposition.

Fig. 1.3: Increase in development time and effort with problem size

The principle of abstraction (in fig.1.4) implies that a problem can be simplified by
omitting irrelevant details. In other words, the main purpose of abstraction is to
consider only those aspects of the problem that are relevant for certain purpose
and suppress other aspects that are not relevant for the given purpose. Once
the simpler problem is solved, then the omitted details can be taken into
consideration to solve the next lower level abstraction, and so on. Abstraction is
a powerful way of reducing the complexity of the problem.

The other approach to tackle problem complexity is decomposition. In this
technique, a complex problem is divided into several smaller problems and then
the smaller problems are solved one by one. However, in this technique any
random decomposition of a problem into smaller parts will not help. The problem

Version 2 CSE IIT, Kharagpur

has to be decomposed such that each component of the decomposed problem
can be solved independently and then the solution of the different components
can be combined to get the full solution. A good decomposition of a problem as
shown in fig.1.5 should minimize interactions among various components. If the
different subcomponents are interrelated, then the different components cannot
be solved separately and the desired reduction in complexity will not be realized.

Fig. 1.4: A hierarchy of abstraction

3rd abstraction

2nd abstraction

1st abstraction

Full Problem

Fig. 1.5: Decomposition of a large problem into a set of smaller problems.

Version 2 CSE IIT, Kharagpur

Causes of and solutions for software crisis.
Software engineering appears to be among the few options available to tackle
the present software crisis.

To explain the present software crisis in simple words, consider the following.
The expenses that organizations all around the world are incurring on software
purchases compared to those on hardware purchases have been showing a
worrying trend over the years (as shown in fig. 1.6)

Fig. 1.6: Change in the relative cost of hardware and software over time

Organizations are spending larger and larger portions of their budget on
software. Not only are the software products turning out to be more expensive
than hardware, but they also present a host of other problems to the customers:
software products are difficult to alter, debug, and enhance; use resources non-
optimally; often fail to meet the user requirements; are far from being reliable;
frequently crash; and are often delivered late. Among these, the trend of
increasing software costs is probably the most important symptom of the present
software crisis. Remember that the cost we are talking of here is not on account
of increased features, but due to ineffective development of the product
characterized by inefficient resource usage, and time and cost over-runs.

There are many factors that have contributed to the making of the present
software crisis. Factors are larger problem sizes, lack of adequate training in
software engineering, increasing skill shortage, and low productivity
improvements.

Version 2 CSE IIT, Kharagpur

It is believed that the only satisfactory solution to the present software crisis can
possibly come from a spread of software engineering practices among the
engineers, coupled with further advancements to the software engineering
discipline itself.

Program vs. software product
Programs are developed by individuals for their personal use. They are therefore,
small in size and have limited functionality but software products are extremely
large. In case of a program, the programmer himself is the sole user but on the
other hand, in case of a software product, most users are not involved with the
development. In case of a program, a single developer is involved but in case of
a software product, a large number of developers are involved. For a program,
the user interface may not be very important, because the programmer is the
sole user. On the other hand, for a software product, user interface must be
carefully designed and implemented because developers of that product and
users of that product are totally different. In case of a program, very little
documentation is expected, but a software product must be well documented. A
program can be developed according to the programmer’s individual style of
development, but a software product must be developed using the accepted
software engineering principles.

Version 2 CSE IIT, Kharagpur

	Introduction to Software Engineering
	Basic Issues in Software Engineering
	Specific Instructional Objectives
	Scope and necessity of software engineering
	Causes of and solutions for software crisis.
	Program vs. software product

