
Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-II

Lecture-I

Introduction to HLS: Scheduling,
Allocation and Binding Problem

Introduction

•Any VLSI design we start with specifications and the first step is to obtain the
Register Transfer Level (RTL) circuit.

•RTL circuit is obtained from specifications using High Level Synthesis (HLS)
algorithms. As specifications are processed by HLS algorithms, they need to be
represented using some modeling language.

•Control and Data Flow Graph (CDFG), is one of the most widely accepted
modeling paradigm for specifications that are processed by HLS tools.

•Transformation techniques in the CDFGs, which lead to efficient circuit
implementation in terms of area, frequency, power etc. HLS takes as input, the
optimized CDFG, performs Scheduling, Allocation, Binding and generates RTL
design.

•In this module we will study algorithms pertaining to these steps--Scheduling,
Allocation, and Binding. To start with, in this lecture, we introduce HLS and
problem definition of Scheduling, Allocation and Binding.

Introduction to HLS
•A behavioural description (i.e., functional specifications) is used as the starting
point for HLS. It specifies the behaviour in terms of operations, assignment
statements, and control constructs in a Hardware Description Language (HDL) .

Compilation

Scheduling

Allocation

Binding

Data-path and

controller generation

Functional Specification

Intermediate representation

Scheduled design

Allocation of registers and FUs

RTL

Variables to registers, operations to FU

Mapping

Introduction to HLS

The first step in HLS is compilation of the HDL and transformation into an internal
representation.

Most HLS techniques use Control and Data Flow Graph (CDFG) as the
representation, because it contains both the data flow and the control flow.

This process also includes a series of compiler like optimizations namely, dead code
elimination, redundant expression elimination etc.

Further, it also applies hardware-library specific transformations such as, use of
incrementers instead of adders, use of shifters instead of multipliers etc.

It may be noted that in the last module, we have studied these compilation and
transformation steps. Sometimes we call these steps as pre-processing phase for
HLS, where the optimized CDFG is provided to HLS engine. In some literatures,
however, we include these pre-processing steps in the HLS procedure.

Introduction to HLS

The second step of the HLS, which plays a key role in transforming a CDFG (i.e.,
behavioral) representation into a RTL (i.e., structural) representation, is operation-
scheduling (called just “scheduling” in HLS terminology).

Scheduling involves assigning operations of the CDFG to so-called control steps. A
control step usually corresponds to a cycle of the system clock, the basic time unit
of a synchronous digital system.

The third step is Allocation, which chooses functional units and storage elements
from the design library. The design library has several alternatives for a given
functional unit or a storage unit. For example, for a functional unit like adder,
there can be many options like ripple-carry adder, carry-look-ahead-adder etc.
Similarly, for storage elements there can be different types of registers like
registers with only resets, registers with both pre-sets and resets, registers with
pre-sets, resets and load etc. Among the alternatives, the allocation algorithm
must select the one that matches the design constraints best and maximizes the
optimization objective.

Introduction to HLS

The fourth step is Binding. After the functional operations and storage operations
are scheduled and components from design library are selected for such
operations (allocation), then comes the role of binding. Binding assigns operations
to functional units, variables to storage elements and data transfers to wires or
buses such that data can be correctly computed and passed, according to the
scheduling.

The final step of HLS is data-path and controller generation. Depending upon the
scheduling and the binding information, interconnection between the circuit
modules of the data-path components are set up; this is called data-path
generation. Further, an FSM is generated to control all the micro-operations
required to control data-flow in the data-path; this is called controller generation.

Scheduling Problem

The scheduling problem involves determining the sequence in which the
operations are executed to produce a control step schedule, which specifies the
operations that execute in each control step.

Let O be the set of all operations to be scheduled, which are obtained from the HDL

code. If there is an operation
jo O which depends on the result of another operation

an
io O , then

io must finish its execution before operation
jo can begin. In such a

case we say that there is a data dependency between the two operations andi jo o and

io is an immediate predecessor of jo . Data dependency results in a precedence

constraint between the two dependant operations in scheduling. In other words, an

operator can be scheduled only after all its predecessors are scheduled.

Scheduling Problem

Based on the above basic formulations we will discuss the following four types of

scheduling problems

Un-Constrained Scheduling (UCS) problem

Time Constrained Scheduling (TCS) problem

Resource Constrained Scheduling (RCS) problem

Time-Resource Constrained Scheduling (TRCS) problem

Now we elaborate on each of these types using the simple example expression

“(a+b+c+d)*e”.

For any HLS platform, there exists a module library comprising circuits for different

functionalities like adder, multipliers, registers etc. Further, the library also has

information regarding different parameters of the modules namely, frequency, area,

power etc. Let T be the set of different types of modules that are available. For a

given operation o , the type of the operation is determined by a type function

:Ty O T ; ()Ty o t implies that operation o can operate on module of type t .

Unconstrained Scheduling (UCS) problem
Given:

A set of operations O , a set T of different types of functional modules, a type

function :Ty O T and a partial order on O determined by the precedence

constraints.

