NPTEL Phase-IIVideo course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture I: Binary Decision Diagram:Introduction and construction

- Model checking algorithm
	- \equiv Dolynomial in the cize of \equiv Polynomial in the size of state machine and the length of the formula
- Problem with model checking
	- – $-$ State space explosion problem

Binary Decision Diagrams (BDD)

• Based on recursive Shannon expansion

$f = x f_{\mathsf{x}}$ $f_{x} + x' f_{x'}$

• Compact data structure for Boolean logic

can represents sets of objects (states) encoded as Boolean functions

• Canonical representationreduced ordered BDDs (ROBDD) are canonical

Shannon Expansion

$$
f = x f_x + x' f_{x'}
$$

$$
f = ac + bc
$$

\n
$$
f_{a'} = f(a=0) = bc
$$

\n
$$
f_a = f(a=1) = c + bc
$$

\n
$$
f = af_a + a' f_{a'}
$$

$$
f = af_a + a' f_{a'}
$$

= a(c+bc) + a'(bc)

Binary Decision Tree (BDT)

• Binary Decision Trees are trees whose nonterminal nodes are labeled with Boolean variables x, y, z, …. and whose terminal nodes are labeled with either 0 or 1.

Binary Decision Tree (BDT)

- Each non-terminal node has two edges, one dashed line and one solid line.
- Dashed line represents 0 and solid line represents 1.

Binary Decision Tree

 $f = ac + bc$

Truth table

Truth Table \rightarrow BDT

Binary Decision Tree

Truth Table \rightarrow BDT

Binary Decision Diagram

- A Binary Decision Diagram (BDD) is a finite DAG with an unique initial node, where
	- –all terminal nodes are labeled with 0 or 1
	- – all non -terminal nodes are labeled with a Boolean Variable.
	- – Each non-terminal node has exactly two edges from that node to others; one labeled 0 and one labeled 1; represent them as a dashed line and a solid line respectively

Binary Decision Diagram

 B_{x}

 B_{0} representing the Boolean constant $\,$ 0

 B_1 representing the Boolean constant 1

 B_{x} representing the Boolean variable $\,$ x

Shannon Expansion \rightarrow BDD
 $f = \alpha e + bc$ $f = ac + bc$ $f = x f_x$ $f_{x} + x' f_{x'}$

•
$$
f_{a'} = f(a=0) = bc = g
$$

•
$$
f_a = f(a=1) = c + bc = h
$$

Shannon Expansion \rightarrow BDD
 $f = \alpha e + bc$ $f = ac + bc$ $f = x f_x$ $f_{x} + x' f_{x'}$

- $f_{a'} = f(a=0) = bc = g$
- $f_a = f(a=1) = c + bc = h$
- \bullet $g_{b'} = (bc)_{|b=0} = 0$
- \bullet $g_{\scriptscriptstyle b}$ $_{b}$ = (bc)_{(b=1} = c
- $h_{b'} = (c+bc)_{|b=0} = c$
- \bullet h_b $b = (c+bc)_{|b=1} = c$

Binary Decision Tree and Diagram $f = ac + bc$

From Truth Table

From Shannon Expression

Eliminate duplicate terminals

If a BDD contains more than one terminal 0-node, then we redirect all edges which point to such a 0-node to just one of them. Similarly, we proceed for nodes labeled with 1.

Eliminate duplicate terminals

 If a BDD contains more than one terminal 0-node, then we redirect all edges which point to such a 0-node to just one of them.

Similarly, we proceed for nodes labeled with 1.

f

Eliminate redundant nodes

(with both edges pointing to same node)

Merge duplicate nodes

•Nodes must be unique

 $f_1 = a' g(b) + a h(c) = f_2$ f = f₁ = f₂

BDD Construction

• Reduced BDD

BDD Reduction $f = ac + bc$

1. Merge terminal nodes

BDD Construction – cont'd

2. Merge duplicate nodes 3. Remove redundant nodes

Reduced BDD

BDD Construction – cont'd

BDD constructed by Shannon Expression

 $f = (a+b)c$

Reduced BDD

3. Remove redundant nodes

Reduced BDDs

A BDD is said to be reduced if none of the reduction rules R1-R3 can be applied (i.e., no more reductions are possible)

BDD Bf for Boolean function f

BDD B_f **for Boolean function f**

BDD B'_f for Boolean function f'

BDDs for f+g and f.g

Questions

- 1. Do we get any advantage in using BDT.
- 2. While constructing the BDD, is it required tostart from BDT.
- 3. The definition of BDD does not restrict the occurrence of ^a variable in any number of times in ^a path. Show that it may lead toinconsistency with an example.
- 4. Is reduced BDD of any function is unique.

