NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture I: Binary Decision Diagram: Introduction and construction

- Model checking algorithm
 - Polynomial in the size of state machine and the length of the formula
- Problem with model checking
 - State space explosion problem

Binary Decision Diagrams (BDD)

Based on recursive Shannon expansion

$f = x f_x + x' f_{x'}$

- Compact data structure for Boolean logic
 can represents sets of objects (states) encoded as
 - **Boolean functions**
- Canonical representation reduced ordered BDDs (ROBDD) are canonical

Shannon Expansion

$$f = x f_x + x' f_{x'}$$

$$f = ac + bc$$

$$f_{a'} = f(a=0) = bc$$

$$f_a = f(a=1) = c + bc$$

$$f = a f_a + a' f_{a'}$$

$$= a(c+bc) + a'(bc)$$

Binary Decision Tree (BDT)

• Binary Decision Trees are trees whose nonterminal nodes are labeled with Boolean variables x, y, z, and whose terminal nodes are labeled with either 0 or 1.

Binary Decision Tree (BDT)

- Each non-terminal node has two edges, one dashed line and one solid line.
- Dashed line represents 0 and solid line represents 1.

Binary Decision Tree

f = ac + bc

Truth table

Truth Table \rightarrow BDT

Binary Decision Tree

Truth Table \rightarrow BDT

Binary Decision Diagram

- A Binary Decision Diagram (BDD) is a finite DAG with an unique initial node, where
 - all terminal nodes are labeled with 0 or 1
 - all non-terminal nodes are labeled with a Boolean Variable.
 - Each non-terminal node has exactly two edges from that node to others; one labeled 0 and one labeled 1; represent them as a dashed line and a solid line respectively

Binary Decision Diagram

B₀ representing the Boolean constant 0
B₁ representing the Boolean constant 1
B_x representing the Boolean variable x

Shannon Expansion \rightarrow BDDf = ac + bc $f = x f_x + x' f_{x'}$

•
$$f_{a'} = f(a=0) = bc = g$$

•
$$f_a = f(a=1) = c + bc = h$$

Shannon Expansion \rightarrow BDD f = ac + bc $f = x f_x + x' f_{x'}$

- $f_{a'} = f(a=0) = bc = g$
- $f_a = f(a=1) = c + bc = h$
- $g_{b'} = (bc)_{|b=0} = 0$
- $g_b = (bc)_{|b=1} = c$
- $h_{b'} = (c+bc)_{|b=0} = c$
- $h_b = (c+bc)_{/b=1} = c$

Binary Decision Tree and Diagram f = ac + bc

From Truth Table

From Shannon Expression

Eliminate *duplicate terminals*

If a BDD contains more than one terminal 0-node, then we redirect all edges which point to such a 0-node to just one of them. Similarly, we proceed for nodes labeled with 1.

Eliminate *duplicate terminals*

If a BDD contains more than one terminal 0-node, then we redirect all edges which point to such a 0-node to just one of them.

Similarly, we proceed for nodes labeled with 1.

Eliminate *redundant* nodes

(with both edges pointing to same node)

Merge duplicate nodes

• Nodes must be unique

 $f_1 = a'g(b) + ah(c) = f_2$

 $f = f_1 = f_2$

BDD Construction

Reduced BDD

BDD Reduction

f = ac + bc

С

1. Merge terminal nodes

BDD Construction – cont'd

2. Merge duplicate nodes 3. Remove redundant nodes

Reduced BDD

BDD Construction – cont'd

BDD constructed by Shannon Expression

f = (a+b)c

Reduced BDD

3. Remove redundant nodes

Reduced BDDs

A BDD is said to be reduced if none of the reduction rules R1-R3 can be applied (i.e., no more reductions are possible)

BDD B_f for Boolean function f

BDD B_f for Boolean function f

BDD B'_{f} for Boolean function f'

BDDs for f+g and f.g

Questions

- 1. Do we get any advantage in using BDT.
- 2. While constructing the BDD, is it required to start from BDT.
- 3. The definition of BDD does not restrict the occurrence of a variable in any number of times in a path. Show that it may lead to inconsistency with an example.
- 4. Is reduced BDD of any function is unique.

