
Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-VIII

Lecture-I

Fault Simulation

Introduction to Test Pattern Generation
• The procedure to generate a test pattern for a given a fault

is called Test Pattern Generation (TPG). Generally TPG
procedure is fully automated and called Automatic TPG
(ATPG).

Introduction to Test Pattern Generation

– Fault Sensitization: Output net of G1 is stuck-at-1,
we need to drive it to 0 to verify the
presence/absence of the fault.

– Fault Propagation: Affect of the fault is to be
propagated to a primary output (Output of G6, in
this example).

– Justification: Determination of values at primary
inputs so that Fault sensitization and Fault
propagation are successful.

Introduction to Test Pattern Generation

Test Pattern

No.

Test Pattern

I1 I2 I3 I4 I5 I6……………………I25

Output

1 0 0 0 0 0 11111111111111111111 1 if fault

0 if no Fault

2 0 0 0 0 1 11111111111111111111 1 if fault

0 if no Fault

………… …………………………………………….. ……..

225 1 1 1 1 0 11111111111111111111 1 if fault

0 if no Fault

TPG procedure would generate any one of the patterns given in Table 1

Introduction to Test Pattern Generation

Do we require these three steps for all faults?
TPG would take significant amount of time.
However, one test pattern can test multiple faults.

Pattern

No.

 Random Pattern

I1 I2 I3 I4 I5 I6……………………I25

Faults Detected

1 1 0 0 0 1 11111111111111111111 s-a-1 at net “output of G1”

s-a-1 at net “output of G6”

2 1 1 1 1 1 11111111111111111111 s-a-0 faults in all the nets

of the circuit

On the other hand if we would have gone by the “sensitize-
propagate-justify” approach these three steps would have been
repeated 33 times.

Random test pattern generation

1. Generate a random pattern
2. Determine the output of the circuit for that random pattern as

input
3. Take fault from the fault list and modify the Boolean functionally of

the gate whose input has the fault.
• The s-a-1 fault at the output of gate G1 modifies the Boolean

functionality of gate G6 as 1 AND I2 AND I3 AND I4 AND I5
(which is equivalent to I2 AND I3 AND I4 AND I5) .

4. Determine output of the circuit with fault for that random pattern
as input.

5. If the output of normal circuit varies from the one with fault, then
the random pattern detects the fault under consideration.

6. If the fault is detected, it is removed from the fault list.
7. Steps 3 to 6 are repeated for another fault in the list. This continues

till all faults are considered.
8. Steps 1 to 7 are repeated for another random pattern. This

continues till all faults are detected.

Random test pattern generation

Typically beyond 90% fault coverage, it is difficult to find a
random pattern that can test a new fault. For the remaining 10%
of faults it is better to use the “sensitize-propagate-justify”
approach--difficult to test faults.

Fault Coverage vs. No. of Rand. Pattrens

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

No. of Rand. Pattrens

F
a
u

lt
 C

o
v
e
ra

g
e
 (

%
)

Test pattern generation

TPG can be done in two phases
•Use random patters, till a newly added
pattern detects a reasonable number of new
faults

•For the remaining faults, apply “sensitize-
propagate-justify” approach

Techniques to determine faults covered by
random patterns, called fault simulation.

Circuit Simulation

•The imitative representation of the functioning of circuits
by means of another alternative, a computer program say,
is called simulation.

Compiled Code Simulation

1. Compiled Code method of simulation involves describing
the circuit in a language that can be compiled and
executed on a computer.
• The circuit description can be in a Hardware

Description Language such as VHDL or Verilog or
simply described in C.

2. Inputs, outputs and intermediary nets are treated as
variables in the code which can be Boolean, integer, etc.
Gates such as AND, OR, etc., are directly converted into
program statements (using bit wise operator).