Shannon Expansion \rightarrow BDD
 $f = \alpha e + bc$ $f = ac + bc$ $f = x f_x$ $f_{x} + x' f_{x'}$

- $f_{a'} = f(a=0) = bc = g$
- $f_a = f(a=1) = c + bc = h$
- \bullet $g_{b'} = (bc)_{|b=0} = 0$
- \bullet $g_{\scriptscriptstyle b}$ $_{b}$ = (bc)_{(b=1} = c
- $h_{b'} = (c+bc)_{|b=0} = c$
- \bullet h_b $b = (c+bc)_{|b=1} = c$

Shannon Expansion \rightarrow BDD
 $f = \alpha e + bc$ $f = ac + bc$ $f = x f_x$ $f_{x} + x' f_{x'}$

- $f_{b'} = f(b=0) = ac = g$
- $f_b = f(b=1) = ac + c = h$
- \bullet $g_{c'} = (ac)_{|c=0} = 0$
- \bullet $g_{c} = (ac)_{|c=1} = a$
- \bullet h_{c'} = (ac+c)_{|c=0} = 0
- $h_{c} = (ac+c)_{|c=1} = 1$

NPTEL Phase-IIVideo course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture II: : Ordered Binary Decision Diagram

Binary Decision Diagram

- Construction of BDD
- Reduced BDD

Binary Decision Diagram

- Occurrence of variables
- Ordering of variables

Binary Decision Diagram

- A Binary Decision Diagram (BDD) is a finite DAG with an unique initial node, where
	- –all terminal nodes are labeled with 0 or 1
	- – all non -terminal nodes are labeled with a Boolean Variable.
	- – Each non-terminal node has exactly two edges from that node to others; one labeled 0 and one labeled 1; represent them as a dashed line and a solid line respectively

Ordering of Variables

Ordering of Variables

- Evaluation Path
	- Consistent
	- Inconsistent

Ordered BDDs (OBDDs)

- Let $[x_1, x_2, ..., x_n]$ be an ordered list of variables without duplication and let B be a BDD all of whose variables occur somewhere in the list.
- We say that B has the ordering $[x_1, x_2, ..., x_n]$ if all variable labels of B occur in that list and, for every occurrence of x_{i} followed by x_{j} along any path in B, we have $i < j$.

OBDDs

BDD with variable ordering $[x_1, x_2, x_3, x_4, x_5]$

BDD with variable ordering $[x_5, x_4, x_3, x_2, x_1]$

Reduced Ordered BDDs (ROBDDs)

Not a Ordered BDD.Not a Reduced BDD.

Impact of the chosen variable ordering

• In general the chosen variable ordering makes a significant difference to the size of the OBDD representing a given function.

Impact of the chosen variable ordering

• Consider the Boolean function

– $- f = (x$ 1 $_1$ + x₂).(x₃ $_3 + x_4$).(x_5 $_5 + x_6$).... $(x_{2n-1} + x_{2n})$

Impact of the chosen variable ordering

- Consider the Boolean function– $- f = (x$ 1 $_1 + x_2$).(x_3 $_3 + x_4$).(x_5 $_5 + x_6$).... $(x_{2n-1} + x_{2n})$
- If we chose the variable ordering $[x_1, x_2, x_3, x_4,$ ….], then we can represent this function as an OBDD with 2n+2 nodes.
- If we chose the variable ordering $[x_1, x_3, x_5, ...,$ $\mathsf{x}_{\mathsf{2n\text{-}1}}, \mathsf{x}_{\mathsf{2}}, \mathsf{x}_{\mathsf{4}}, \mathsf{x}_{\mathsf{6}}, ..., \mathsf{x}_{\mathsf{2n}}]$, the resulting OBDD requires 2ⁿ⁺¹ nodes.