Shannon Expansion \rightarrow BDD f = ac + bc $f = x f_x + x' f_{x'}$

- $f_{a'} = f(a=0) = bc = g$
- $f_a = f(a=1) = c + bc = h$
- $g_{b'} = (bc)_{|b=0} = 0$
- $g_b = (bc)_{|b=1} = c$
- $h_{b'} = (c+bc)_{|b=0} = c$
- $h_b = (c+bc)_{/b=1} = c$

Shannon Expansion \rightarrow BDD f = ac + bc $f = x f_x + x' f_{x'}$

- $f_{b'} = f(b=0) = ac = g$
- $f_b = f(b=1) = ac + c = h$
- $g_{c'} = (ac)_{|c=0} = 0$
- $g_c = (ac)_{|c=1} = a$
- $h_{c'} = (ac+c)_{|c=0} = 0$
- $h_c = (ac+c)_{/c=1} = 1$

NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture II: : Ordered Binary Decision Diagram

Binary Decision Diagram

- Construction of BDD
- Reduced BDD

Binary Decision Diagram

- Occurrence of variables
- Ordering of variables

Binary Decision Diagram

- A Binary Decision Diagram (BDD) is a finite DAG with an unique initial node, where
 - all terminal nodes are labeled with 0 or 1
 - all non-terminal nodes are labeled with a Boolean Variable.
 - Each non-terminal node has exactly two edges from that node to others; one labeled 0 and one labeled 1; represent them as a dashed line and a solid line respectively

Ordering of Variables

Ordering of Variables

- Evaluation Path
 - Consistent
 - Inconsistent

Ordered BDDs (OBDDs)

- Let [x₁, x₂, ..., x_n] be an ordered list of variables without duplication and let B be a BDD all of whose variables occur somewhere in the list.
- We say that B has the ordering [x₁, x₂, ..., x_n] if all variable labels of B occur in that list and, for every occurrence of x_i followed by x_j along any path in B, we have i < j.

OBDDs

BDD with variable ordering $[x_1, x_2, x_3, x_4, x_5]$

BDD with variable ordering $[x_5, x_4, x_3, x_2, x_1]$

Reduced Ordered BDDs (ROBDDs)

Not a Ordered BDD. Not a Reduced BDD.

Impact of the chosen variable ordering

 In general the chosen variable ordering makes a significant difference to the size of the OBDD representing a given function.

Impact of the chosen variable ordering

• Consider the Boolean function

 $-f = (x_1 + x_2).(x_3 + x_4).(x_5 + x_6)....(x_{2n-1} + x_{2n})$

Impact of the chosen variable ordering

Consider the Boolean function

 $-f = (x_1 + x_2).(x_3 + x_4).(x_5 + x_6)....(x_{2n-1} + x_{2n})$

- If we chose the variable ordering [x₁, x₂, x₃, x₄,], then we can represent this function as an OBDD with 2n+2 nodes.
- If we chose the variable ordering [x₁, x₃, x₅, ..., x_{2n-1}, x₂, x₄, x₆, ..., x_{2n}], the resulting OBDD requires 2ⁿ⁺¹ nodes.

OBDDs

$$f = (x_1 + x_2).(x_3 + x_4).(x_5 + x_6)$$

OBDDs

 $f = (x_1 + x_2).(x_3 + x_4).(x_5 + x_6)$

Reduced ODBBs (ROBDDs)

A BDD is said to be reduced if none of the reduction rules R1-R3 can be applied (i.e., no more reductions are possible)

A OBDD is said to be reduced OBDD (ROBDD) if none of the reduction rules R1-R3 can be applied (i.e., no more reductions are possible)

- The algorithm reduce provides the ROBDD of a given OBDD.
- If the ordering of B is [x₁, x₂, ..., x_l], then B has at most l+1 layers.
- The algorithm reduce traverses B layer by layer in a bottom-up fashion.

- We assign an integer label *id(n)* to each node of B.
- Id(n) equals to id(m) iff, the subOBDDs with root nodes n and m denote the same Boolean function.

- Given a non-terminal node n in a BDD, we define *lo(n)* to be the node pointed to via the dashed line from n.
- Dually, *hi(n)* is the node pointed to via the solid line from *n*.

- Labeling of terminal nodes:
 - Assign the first label (say #0) to the first 0-node it encounters.
 - All other terminal 0-nodes denote the same function as the first 0-node and therefore get the same label.
 - Similarly, the 1-nodes all get the next label (say #1)
- Reduction Rule (eliminate duplicate terminals)

- Labeling of non-terminal nodes (Given an x_i node n and already assigned integer labels to all nodes of a layer > i):
 - If the label id(lo(n)) is same as id(hi(n)), then we set id(n) to be that label
 - (Reduction Rule:, Redundant nodes).