3. For every input pattern, the code is repeatedly executed.

Compiled Code Simulation: Example

Compiled Code Simulation: Example

include<stdio.h>

main()

{

 int I1,I2,I3,I4,OG1,OG2,O;

 printf("Input the Values of I1, I2, I3 and I4”);

scanf("%d", &I1);

scanf("%d", &I2);

scanf("%d", &I3);

scanf("%d", &I4);

 OG1 = I1 & I2;

 OG2 = I3 & I4;

O = OG1 & OG2;

 printf("\n Output of Circuit is %d",O);

}

Compiled Code Simulation: Signal Changes

Changes in signal values in a circuit for change in input is
low

 Event Driven Simulation

•Event-driven simulation is a very effective
scheme for circuit simulation as it is based on
detection of any signal change (event) to trigger
other signal(s).
•An event triggers new events, which in turn may
trigger more events; the first trigger is a change
in primary input.

 Event Driven Simulation: Example

Fault Simulation

•A fault simulator is like an ordinary simulator,
but needs to simulate two versions of a circuit

•without any fault for a given input pattern
and
•with a fault inserted in the circuit and for the
same input pattern.

•If the outputs under normal and faulty situation
differ, the pattern detects the fault.
•Step (ii) is repeated for all faults. Once a fault is
detected it is dropped

Fault Simulation

The procedure is simple, but is too complex in terms of time required. Time required is

no of random patterns

th

i i

faults for i random pattren simulation time

 .

Improving Fault Simulation Algorithms

•Determine more than one fault that is detected
by a random pattern during one simulation run

•Minimal computations when the input pattern
changes; the motivation is similar to event driven
simulation over complied code simulation.

Serial Fault Simulation

1. The circuit is first simulated (using event driven simulator)
without any fault for a random pattern and primary output
values are saved in a file.

2. Next, faults are introduced one by one in the circuit and are
simulated for the same input pattern. This is done by
modifying the circuit description for a target fault and then
using event driven simulator.

3. The output values (at different primary outputs) of the faulty
circuit are compared with the saved true responses. The
simulation of a faulty circuit halts when output value at any
primary output differs for the corresponding normal circuit
response. All faults detected are dropped and the procedure
repeats for a new random pattern.

Serial Fault Simulation: Example

Serial Fault Simulation: Example

Time Scheduled Event Activity List

t=0 I1=1, I2=1 I2(G1), OG1,I2(G2),

t=1 I2(G1)=0,I2(G2)=0 OG1, OG2

t=2 OG1=0, OG2=1 O1,I1(G3),O2

t=3 O2=0 in faulty situation while O2=1 in

normal condition

Serial Fault Simulation: Example

Time Scheduled Event Activity List

t=0 I1=1, I2=1 I2(G1), OG1,I2(G2)

t=1 I2(G1)=1,I2(G2)=1 OG1, OG2

t=2 OG1=1,OG2=1 O1, I1(G3),O2

t=3 O2=1, I1(G3)=1 O1

t=4 O1=1 in faulty situation while O1=0 in

normal condition

Insertion of faults in the circuit fault simulation
in event driven simulator

Thank you

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-VIII

Lecture-II

Fault Simulation

Introduction to Parallel Fault Simulation

• Parallel fault simulation can processes more than
one fault in one pass of the circuit simulation.

• Uses bit-parallelism of a computer.

Introduction to Parallel Fault Simulation

– Input lines for any gate comprise binary words of
length w (instead of single bits) and output is also a
binary word of length w.

– The output word is determined by simple logical
operation (corresponding to the gate) on the
individual bits of the input words.

Parallel Fault Simulation: Example

Parallel Fault Simulation: Example

The array at O2 is 1010. It implies that on the
input I1=1 and I2=1
•O2 is 1 under normal condition
•O2 is 0 under s-a-0 fault at I2(G1),
•O2 is 1 under s-a-1 fault at OG2,
•O2 is 0 under s-a-0 fault at I2.

Pattern I1=1,I2=1 at output O2 can detect s-a-0
fault at I2(G1) and s-a-0 fault at I2 but cannot
detect s-a-1 fault at OG2.