OBDDs

$$
f = (x_1 + x_2) \cdot (x_3 + x_4) \cdot (x_5 + x_6)
$$

OBDDs

 $f = (x_1 + x_2) \cdot (x_3 + x_4) \cdot (x_5 + x_6)$

Reduced ODBBs (ROBDDs)

A BDD is said to be reduced if none of the reduction rules R1-R3 can be applied (i.e., no more reductions are possible)

A OBDD is said to be reduced OBDD (ROBDD) if none of the reduction rules R1-R3 can be applied (i.e., no more reductions are possible)

- The algorithm reduce provides the ROBDD of a given OBDD.
- If the ordering of B is $[x_1, x_2, ..., x_l]$, then B has at most l+1 layers.
- The algorithm reduce traverses B layer by layer in a bottom-up fashion.

- We assign an integer label *id(n)* to each node of B.
- Id(n) equals to id(m) iff, the subOBDDs with root nodes n and m denote the same Boolean
function function.

- Given a non-terminal node n in a BDD, we define lo(n) to be the node pointed to via the dashed line from n.
- Dually, *hi(n)* is the node pointed to via the solid line from *n*.

- Labeling of terminal nodes:
	- – Assign the first label (say #0) to the first 0-node it encounters.
	- – All other terminal 0 -nodes denote the same function as the first 0-node and therefore get the same label.
	- –- Similarly, the 1-nodes all get the next label (say #1)
- Reduction Rule (eliminate duplicate terminals)

- Labeling of non-terminal nodes (Given an x_i node n and already assigned integer labels to all nodes of a layer $> i$:
	- – $-$ If the label id(lo(n)) is same as id(hi(n)), then we set id(n) to be that label
	- – $-$ (Reduction Rule:, Redundant nodes).

- Labeling of non-terminal nodes (Given an x_i node n and already assigned integer labels to all nodes of a layer $> i$:
	- –- If there is another node m such that n and m have the same variables x_{i} , and $id(log(n)) = 0$ i $id(log(m))$ and $id(hi(n)) = id(hi(m))$, then we set $id(n)$ to be $id(m)$.
	- –(Reduction Rule, duplicate nodes)

- Labeling of non-terminal nodes (Given an x_i node n and already assigned integer labels to all nodes of a layer $> i$:
	- – $-$ Otherwise, we set $id(n)$ to the next unused integer label.

Reduced Ordered BDD (ROBDD)

Reduced Ordered BDDs (ROBDDs)

- The reduced OBDD, representing a given function f , is *unique*.
- That is to say, let B_{1} OBDDs with *compatible variable ordering*. If B_1 $_1$ and B 2 $_2$ be two reduced and B_2 represent the same Boolean function, 2then they have identical structure.
- The order in which we applied the reductions does not matter.
- OBDDs have a canonical form, their unique ROBDDs.

Reduced Ordered BDDs (ROBDDs)

- Let $\mathsf B_1$ f_{1} $_1$ and B 2 $_2$ are the BDDs of Boolean function $_1$ and f 2.
- The orderings of B_{1} compatible if there are no variables x and y $_1$ and B 2 $_2$ are said to be such that x comes before y in the ordering of $\mathsf B_1$ $\mathsf B_2.$ $_1$ and y comes before x in the ordering of

Application of BDDs

- Test for Absence of redundant variables
	- – $-$ If the value of a Boolean function $f(x_1, x_2,...x_n)$ does not depend on the value x_i, then any ROBDD which represents f does not contain any x-node.i
- Test for semantic equivalence
	- $-$ B_f and B_g are the ROBDD representation of two functions f and g respectively with compatible variable ordering.
	- – f and g denote the same Boolean function if, and only if, the ROBDDs have identical structure.

- Test for Validity
	- –- Consider the ROBDD of a Boolean function $f(x_1, x_2, ... x_n)$.
	- and the state of the state $-$ f $\,$ is valid if, and only if, its ROBDD is B 1.

- Test for Implication ($f \rightarrow g$)
	- – $-$ We can test whether *f implies g* by computing the ROBDD of $(\mathsf{B}_{\mathsf{f}} \wedge \neg \mathsf{B}_{\mathsf{g}})$
	- and the state of the state f implies g if, and only if, the resultant ROBDD of (B $_{\rm f}$ \wedge \lnot B $_{\rm g}$) is B $_{\rm 0}$

• Test for Satisfiability

- – $-$ A Boolean function f($x_1, x_2,...x_n$) is satisfiable if it computes 1 for at least one assignment of 0 and 1 values to its variables.
- – $-$ The function $\mathsf f\,$ is satisfiable if, and only if, its ROBDD is not $\mathsf{B}_{0}.$

Algorithm *reduce* for BDDs

• Merge all nodes which have same label and redirect the incoming and outgoing edges accordingly.