- Labeling of non-terminal nodes (Given an x_i node n and already assigned integer labels to all nodes of a layer > i):
 - If there is another node m such that n and m have the same variables x_i, and id(lo(n)) = id(lo(m)) and id(hi(n)) = id(hi(m)), then we set id(n) to be id(m).
 - (Reduction Rule, duplicate nodes)

- Labeling of non-terminal nodes (Given an x_i node n and already assigned integer labels to all nodes of a layer > i):
 - Otherwise, we set id(n) to the next unused integer label.

Reduced Ordered BDD (ROBDD)

Reduced Ordered BDDs (ROBDDs)

- The reduced OBDD, representing a given function *f*, is *unique*.
- That is to say, let B₁ and B₂ be two reduced OBDDs with *compatible variable ordering*. If B₁ and B₂ represent the same Boolean function, then they have identical structure.
- The order in which we applied the reductions does not matter.
- OBDDs have a canonical form, their unique ROBDDs.

Reduced Ordered BDDs (ROBDDs)

- Let B_1 and B_2 are the BDDs of Boolean function f_1 and f_2 .
- The orderings of B_1 and B_2 are said to be *compatible* if there are no variables x and y such that x comes before y in the ordering of B_1 and y comes before x in the ordering of B_2 .

Application of BDDs

- Test for Absence of redundant variables
 - If the value of a Boolean function $f(x_1, x_2, ..., x_n)$ does not depend on the value x_i , then any ROBDD which represents f does not contain any x_i -node.

- Test for semantic equivalence
 - B_f and B_g are the ROBDD representation of two functions f and g respectively with compatible variable ordering.
 - f and g denote the same Boolean function if, and only if, the ROBDDs have identical structure.

- Test for Validity
 - Consider the ROBDD of a Boolean function
 f(x₁,x₂,...x_n).
 - f is valid if, and only if, its ROBDD is B_1 .

- Test for Implication ($f \rightarrow g$)
 - We can test whether *f* implies *g* by computing the ROBDD of $(B_f \land \neg B_g)$
 - f implies g if, and only if, the resultant ROBDD of ($B_f \land \neg B_g$) is B_0

• Test for Satisfiability

- A Boolean function f(x₁,x₂,...x_n) is satisfiable if it computes 1 for at least one assignment of 0 and 1 values to its variables.
- The function f is satisfiable if, and only if, its ROBDD is not B_0 .

Algorithm *reduce* for BDDs

 Merge all nodes which have same label and redirect the incoming and outgoing edges accordingly.

• Consider the following function

-f(x,y,z) = xz + xz' + x'y

Is it independent of any variables.

• Consider the following function

-f(x,y,z) = xz + xz' + x'

Is it independent of any variables.

Test for validity

NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture III: : Operation on Ordered Binary Decision Diagram

Algorithm apply

To perform the binary operation on two ROBDD's B_f and B_g , corresponding to the functions f and g respectively, we use the algorithm $apply(op, B_f, B_g)$. The two ROBDDs B_f and B_g have compatible variable ordering.

Algorithm apply

Application of *apply*(**op**, B_f , B_g) will give a OBDD. The ordering of the resultant BDD is same as B_f or B_g but it may not be the reduced one. After constructing the resultant BDD, we may apply the reduce algorithm to get the ROBDD.

The function *apply* is based on the Shannon's expansion for *f* and *g*: $f = \overline{x} \cdot f[0/x] + x \cdot f[1/x]$ $g = \overline{x} \cdot g[0/x] + x \cdot g[1/x]$

From the Shannon's expansion of *f* and *g* :

 $f \ op \ g = \overline{x}.(f[0/x] \ op \ g[0/x]) + x.(f[1/x] \ op \ g[1/x])$

This is used as a control structure of apply which proceeds from the roots of B_f and B_g downwards to construct nodes of the OBDD B_f op B_g .

Let r_f be the root node of B_f and r_g be the root node of B_g .

Algorithm apply(op, B_f, B_g)

1. If both r_f and r_g are terminal nodes with labels l_f and l_g , respectively compute the value l_f op l_g and the resulting OBDD is B_0 if the value is 0 and B_1 otherwise.

In the remaining cases, at least one of the root nodes is a non-terminal.