Parallel Fault Simulation: Example

The array at O1 is 0010. It implies that on the
input I1=1 and I2=1
•O1 is 0 under normal condition
•O1 is 0 under s-a-0 fault at I2(G1),
•O1 is 1 under s-a-1 fault at OG2,
•O1 is 0 under s-a-0 at I2.

I1=1,I2=1 at output O1 detects s-a-1 fault at OG2.
So all the three faults are detected by I1=1,I2=1.

Parallel Fault Simulation

• Parallel fault simulation speeds up the serial fault
simulation scheme by w-1 times.

• After an iteration of parallel fault simulation, next set of w-
1 faults are considered and the procedure repeated. After
all the faults are considered (i.e., total number of faults/(w-
1) iterations) the ones detected by the random pattern are
dropped.

• Next another random pattern is taken and a new set of
iterations are started.

Parallel fault simulation speeds up serial fault simulation w-1

times, but for a random pattern more than one iterations
may be required.

Introduction to Deductive Fault Simulation

• A procedure which can determine in a single iteration,
detectability/undetectability about all faults by a given
random pattern.

• First the fault-free circuit is simulated by a random pattern
and all the nets are assigned the corresponding signal
values.

• “Deductive”, as the name suggests, all faults detectable at
the nets are determined using the structure of the circuit
and the signal values of the nets.
– Circuit structure remains the same for all faulty circuits,

all deductions are carried out simultaneously.
• Once detectability of all the faults for a random pattern is

done, the same procedure is repeated for the next random
pattern after eliminating the covered faults.

Deductive Fault Simulation: Example

Deductive Fault Simulation: Example

Step-1: LI1={ I11}. s-a-1 at I1 can be detected at I1 as input pattern
is I1=0.

Step-2: LI1(G1)={ I11, I1(G1)1}

fault deduction at fanout branches
Fault list detected at fanout branch comprise (i) all faults at
the fanout stem and (ii) s-a-1 if the signal value at the branch
is 0, else s-a-0.

Step-3A: LOG1={ I11, I1(G1)1,OG10}.

fault deduction at inverter
Fault list detected at output of an inverter comprise (i) all
faults at the input and (ii) s-a-1 of the signal value at the
output is 0, else s-a-0.

Step-3B: LOG2={ I11, I1(G2)1,OG20}.

fault deduction at inverter
Fault list detected at output of an inverter comprise (i) all
faults at the input and (ii) s-a-1 of the signal value at the
output is 0, else s-a-0.

Step 4: LOG3={ I11, I1(G1)1, I1(G2)1, OG10,OG20,OG30}.

fault deduction at AND gate with both inputs as 1
Fault list detected at output of the AND gate comprise (i) all
faults at both the inputs and (ii) s-a-0 at the output of the AND
gate.

Deductive Fault Simulation: Example

Deductive Fault Simulation: Example

Step-1: LI1={ I10}. s-a-0 at I1 can be detected at I1 as
input pattern is I1=1.

Deductive Fault Simulation: Example

Step-2: LI1(G1)={ I10, I1(G1)0}.
 LI1(G2)={ I10, I1(G2)0}.

Deductive Fault Simulation: Example

Step 3A: LOG1={ I10, I1(G1)0,OG11}
Step 3B: LOG2={ I10, I1(G2)0,OG21}

Deductive Fault Simulation: Example

Step-4: LOG3={ I10, OG31}

fault deduction at a 2-input AND gate with both inputs as 0
Fault list detected at output of the AND gate comprise (i)
all faults COMMON at both the inputs and (ii) s-a-1 at the
output of the AND gate.

Deductive Fault Simulation: Example

fault deduction at a 2-input AND gate with In1=1 and In2=0
Fault list detected at output of the AND gate comprise (i) all faults at In2 but
not at In1 and (ii) s-a-1 at the output of the AND gate.

Deductive Fault Simulation: Example

fault deduction at a 2-input AND gate with In1=0 and In2=1
Fault list detected at output of the AND gate comprise (i) all faults at In1 but
not at In2 and (ii) s-a-1 at the output of the AND gate.