• Consider the following function

– $- f(x,y,z) = xz + xz' + x'y$

Is it independent of any variables.

• Consider the following function

– $- f(x,y,z) = xz + xz' + x'$

Is it independent of any variables.

Test for validity

NPTEL Phase-IIVideo course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture III: : Operation on Ordered Binary DecisionDiagram

- f+g
- f.g

Algorithm apply

To perform the binary operation on two ROBDD's B_f and B_g , corresponding to the functions *f* and *g* respectively, we use the algorithm *apply(***op,** *Bf* **,** *B^g).* The two ROBDDs B_f and B_g have compatible variable ordering.

Algorithm apply

Application of *apply(***op,** *Bf* **,** *B^g)* will give a OBDD. The ordering of the resultant BDD is same as B_f or B_g but it may not be the reduced one. After constructing the resultant BDD, we may apply the reduce algorithm to get the ROBDD.

The function *apply* is based on the Shannon's expansion for *f* and *g*: $f = x.f[0 / x] + x.f[1 / x]$ $g = x \cdot g[0 / x] + x \cdot g[1 / x]$

From the Shannon's expansion of *f* and

g :

 f op $g = x \cdot (f[0/x]$ op $g[0/x]) + x \cdot (f[1/x]$ op $g[1/x])$

This is used as a control structure of apply which proceeds from the roots of B_f and B_g downwards to construct nodes of the OBDD B_f op B_g .

Let r_f be the root node of B_f and r_g *be* the root node of *Bg*.

Algorithm apply(op, $\mathsf{B}_{\mathsf{f}\mathsf{r}}$ B_{g})

1.If both r_f and r_g are terminal nodes with labels *lf* and *l^g*, respectively compute the value l_f op l_g and the resulting OBDD is B_0 if the value is 0 and B_1 otherwise.

In the remaining cases, at least one of the root nodes is a non-terminal.

> If both nodes are *^xi*-nodes (i.e., nonterminal of same variable),create an *^xi*-node *n* (called *rf*,*r^g*) with a dashed line to *apply* (*op, lo(rf), lo(rg)*) and a solid line to *apply*(*op, hi(rf), hi(rg)*).

If r_f is an x_i -node, but r_g is a terminal node or an *^xj*-node with *j > i*, create an *^xi*-node *n* (called *rf*,*r^g*) with a dashed line to *apply*(*op, lo(rf), rg)*and a solid line to *apply*(*op, hi(rf), ^rg*).

If r_g is an x_i -node, but r_f is a terminal node or an *^xj*-node with *j > i*, create an *^xi*-node *n* (called *rf*,*r^g*) with a dashed line to *apply*(*op, lo(rg), rf)*and a solid line to *apply*(*op, hi(rg), ^rf*).

Variable ordering: [x₁, x₂, x₃, x₄]

Variable ordering: [x₁, x₂, x₃, x₄]

If r_f is an x_i -node, but r_g is a terminal node or an *^xj*-node with *j > i*, create an *^xi*-node *n* (called *rf*,*r^g*) with a dashed line to *apply*(*op, lo(rf), rg)*and a solid line to *apply*(*op, hi(rf), ^rg*).

Variable ordering: [x₁, x₂, x₃, x₄]

Algorithm restrict

The Boolean formula obtained by replacing all occurrences of *x* in *f* by 0 is denoted by $f[0/x]$.

The formula *f*[1/*x*] is defined similarly.

The expressions *f*[0/x] and *f*[1/*x*] are called restriction of *f*.

restrict(0, *x*, B_f)

For each node *n* corresponding to *x*, remove *n* from OBDD and redirect incoming edges to *lo(n)*

restrict(1, x, B_f)

For each node *n* corresponding to *x*, remove *n* from OBDD and redirect incoming edges to *hi(n)*

Sometimes we need to express relaxation of the constraint on a subset of variables.

If we relax the constraint on some variable *x* of a Boolean function *f*, then *f*could be made true by putting *x* to 0 or to 1.