If both nodes are x_i -nodes (i.e., nonterminal of same variable), create an x_i -node n (called r_f, r_g) with a dashed line to **apply** (op, $lo(r_f)$, $lo(r_g)$) and a solid line to **apply**(op, $hi(r_f)$, $hi(r_g)$).

If r_f is an x_i -node, but r_g is a terminal node or an x_j -node with j > i, create an x_i -node n (called r_f , r_g) with a dashed line to **apply**(op, $lo(r_f)$, r_g) and a solid line to **apply**(op, $hi(r_f)$, r_g).

If r_g is an x_i -node, but r_f is a terminal node or an x_j -node with j > i, create an x_i -node n (called r_f , r_g) with a dashed line to **apply**(op, $lo(r_g)$, r_f) and a solid line to **apply**(op, $hi(r_g)$, r_f).

Variable ordering: [x₁, x₂, x₃, x₄]

Variable ordering: [x₁, x₂, x₃, x₄]

If r_f is an x_i -node, but r_g is a terminal node or an x_j -node with j > i, create an x_i -node n (called r_f , r_g) with a dashed line to **apply**(op, $lo(r_f)$, r_g) and a solid line to **apply**(op, $hi(r_f)$, r_g).

Variable ordering: [x₁, x₂, x₃, x₄]

Algorithm restrict

The Boolean formula obtained by replacing all occurrences of x in f by 0 is denoted by f[0/x].

The formula f[1/x] is defined similarly.

The expressions f[0/x] and f[1/x] are called restriction of f.

 $restrict(0, x, B_f)$

For each node n corresponding to x, remove n from OBDD and redirect incoming edges to lo(n)

 $restrict(1, x, B_f)$

For each node n corresponding to x, remove n from OBDD and redirect incoming edges to hi(n)

Sometimes we need to express relaxation of the constraint on a subset of variables.

If we relax the constraint on some variable x of a Boolean function f, then f could be made true by putting x to 0 or to 1.

We write $(\exists x.f)$ for the Boolean function f with the constraint on x relaxed and it can be expressed as:

 $\exists x.f = f[0/x] + f[1/x]$

i.e., there exists *x* on which the constraint is relaxed.

Algorithm exists

The *exists* algorithm can be implemented in terms of the algorithms *apply* and *restrict* as

 $\exists x.f = apply(+, restrict(0, x, B_f), restrict(1, x, B_f))$

Algorithm exists

The exists operation can be easily generalized to a sequence of exists operations

 $\exists x 1. \exists x 2. \dots \exists x n. f$

• Consider the following function

f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2

Construct the ROBDD for f: B_f restrict(0, x4, B_f) and restrict(1, x4, B_f) exists(x4, B_f)

f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2

f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2

f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2

f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2

Exists x4 f = apply(+, restrict(0, x4, Bf), restrict(1,x4,Bf))

- Show that the formula ∃x.f depends on all those variables that f depends upon, except x.
- If f computes to 1 with respect to a valuation v, then ∃x. f computes 1 with respect to the same valuation.

NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture IV: Ordered Binary Decision Diagram for State Transition Systems

State Transition System

State Transition System

the states $s_{0,} s_{1,} s_{2}$ and s_{3} can be distinguished using two state variables, say x_{1} and x_{2} .

State Transition System

the states $s_{0,} s_{1,} s_{2}$ and s_{3} can be distinguished using two state variables, say x_{1} and x_{2} .

State Transition System: set of states

• Set of states

State Transition System: set of states

$$\{s_{0}, s_{1}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}}
\{s_{0}, s_{2}\} = \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}}
\{s_{0}, s_{3}\} = \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}}
\{s_{0}, s_{3}\} = \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}}
\{s_{1}, s_{2}\} = \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}}
\{s_{1}, s_{3}\} = \overline{x_{1}x_{2}} + x_{1}\overline{x_{3}}
\{s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{1}, s_{2}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}}
\{s_{0}, s_{1}, s_{3}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{1}, s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}} + x_{1}\overline{x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{1}, s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{1}, s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{1}, s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{1}, s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{1}, s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + x_{1}\overline{x_{2}} + x_{1}\overline{x_{3}}
\{s_{0}, s_{1}, s_{2}, s_{3}\} = \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + \overline{x_{1}x_{2}} + x_{1}\overline{x_{3}}$$

State Transition Diagram: set of states

- Set of states is represented by Boolean expression.
- OBDDs are used to represent Boolean expression.