Fa
u

lt
 d

e
d

u
ct

io
n

 r
u

le
s

fo
r

lo
gi

c
ga

te
s

 Gate

Type

Inputs

(In1 and In2)

Output

(O)

Deductive Fault

list at O

AND 0

0

1

1

0

1

0

1

0

0

0

1

1 2 1[]In InL L O

1 2 1[]In InL L O

1 2 1[]In InL L O

1 2 0[]In InL L O

OR

(Dual

of

AND

gate)

0

0

1

1

0

1

0

1

0

1

1

1

1 2 1[]In InL L O

1 2 0[]In InL L O

1 2 0[]In InL L O

1 2 0[]In InL L O

NOT 0

1

1

0

1 0[]InL O

1 1[]InL O

Fanout 0

1

0

1

1 1[]InL O

1 0[]InL O

Thank You

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-VIII

Lecture-III

Fault Simulation

Step 4: LOG3={ I11, I1(G1)1, I1(G2)1, OG10,OG20,OG30}.

fault deduction at AND gate with both inputs as 1
Fault list detected at output of the AND gate comprise (i) all
faults at both the inputs and (ii) s-a-0 at the output of the AND
gate.

Deductive Fault Simulation: Example

Step-4: LOG3={ I10, OG31}

fault deduction at a 2-input AND gate with both inputs as 0
Fault list detected at output of the AND gate comprise (i)
all faults COMMON at both the inputs and (ii) s-a-1 at the
output of the AND gate.

Deductive Fault Simulation: Example

fault deduction at a 2-input AND gate with In1=1 and In2=0
Fault list detected at output of the AND gate comprise (i) all faults at In2 but
not at In1 and (ii) s-a-1 at the output of the AND gate.

Deductive Fault Simulation: Example

fault deduction at a 2-input AND gate with In1=0 and In2=1
Fault list detected at output of the AND gate comprise (i) all faults at In1 but
not at In2 and (ii) s-a-1 at the output of the AND gate.

Fa
u

lt
 d

e
d

u
ct

io
n

 r
u

le
s

fo
r

lo
gi

c
ga

te
s

 Gate

Type

Inputs

(In1 and In2)

Output

(O)

Deductive Fault

list at O

AND 0

0

1

1

0

1

0

1

0

0

0

1

1 2 1[]In InL L O

1 2 1[]In InL L O

1 2 1[]In InL L O

1 2 0[]In InL L O

OR

(Dual

of

AND

gate)

0

0

1

1

0

1

0

1

0

1

1

1

1 2 1[]In InL L O

1 2 0[]In InL L O

1 2 0[]In InL L O

1 2 0[]In InL L O

NOT 0

1

1

0

1 0[]InL O

1 1[]InL O

Fanout 0

1

0

1

1 1[]InL O

1 0[]InL O

Concurrent Fault Simulation
 • Detective fault simulation can determine all the faults in

one iteration detectable by a random pattern.
– When a new random pattern is fed as input the whole process

needs to be redone.

• “Concurrent Fault Simulation” is a technique similar to
deductive fault simulation, however, retains information
when moving from one random pattern to another.
– In concurrent fault simulation when a new random pattern is

fed it needs to compute only that information which got
changed by the new pattern.

• So, concurrent fault simulation gets motivation from the
advantages achieved by event driven simulation compared
to compiled code simulation.

Concurrent Fault Simulation: Concept

To each gate is associated a number of gates “affected by some
fault in the circuit”. An affected gate is one whose at least one
input or output is different from the ones in the original (normal
gate).

Concurrent Fault Simulation: Example

Concurrent Fault Simulation

Given a circuit, level wise affected gates corresponding to all
normal gates are created. Now, affected gates (in the list of
normal gates) that drive some primary output are considered.
Among those affected gates, the ones whose output signal value
differs from that of the normal gate, correspond to faults being
detected by the random pattern given as input.

Concurrent Fault Simulation

Only three gates correspond to faults being detected at OG3 (or
primary output O1). So what is requirement of seven gates in the
affected list?
Deductive fault simulation, which keeps information about only
these three faults is better choice than concurrent fault
simulation?