Find:

A feasible schedule for all elements in O , taking appropriate modules from T and

obeying the partial order.

+ +

a b c d

+

*

e

o1 o2

o3

o4

t1 t1

t1

t2

Step 1

Step 2

Step 3

temp1 temp2

temp3

out

Unconstrained Scheduling (UCS) problem

As the schedule is unconstrained we need to see that all elements in O are scheduled,

appropriate modules from T are taken and partial order is maintained. In the above

example, there are four operations (3 additions denoted as
1 2 3, ,o o o and 1 multiplication

denoted as 4o), all of which are scheduled. Let the library have two types of resources,

adders (denoted as
1t) and multipliers (denoted as 2t). It may be noted that appropriate

modules from T are taken-- 1 2 3, ,o o o are assigned to 1t (i.e., adder is assigned to addition

operations) and 4o are assigned to 2t (i.e., multiplier is assigned to multiplication

operation).

As the scheduling is unconstrained, we consider two adder modules (one for
1o

and the other for 2o) and a multiplier module (for 4o). The adder module for 1o

can be reused for 3o . The control steps required is 3.

Time Constrained Scheduling (TCS) problem
Given:

A set of operations O , a set T of different types of functional modules, a type

function :Ty O T , a time constraint (deadline) D (i.e., maximum control steps)

and a partial order on O determined by the precedence constraints.

Find:

A feasible schedule for all elements inO , taking appropriate modules from T ,

meeting the deadline D and obeying the partial order.

It may be noted that schedule of last example satisfies all requirements of

unconstraint scheduling problem and along with that, it satisfies the three steps

deadline (of timing constrained problem). Further, we may note that we cannot

have a successful schedule if timing constraint is two control steps, as it will lead

to violation of partial order. The time-constrained scheduling required two adders

(for 1 2,o o , which is reused for 3o) and a multiplier (for 4o) .

Resource Constrained Scheduling (TCS) problem
Given:

A set of operations O , a set T of different types of functional modules, a type

function :Ty O T , resource constraints max ,1 | |k k T  for each functional

module of type ,1 | |kt k T  and a partial order on O determined by the

precedence constraints.

Find:

A feasible schedule for all elements in O , taking appropriate modules from T ,

meeting the resource constraints for each functional module type and obeying the

partial order.

Resource Constrained Scheduling (TCS) problem

+

a c d

+

*

e

o1

o2

o3

o4

t1

t1

t1

t2

Step 1

Step 2

Step 3

temp1

temp2

temp3

out

+

b

Step 4

Resource Constrained Scheduling (TCS) problem

Illustrates a resource-constrained scheduling involving, one adder and one multiplier, for

expression (a+b+c+d)*e.

As the schedule is resource-constrained we need to see that all elements in O are

scheduled, appropriate modules from T are taken, partial order is maintained and

recourse utilization does not cross the limit.

As there is one adder module (for 1 2 3, ,o o o) and a multiplier module (for
4o), we cannot

schedule
1o and

2o in one control step. So we schedule
1o is step1 and

2o in step2. To

maintain the partial order,
3o is scheduled in step3 and

4o is scheduled in step4; it may

be noted that these operators cannot be scheduled earlier.

Therefore, the number of control steps is 4. Due to meeting the resource constraint, we

cannot have a schedule in 3 steps

Time Resource Constrained Scheduling (TCS) problem

Given:

A set of operations O , a set T of different types of functional modules, a type

function :Ty O T , a time constraint (deadline) D , resource constraints

max ,1 | |k k T  for each functional module of type ,1 | |kt k T  and a partial

order on O determined by the precedence constraints.

Find:

A feasible schedule for all elements in O , taking appropriate modules from T ,

meeting the deadline D , meeting the resource constraints for each functional

module type and obeying the partial order.

In time resource constraint scheduling, we need to meet both timing and resource

constraints.

Allocation Problem
•Once a schedule is made (i.e., type of operators are determined along with
their quantity), the allocation task determines the “exact” operator
modules, available in the design library, to be used in implementation of
the operators. Also, the area, power, frequency is determined after
allocation.

•A typical design library can be represented as a table given below. It has
description regarding the type of modules (i.e., functionality), sub-types
(namely, fast, slow, typical etc.), area, power, frequency etc. In case of a
modern sub-micron technology, a design library has many more entries
namely, leakage power, current etc.

Allocation Problem

Sl.

No

Name of Module Type Sub-type Frequency Area Power

1 Adder-slow
1t

1t S
1t SF 

1t SA 
1t SP 

2 Adder-fast
1t 1t F

1t FF 
1t FA 

1t FP 

3 Multiplier-slow
2t 2t S

2t SF 
2t SA 

2t SP 

4 Multiplier-fast
2t 2t F

2t FF 
2t FA 

2t FP 

It may be noted that a fast module has higher frequency, higher area and higher power

compared to its shower counterpart; so
1 1t S t FF F  ,

1 1t S t FA A  ,
1 1t S t FP P  and

2 2t S t FF F  ,
2 2t S t FA A  ,

2 2t S t FP P  .