State Transition Systems: set of states

ROBDD for {s1, s2} x1'x2 + x1x2'

ROBDD for {s0, s2, s3} x1'x2' + x1x2' + x1x2

State Transition Systems: Set of states

• Set operation:

- Union, Intersection, etc

• S1 and S2 are two sets.

State Transition Systems: Set of states

- Set operation:
 - Union, Intersection, etc
- S1 and S2 are two sets.
- B_{S1} and B_{S2} are the OBDD representation of sets S1 and S2 respectively.
- Union of S1 and S2 is *apply*(+, B_{S1}, B_{S2})
- Intersection of S1 and S2 is *apply*(.,B_{S1}, B_{S2})

State Transition system: transition

- Transition of a system can be viewed as an ordered pair (s_p, s_n)
 - s_p: present state
 - s_n: next state

State Transition system: transition

- Transition of a system can be viewed as an ordered pair (s_p, s_n)
 - s_p: present state
 - s_n: next state
 - If n variables are used to represent the current state $x_1, x_2, x_3, x_4, \dots, x_n$
 - We Need another n variables to represent the next state

 $x'_{1}, x'_{2}, x'_{3}, x'_{4}, \dots, x'_{n}$

State Transition System: Transitions

the states $s_{0,} s_{1,} s_{2}$ and s_{3} can be distinguished using two state variables, say x_{1} and x_{2} .

State Transition System: Transitions

Next state variables: x1' and x2'

State Transition system: transition

State Transition system

- State transition system can be represented by Boolean expression.
- OBDD is used to represent Boolean expression.

Verification: Model Checking

- Model of the system: Kripke structure
 - Set of states
 - Transitions
 - Labeling function
- Specification/Property: CTL
- Verification Method: Model Checking method

Model Checking

- Graph traversal algorithm
- State space explosion problem
- OBDD can be used to represent kripke structure
 - State transition system
 - Labeling function

Model Checking

CTL Model Checking

Temporal Operator:

AF p

- If any state s is labeled with p, label it with AF p

- Repeat: label any state with AF p if all successor states are labeled with AF p until there is no change.

- Requirements:
 - Find the predecessor state(s) of a state or a set of states

- To find the predecessor states, we define two functions:
 - Pre \exists (X): takes a subset X of states S and return the set of states which can make a transition into X.
 - Pre_∀(X): takes a subset X of states S and return the set of states which can make a transition **only** into X.

 $\Pr e_{\exists}(X) = \{ s \in S \mid \exists s', (s \to s' \text{ and } s' \in X) \}$

 $\Pr e_{\forall}(X) = \{ s \in S \mid \forall s', (s \to s' \text{ and } s' \in X) \}$

 Important relationship between Pre ∃(X) and Pre ∀(X):

$$\operatorname{Pre}_{\forall}(X) = S - \operatorname{Pre}_{\exists}(S - X)$$

S: Set of all states X: Subset of S

Transition System: Represented by ROBDD Subset X: Represented by ROBDD

Question

- Draw the state transition diagram of MOD-6 counter.
 - Give a binary encoding to the states
 - Give the Boolean expression for the transition system
 - Indicate the labeling function

Question

• Consider the microwave oven controller and give the state encoding. What is the Boolean expression for the state transition diagram.

NPTEL Phase-II Video course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture V: Symbolic Model Checking

- Represent the transition systems with ROBDD
- Set of states can be represented by ROBDD

- Basis of Model Checking
 - Graph Traversal algorithms
 - Need to find the predecessor states of a given state or a set of states

 Important relationship between Pre ∃(X) and Pre ∀(X):

$$\operatorname{Pre}_{\forall}(X) = S - \operatorname{Pre}_{\exists}(S - X)$$

S: Set of all states X: Subset of S

Procedure for $Pre_{\exists}(X)$

Given,

- $-B_X$: OBDD for set of states X.
- $-B_{\rightarrow}$: OBDD for transition relations.

Procedure,

- Rename the variables in B_x to their primed versions; call the resulting OBDD B_x'.
- Compute the OBDD for *exists*(x', *apply*(\bullet , B_{\rightarrow}, B_X')) using the **apply** and **exists** algorithms.

- Rename the variables in B_x to their primed versions; call the resulting OBDD B_x' .

- Compute the OBDD for exists(x', apply(•, B_{\rightarrow} , B_{χ}')) using the **apply** and **exists** algorithms.