Next random pattern isI1=0, I2=1. In case of deductive fault
simulation we need to repeat all the steps, while in case of
concurrent simulation we will re-compute only the information
that changes as a result of changes in signals triggered by I1
(from 1 to 0).

Concurrent Fault Simulation: Example

Concurrent Fault Simulation: Example

Conclusions

•To conclude, fault simulation algorithms help to determine
patters that can test a subset of faults in a circuit.

•Broadly speaking, after about 90% of faults being detected by
random patters and fault simulation, we need to go for ATPG by
sensitization–propagation -justification approach.

•Now, if there was a scheme that could tell which 90% of faults
are easy to test (by random patterns) and which are difficult to
test, then fault simulation algorithms could be more focused. In
other words, fault simulation algorithms would stop when most of
the easy faults were covered.

Questions and Answers

What is the main advantage of compiled code simulator versus
event driven simulator?

Answer: In case of compiled code simulator the whole circuit (i.e.,
all gates) needs to be simulated when input pattern changes. In
case of event driven simulation, only those gates are required to
be simulated whose inputs change because of change in the
input. So, event driven simulation is more time efficient
compared to compiled code simulation.

Questions and Answers

Which fault simulation algorithm is most dependent on
architecture of the computer simulating it?

 Answer: Concurrent fault simulator is mostly dependent on the
architecture of the computer simulating it because speed (i.e.,
number of faults simulated per iteration) depends on the bit
width of the word of the computer. If the bit width is w, then w-1
faults can be simulated in an iteration.

Questions and Answers

When the procedure for test pattern generation by fault
simulation is stopped and ATPG by sensitization–propagation –
justification approach is taken?

Answer: Under two cases, test pattern generation by fault
simulation is stopped.
A high percentage of faults are detected by fault simulation; it
implies that most of the easy to test faults are covered and the
ones remaining are difficult to test faults.
For a significant number of random patterns at a stretch, new
faults covered are nominal; it implies that in the circuit a
substantial percentage of faults are difficult to test and one should
resort to sensitization–propagation –justification approach.

Thank You

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-VIII

Lecture-IV

Testability Measures (SCOAP)

Testability Measures (SCOAP): Introduction

A quick heuristic based algorithm that can rank the faults by their difficulty in
testing.
CC0 (OG4)=15/16, CC1(OG4)=1/16
So, s-a-0 fault at OG4 is more difficult to test than s-a-1 fault at OG4.

Testability Measures (SCOAP): Introduction

This procedure determined which fault is more difficult to test, but
at the same time also found a pattern to test it.

s-a-0 fault at OG4, test pattern is I1=1,I2=1,I3=1,I4=1,I5=1,I6=1;
I1=1,I2=1,I3=1,I4=1 makes OG4 to 1 --Sensitization
OG3 is 1—Propagation
I5=1,IG=1—Justification
The scheme rank faults on basis of their difficulty in testing is as
complex as ATPG by Sensitization- Propagation-Justification.

Approximate but computationally simple Algorithm and can order
all the faults (by their difficulty in testing) in two iterations of the
circuit.
This algorithm is called SCOAP--Sandia Controllability/Observability
Analysis Program.

SCOAP Procedure: Introduction

In SCOAP, each net l say, has three values associated,
 CC0(l): controllability of 0 at l
 CC1(l): controllability of 1 at l
 CO(l): observability of l at a primary output

Each net l has associated with it positive integers n1,n2,n3 and
represented as is (n1,n2)n3, where CC0(l)= n1, CC1(l)
=n2,CO(l)=n3.

SCOAP Procedure

1. First, all the primary inputs are directly assigned CC0=1
and CC1 =1; it is assumed that as the primary inputs are
directly controllable, to make their signal values 0 or 1
require “effort proportional to 1”.

2. Following that, CC0 and CC1 are determined level wise for
the circuit using SCOAP rules for logic gates

3. In a similar way, combinational observability (CO) of all
primary outputs is assumed 0; as primary outputs are
directly observable, to see their signal values require an
“effort proportional to 0”.