We write (\exists *xf*) for the Boolean function *f* with the constraint on *x* relaxed and it can be expressed as:

 $\exists x.f = f[0/x] + f[1/x]$

i.e., there exists *x* on which the constraint is relaxed.

Algorithm exists

The *exists* algorithm can be implemented in terms of the algorithms *apply* and *restrict* as

 $\exists x.f$ = apply $(+, \text{restrict}(0, x, B_f), \text{ restrict}(1, x, B_f))$

Algorithm exists

The exists operation can be easily generalized to a sequence of exists operations

 $\exists x1. \exists x2.$ $\exists xn.f$

• Consider the following function

 $f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2$

Construct the ROBDD for f: B_f restrict(0, $x4$, B_f) and restrict(1, $x4$, B_f) exists($x4$, B_f)

$f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2$

 $f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2$

 $f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2$

 $f = x1'x2x4 + x1x2'x3 + x1x2'x3'x4 + x1x2$

Exists $x4 f = apply(+, restrict(0, x4, Bf), restrict(1, x4, Bf))$

- Show that the formula ∃x.f depends on all those variables that f depends upon, except x.
- If f computes to 1 with respect to a valuation *, then ∃x. f computes 1 with respect to the* same valuation.

NPTEL Phase-IIVideo course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture IV: Ordered Binary Decision Diagram for State Transition Systems

State Transition System

State Transition System

the states *^s0, ^s1, ^s2* and*^s3* $_3$ can be distinguished using two state variables, say *x*¹and *x*2.

State Transition System

the states *^s0, ^s1, ^s2* and*^s3* $_3$ can be distinguished using two state variables, say *x*¹and *x*2.

State Transition System: set of states

• Set of states

State Transition System: set of states

$$
{s_0, s_1 = \overline{x_1 x_2} + \overline{x_1} x_2}
$$

\n
$$
{s_0, s_2 = \overline{x_1 x_2} + x_1 x_2}
$$

\n
$$
{s_0, s_3 = \overline{x_1 x_2} + x_1 x_2}
$$

\n
$$
{s_1, s_2 = \overline{x_1 x_2} + x_1 x_2}
$$

\n
$$
{s_1, s_3 = \overline{x_1 x_2} + x_1 x_3}
$$

\n
$$
{s_2, s_3 = x_1 \overline{x_2} + x_1 x_3}
$$

\n
$$
{s_3, s_1 = \overline{x_1 x_2} + x_1 x_3}
$$

\n
$$
{s_1, s_2 = \overline{x_1 x_2} + x_1 x_2}
$$

\n
$$
{s_2, s_3 = \overline{x_1 x_2} + x_1 x_2}
$$

\n
$$
{s_3, s_1 = \overline{x_1 x_2} + x_1 x_2}
$$

\n
$$
{s_1} = \overline{x_1 x_2}
$$

\n
$$
{s_1} = \overline{x_1 x_2}
$$

\n
$$
{s_1} = \overline{x_1 x_2}
$$

\n
$$
{s_2} = x_1 \overline{x_2}
$$

\n
$$
{s_3} = x_1 \overline{x_2}
$$

State Transition Diagram: set of states

- Set of states is represented by Boolean expression.
- OBDDs are used to represent Boolean expression.

State Transition Systems: set of states

ROBDD for {s1, s2} $x1'x2 + x1x2'$

 ROBDD for {s0, s2, s3} $x1'x2' + x1x2' + x1x2$

State Transition Systems: Set of states

- Set operation:
	- –Union, Intersection, etc
- S1 and S2 are two sets.

State Transition Systems: Set of states

- Set operation:
	- –Union, Intersection, etc
- S1 and S2 are two sets.
- B_{s1} and B_{s2} are the OBDD representation of sets S1 and S2 respectively.
- Union of S1 and S2 is $apply(+, B_{S1}, B_{S2})$
- Intersection of S1 and S2 is $apply(.,B_{S1}, B_{S2})$

State Transition system: transition

- Transition of a system can be viewed as an ordered pair (s_p, s_n)
	- s_p: present state
	- s_n: next state

State Transition system: transition

- Transition of a system can be viewed as an ordered pair (s_p, s_n)
	- s_p: present state
	- s_n: next state
	- – $-$ If n variables are used to represent the current state 1 , v_2 , v_3 , v_4 ,, v_n $x_1, x_2, x_3, x_4, \ldots, x_n$
	- – We Need another n variables to represent the next state

 x'_{1} , x'_{2} , x'_{3} , x'_{4} ,, x'_{n}

State Transition System: Transitions

the states *^s0, ^s1, ^s2* and*^s3* $_3$ can be distinguished using two state variables, say *x*¹and *x*2.