CTL Model Checking

Function SAT_{EX}(p)

/* determines the set of states satisfying EXp */
local var X,Y

begin

$$\begin{split} X &:= SAT(p) \\ Y &:= \{s_0 \in S \mid s_0 \rightarrow s_1 \text{ for some } s_1 \in X\} \\ \text{return } Y \end{split}$$

end

 $EX(B_{\phi})$:

 B_{φ} :OBDD for set of states where φ is true.

// Analogous to $X := SAT (\phi);$

 B_{\rightarrow} :OBDD for transition relation.

Return Pre_{\exists} (B_{φ}). // Analogous to $Y := \{s \in A\}$

 $S \mid exists \ s', \ (s \rightarrow s' \ and \ s' \in X) \};$

Evaluation of $Pre_{\exists}(X)$

CTL Model Checking

```
Function SAT_{AF}(p)
/* determines the set of states satisfying AFp */
local var X, Y
begin
   X := S, Y := SAT(p),
   repeat until X = Y
   begin
         X := Y
         Y := Y \cup \{s \mid \text{for all } s' \text{ with } s \rightarrow s' \text{ we have } s' \in Y\}
   end
   return Y
end
```

CTL Model Checking

 $AF(B_{\phi})$:

 B_{φ} :OBDD for set of states where φ is true.// Analogous

to " $Y := SAT(\phi)$ ";

 B_{\rightarrow} :OBDD for transition relation.

B_X : OBDD for all states of the system. // *Analogous to* "*X*:=*S*";

repeat until $B_X = B_{\phi} // Analogous to$ "Repeat until X = Y"

 $B_X := B_{\phi} // Analogous to "X := Y;"$

 B_{φ} :=apply(+, B_{φ} , Pre_{\forall} (B_{φ})) // Analogous to "Y:= Y \cup {

 $s \in S \mid for all s', (s \rightarrow s' implies s' \in Y) \}$ "

end

return B_{ϕ}

$$\operatorname{Pre}_{\forall}(X) = S - \operatorname{Pre}_{\exists}(S - X)$$

CTL Model Checking

```
Function SAT<sub>EU</sub>(p,q)
```

```
/* determines the set of states satisfying E(p U q) */
local var W,X,Y
begin
W := SAT(p), X := S, Y := SAT(q)
repeat until X = Y
begin
X := Y
Y := Y \cup (W \cap {s | exists s' such that s \rightarrow s' and s' \in Y}
end
return Y
end
```

CTL Model Checking

 $EU(B_{\psi 1}, B_{\psi 2})$:

B_X: OBDD for all states of the system. // Analogous to "X := S

B_{ψ 1}:OBDD for set of states where ψ_1 is true. // Analogous to "W := SAT (ψ_1);"

 $B_{\psi 2}{:}OBDD$ for set of states where $\psi_2\,is$ true. // Analogous

to "*Y*:=*SAT*(ψ_2); "

 B_{\rightarrow} :OBDD for transition relation.

repeat until $B_x = B_{\psi 2}$

 $B_x := B_{\psi 2} // Analogous to "X := Y;"$

 $B_{\psi 2} := apply(+, B_{\psi 2}, apply(\bullet, B_{\psi 1}, Pre_{\exists}(B_{\psi 2}))) //$

Analogous to " $Y := Y \cup (W \cap \{ s \in S \mid exists s', (s \rightarrow s') \}$

and $s' \in Y$)}); "

end

return $B_{\psi 2}$

Tools

- CUDD
 - CU Decision Diagram Package
 - University of Colorado at Boulder
- nuSMV
 - Extension of SMV, the first model checker based on BDD
- SPIN

– LTL model checker developed at BELL labs

System Design Verification

• Model of the system

Kripke structure (kind of FSM)

- Specification
 - Specification language (like CTL)
- Verification Method
 - Model Checking

System Design Verification

- Model Checking Algorithms
 - Polynomial algorithm
 - Method can be easily automated
 - It provides counter example
- Problem with model checking
 - State space explosion problem
- Symbolic Model Checking
 - Use of OBDDs to content the state space explosion problem

Question

- We have discussed system model for
 - Elevator controller
 - Microwave oven controller
- Specification and verification of
 - Traffic light controller
 - Controller for ATM
- Use of tools
 - nuSMV and SPIN

Design Cycle: Digital Systems

- Specification
- Design
- Verification
- Implementation
- Testing
- Installation/marketing
- Maintenance

The Course: Digital VLSI Design

- This course is about Digital VLSI Design
- This course consists of three parts
 - Design
 - Verification
 - Test