4. Following that, CO values are determined level wise for
the circuit (now moving from primary outputs to primary
inputs) using SCOAP rules.

SCOAP Analysis

Now, given a net l , difficulty to test a s-a-0 fault in it is
proportional to CC1(l) (as we need to apply 1 in l) plus CO(l)
(as we need to observe the value of l at a primary output).

In a similar way, difficulty to test a s-a-1 fault at l is
proportional to CC0(l) plus CO(l).

SCOAP Rules to Compute CC0 and CC1

AND gate with two inputs as a, b and output as c.

To compute CCO(c)/CC1(c) we need to know CC0(a),CC1(a) and CC0(b),CC1(b).

To control the value of c to 0 (CCO(c)), either a is to be 0 or b is to be 0. So,
CCO(c) is minimum of difficulty to control a to 0 or b to 0. Also we add 1 to
CCO(c) as we progress by a level when we go from input to output of a gate. So,
CCO(c) = min[CCO(a),CC0(b)] +1.

 To control the value of c to 1 (CC1(c)), both a and b are to be 1. So, CC1(c) is
sum of difficulty to control a and b to 1. Also we add 1 to CC1(c) as we progress
by a level when we go from input to output of a gate. So, CC1(c) =
CC1(a)+CC1(b) +1.

SCOAP Rules to Compute CC0 and CC1

CCO(c)/CC1(c) for NAND gate (two inputs as a, b and output as c)
can be computed as follows

To control the value of c to 0 (CC0(c)), both a and b are to be 1. So,
CCO(c) is sum of difficulty to control a and b to 1, plus 1 for
change in level. So, CC0(c) = CC1(a)+CC1(b) +1.

To control the value of c to 1 (CC1(c)), either a is to be 0 or b is to
be 0. So, CC1(c) = min[CCO(a),CC0(b)] +1.

SCOAP Rules to Compute CC0 and CC1

CCO(c)/CC1(c) for OR gate (two inputs as a, b and output as c) can
be computed as follows

To control the value of c to 0 (CC0(c)), both a and b are to be 0. So,
CC0(c) = CC0(a)+CC0(b) +1.

To control the value of c to 1 (CC1(c)), either a is to be 1 or b is to
be 1. So, CC1(c) = min[CC1(a),CC1(b)] +1.

SCOAP Rules to Compute CC0 and CC1

CCO(c)/CC1(c) for NOR gate (two inputs as a, b and output as c)
can be computed as follows

To control the value of c to 0 (CCO(c)), either a is to be 1 or b is to
be 1. So, CC0(c) = min[CC1(a),CC1(b)] +1.

To control the value of c to 1 (CC1(c)), both a and b are to be 0. So,
CC1(c) = CC0(a)+CC0(b) +1.

SCOAP Rules to Compute CC0 and CC1

CCO(c)/CC1(c) for XOR gate (two inputs as a, b and output as c)
can be computed as follows

To control the value of c to 0 (CC0(c)), either both a and b are to
be 0 or both a and b are to be 1. So, CC0(c) = min[(CC0(a)+CC0(b)),
(CC1(a)+CC1(b))] +1.

To control the value of c to 1 (CC1(c)), either a is 1 and b is 0 or a is
0 and b is 1. So, CC1(c) = min[(CC0(a)+CC1(b)), (CC1(a)+CC0(b))]
+1.

SCOAP Rules to Compute CC0 and CC1

CCO(c)/CC1(c) for NOT gate (input as a and output as c) can be
computed as follows
To control the value of c to 0 (CC0(c)), a is to be 1. So, CC0(c) =
CC1(a)+1.
To control the value of c to 1 (CC1(c)), a is to be 0. So, CC1(c) =
CC0(a)+1.