State Transition System: Transitions

Next state variables: x1' and x2'

State Transition system: transition

State Transition system

- State transition system can be represented by Boolean expression.
- OBDD is used to represent Boolean expression.

Verification: Model Checking

- Model of the system: Kripke structure
	- –– Set of states
	- – $-$ Transitions
	- and the state of the state — Labeling function
- Specification/Property: CTL
- Verification Method: Model Checking method

Model Checking

- Graph traversal algorithm
- State space explosion problem
- OBDD can be used to represent kripkestructure
	- – $-$ State transition system
	- –— Labeling function
Model Checking

Temporal Operator:

AF p

If any state s is labeled with p, label it with AF p

- Repeat: label any state with AF p if all successor states are labeled with AF p until there is no change.

- Requirements:
	- – $-$ Find the predecessor state(s) of a state or a set of states

- To find the predecessor states, we define two functions:
	- – $-$ Pre $_1$ (X): takes a subset X of states S and return the set of states which can make a transition into X.
	- – $-$ Pre \forall (X): takes a subset X of states S and return the set of states which can make a transition **only** into X.

 $\Pr e_{\exists}(X) = \{ s \in S \mid \exists s', (s \rightarrow s' \text{ and } s' \in X) \}$

 $\Pr e_{\forall}(X) = \{ s \in S \mid \forall s', (s \rightarrow s' \text{ and } s' \in X) \}$

• Important relationship between Pre_∃(X) and Pre $_\forall$ (X):

$$
Pre_{\forall}(X) = S - Pre_{\exists}(S - X)
$$

S: Set of all statesX: Subset of S

Transition System: Represented by ROBDDSubset X: Represented by ROBDD

Question

- Draw the state transition diagram of MOD-6 counter.
	- – $-$ Give a binary encoding to the states
	- and the state of the state $-$ Give the Boolean expression for the transition system
	- – $-$ Indicate the labeling function

Question

• Consider the microwave oven controller and give the state encoding. What is the Boolean expression for the state transition diagram.

NPTEL Phase-IIVideo course on

Design Verification and Test of Digital VLSI Designs

Dr. Santosh Biswas Dr. Jatindra Kumar Deka IIT Guwahati

Module VI: Binary Decision Diagram

Lecture V: Symbolic Model Checking

- Represent the transition systems with ROBDD
- Set of states can be represented by ROBDD

- Basis of Model Checking
	- –— Graph Traversal algorithms
	- –– Need to find the predecessor states of a given state or a set of states

• Important relationship between Pre_∃(X) and Pre $_\forall$ (X):

$$
Pre_{\forall}(X) = S - Pre_{\exists}(S - X)
$$

S: Set of all statesX: Subset of S

Procedure for Pre $_{\exists}$ (X)

Given,

- $-$ B_x: OBDD for set of states $\,$ X.
- $-$ B_{\rightarrow}: OBDD for transition relations.

Procedure,

- – $-$ Rename the variables in B_x to their primed versions; call the resulting OBDD $\mathsf{B}_{\mathsf{X}}'.$
- –- Compute the OBDD for *exists*(x', apply(\bullet , B_{\rightarrow}, B_x')) using the **apply** and **exists** algorithms.

– $-$ Rename the variables in B_{x} to their primed versions; call the resulting OBDD $\mathsf{B}_{\mathsf{X}}'.$

–- Compute the OBDD for exists(x', apply(\bullet , B_{\rightarrow}, B_x')) using the **apply** and **exists** algorithms.

Function $SAT_{FX}(p)$

 $/*$ determines the set of states satisfying EXp $*/$ local var X,Y

begin

 $X := SAT(p)$ $Y := \{s_0 \in S \mid s$ $_{0} \rightarrow$ S₁ $_1$ for some $s_1 \in X$ } return Y

end

EX(Bф**):**

 B_{ϕ} :OBDD for set of states where ϕ is true.