SCOAP Rules to Compute CC0 and CC1

CC0(c1), CC0(c2)…. CC0(cn)/ CC1(c1), CC1(c2)…. ,CC1(cn) for a
fanout net with stem as a and c1,c2,…,cn as branches can be
computed as follows
As all the values of the branches can be controlled by the value at
the stem CC0(c1)=CC0(c2)…. =CC0(cn)=CC0(a).
Similarly, CC1(c1)=CC1(c2)…. =CC1(cn)=CC1(a). As there is no
change in level, 1 is not added.

SCOAP Rules to CO

AND gate with two inputs as a, b and output as c. To compute
CO(a) and CO(b) we need to know CO(c).

To observe the value of a at a primary output (CO(a)), b is to be 1.
So, CO(a) is the difficulty to control b to 1 plus the observability of
c. Also we add 1 to CO(a) as we progress by a level when we go
from output to input of a gate. So, CO(a) = CC1(b) + CO(c)+1.

 To observe the value of b at a primary output (CO(b)), a is to be 1.
Similar to computation of CO(a), CO(b) = CC1(a) + CO(c)+1.

SCOAP Rules to CO

CO(a), CO(b) for NAND gate (two inputs as a, b and output as c)
can be computed as follows

To observe the value of a at a primary output (CO(a)), b is to be 1.
So, CO(a) = CC1(b) + CO(c)+1.

 To observe the value of b at a primary output (CO(b)), a is to be 1.
Similar to computation of CO(a), CO(b) = CC1(a) + CO(c)+1.

SCOAP Rules to CO

CO(a), CO(b) for OR gate (two inputs as a, b and output as c) can
be computed as follows

To observe the value of a at a primary output (CO(a)), b is to be 0.
So, CO(a) = CC0(b) + CO(c)+1.

 To observe the value of b at a primary output (CO(b)), a is to be 0.
Similar to computation of CO(a), CO(b) = CC0(a) + CO(c)+1.

SCOAP Rules to CO

CO(a), CO(b) for NOR gate (two inputs as a, b and output as c) is
same as that of OR gate and can be computed as follows

CO(a) = CC0(b) + CO(c)+1.

CO(b) = CC0(a) + CO(c)+1.

SCOAP Rules to CO

CO(a) and CO(b) for XOR gate (two inputs as a, b and output as c)
can be computed as follows

To observe the value of a at a primary output (CO(a)), b is to be 0
or 1; if b is 1 then c=a and if b is 0 then c=NOT(a). So, CO(a) is the
minimum of (difficulty to control b to 1 or difficulty to control b to
0) plus the observability of c. Also we add 1 to CO(a) as we
progress by a level when we go from output to input of a gate. So,
CO(a) = min(CC0(b),CC1(b)) + CO(c)+1.

Similar to computation of CO(a), CO(b) = min(CC0(a),CC1(a)) +
CO(c)+1.

SCOAP Rules to CO

CO(a) for NOT gate (input as a and output as c) can be computed
as follows

There is only one input in a NOT gate and it is always observable
at the output (i.e., c=NOT(a)); so C0(a) = CO(c)+1.

SCOAP Rules to CO

CO(a) for a fanout net with stem as a and c1,c2,…,cn as branches
can be computed as follows

As all the values of the branches can be observed at the stem,
C0(a) = min[CO(c1), CO(c2)…,CO(cn)]. As there is no change in
level, 1 is not added.

Combinational Controllability Calculation for a Simple Circuit

Combinational Controllability Calculation for a Simple Circuit

Combinational Controllability Calculation for a Simple Circuit

Combinational Observability Calculation for a Simple Circuit

Combinational Observability Calculation for a Simple Circuit

Combinational Observability Calculation for a Simple Circuit

Combinational Observability Calculation for a Simple Circuit

Questions and Answers

Question: SCOAP is a fast heuristic to compute difficulty in controlling and observing
signals in a net in a circuit. Why is the method approximate/not accurate?

Answer: In SCOAP all the branches of a fanout net are considered independent. In the
circuit given below, primary output (G2’s output) can never have the value of 1 because of
dependency of inputs of G2, which in turn arises because of the fanout at the input.
However, CC1(G2) is 6 and not infinity.
Similar type of inadequacies arise for observabilities.

Thank You