 \mathcal{U} *Analogous to X :* = *SAT* (ϕ);

 B_{\rightarrow} :OBDD for transition relation.

Return $Pre_{\exists} (B_{\phi})$. // *Analogous to* $Y := \{ s \in$

S | exists s', (s \rightarrow s' and s' ∈ X)};

Evaluation of Pre _∃(X)

```
Function SAT<sub>AF</sub>(p)/* determines the set of states satisfying AFp */local var X, Y
beginX := S, Y := SAT(p),
   repeat until X = YbeginX:=YY := Y \cup \{s \mid \text{for all } s' \text{ with } s \rightarrow s' \text{ we have } s' \in Y\}endreturn Yend
```
AF(B^ф**):**

B^ф:OBDD for set of states where ф is true.// *Analogous to "Y := SAT (*ф*)";*

 B_{\rightarrow} :OBDD for transition relation.

BX : OBDD for all states of the system. // *Analogous to "X:=S";*

repeat until B_X=B_φ // *Analogous to "Repeat until X=Y"*

 $B_X := B_{\varphi}$ // *Analogous to "X := Y;"*

 B_{φ} :=apply(+, B_{φ} , Pre_{\forall} (B_{φ})) // *Analogous to "Y*:= *Y* \cup *{*

 $s \in S$ | for all s', $(s \rightarrow s'$ implies $s' \in Y$ }}"

end

return $\mathrm{B}_{\mathrm{\phi}}$

$$
Pre_{\forall}(X) = S - Pre_{\exists}(S - X)
$$

```
Function SAT_{EU}(p,q)
```

```
/* determines the set of states satisfying E(p \cup q) */
local var W,X,Ybegin
W := SAT(p), X := S, Y := SAT(q)repeat until X = YbeginX := YY := Y \cup (W \cap \{s \mid \text{exists } s' \text{ such that } s \rightarrow s' \text{ and } s' \in Y\}end
return Yend
```
 $EU(B_{\psi1}, B_{\psi2})$:

B_X: OBDD for all states of the system. *// Analogous to "X := S*

B^ψ**¹**:OBDD for set of states where ψ1 is true. // *Analogous*

 $to "W := SAT(\psi_1);$

 $B_{\psi 2}$:OBDD for set of states where ψ_2 is true. *// Analogous*

*to"Y:=SAT(*ψ*2);"*

B_→:OBDD for transition relation.

repeat until $B_x = B_{\psi^2}$

 $B_x:= B_{\psi 2}$ // *Analogous to "X :=Y;"*

 $B_{\psi 2} := \text{apply}(+, B_{\psi 2}, \text{apply}(-, B_{\psi 1}, \text{Pre}_{\exists} (B_{\psi 2})))$ //

Analogous to " $Y := Y \cup (W \cap \{ s \} \in S \mid \text{exists } s', \text{ } (s \rightarrow s')$

and s' ∈ *Y)});"*

end

return $\mathrm{B}_{\Psi2}$
Tools

- CUDD
	- –– CU Decision Diagram Package
	- –University of Colorado at Boulder
- nuSMV
	- – $-$ Extension of SMV, the first model checker based on BDD
- SPIN
	- – $-$ LTL model checker developed at BELL labs

System Design Verification

• Model of the system

— Krinka structura Ik $-$ Kripke structure (kind of FSM)

- Specification
	- –— Specification language (like CTL)
- Verification Method
	- –— Model Checking

System Design Verification

- Model Checking Algorithms
	- –Polynomial algorithm
	- Mathod can ha aaci Method can be easily automated
	- and the state of the state $-$ It provides counter example
- Problem with model checking
	- – $-$ State space explosion problem
- Symbolic Model Checking
	- – Use of OBDDs to content the state space explosion problem

Question

- We have discussed system model for
	- –— Elevator controller
	- –Microwave oven controller
- Specification and verification of
	- –— Traffic light controller
	- –— Controller for ATM
- Use of tools
	- – $-$ nuSMV and SPIN

Design Cycle: Digital Systems

- Specification
- \bullet Design
- Verification
- Implementation \bullet
- Testing
- Installation/marketing
- Maintenance

The Course: Digital VLSI Design

- This course is about Digital VLSI Design
- This course consists of three parts
	- –— Design
	- –— Verification
	- –— Test