Allocation Problem

Let us consider the unconstrained schedule of the expression (a+b+c+d)*e, From the

output of scheduling we know that
1 2 3, ,o o o are of type

1t and
4o is of

2t . Further, we

need two modules of type 1t and one module of type 2t .

Now, depending on requirement of frequency and available area-power overheads,

we can select the sub-types for 1t and 2t . If we have high area and power constraints,

then we would use 1t S for 1t and 2t S for 2t .

It may be noted that time period of each control step is dependent on module having

the lowest frequency because system clock frequency depends on the critical path. In

general, a multiplier has much higher area and power requirements compared to an

adder. Also, frequency of a multiplier is lower compared to an adder.

Allocation Problem

So, in the example, time period of each control step be

2

1

t SF 

.

Now, if have no area and power constraints, then we would use 1t F for 1t and

2t F for 2t .The time period of each control step is

2

1

t FF 

.

But, in general
2 1t F t SF F  ; frequency of a fast multiplier is generally less compared

to even a slow adder. So in spite of allocating fast adders to 1 2 3, ,o o o (consuming high

area and power), time period of control step is

2

1

t FF 

, which is not dependent on

1 1
 or t S t FF F  . So we can use slow adders without any compromise in overall time

period of operation (i.e., time period of control step).

Binding
After all the operations are scheduled and allocation is done, we get information

regarding exact type of circuit modules (from the design library) to be used and their

numbers.

We have seen in the allocation step, that operations in a control step are performed by

different modules, however, modules are shared between operations (of same type)

that are in different control steps. In the unconstrained schedule example, an adder

module will be shared between 1o and 3o or 2o and 3o . Due to sharing, in addition to

operational modules (adders, multipliers etc.), we need multiplexers.

Further, to store variables (a,b,c,d,e) and intermediate results (temp1,temp2.temp3)

we need registers. Like operational modules, registers can be shared, which do not lie

in same control step.

All the above-mentioned steps (after scheduling and allocation) fall under Binding.

Binding
The binding task (also called resource-sharing step) assigns the operations and
variables to hardware modules. A resource such as an operational module or
register can be shared by different operations, data accesses, or data transfers if
they are mutually exclusive. For example, two operations assigned to two
different control steps are mutually exclusive since they will never execute
simultaneously; hence, they can be binded to the same hardware unit. Binding
can be classified into three sub-functions:

Storage binding: This step assigns input, output and temporary variables to
registers units. Two variables that are not alive simultaneously (i.e., not required
in overlapping control steps) in a given control step can be assigned to the same
register.

Functional-unit binding: This binding step assigns operations to operational
modules (like adder, multiplier etc.). Two operations of same type that are not in
a single control step can be assigned to the same operational module.

Interconnection binding: This step assigns an interconnection unit such as a
multiplexer or a bus to a data transfer.

Binding

Although listed separately, the three sub-functions are intertwined and are to be carried

out concurrently for optimal results.

Now, we will illustrate Binding for the unconstrained schedule when allocation is-- two

number of modules of type 1t S for 1 2 2, ,o o o and one module of type 2t F for 4o .

Binding

adder1

Register2Register1

Mux Mux

a b

control1

adder2

Register4Register3

Muxc

d e

control2

Multiplier

out

temp1

temp2

temp3

temp3

e

Binding
At control step1, we have 4 active variables (a,b,c,d), at step2 we have 2 active

variables (temp1,temp2) and at step3 we have 2 active variables (temp3,e).

So we have a maximum of 4 active variables at step1, thereby leading to the fact that

we required 4 registers; a,b,c,d cannot share any register. However, registers can be

shared between (a,b,c,d) and (temp3,e); (a,b,c,d) and (temp1,temp2); (temp1,temp2)

and (temp3,e). However, variables listed in the brackets cannot share registers among

themselves. As discussed in last section, we have two adder modules and one

multiplier module. Based on these facts a possible binding is as follows

Binding

 Binding of 1o to adder1 and 2o to adder2 (functional unit binding)

 Binding of
3o to adder2 (functional unit binding)

 Binding of a,temp1,temp3 to register1 (storage binding)

 Binding of b,temp2 to register2 (storage binding)

 Binding of c to register3 (storage binding)

 Binding of d,e to register4 (storage binding)

 Binding of 4o to multiplier1 (functional unit binding)

Binding-Configuration at Control step1

adder1

Register2Register1

Mux Mux

a b

control1=0

adder2

Register4Register3

Muxc

d e

control2=0

Multiplier

temp1 temp2

Binding-Configuration at Control step1

 control1 is 0, thereby binding a in register1 and b in register2

 control2 is 0, thereby binding d in register4

 Binding c to register3

 Binding of 1o to adder1

 Binding of 2o to adder2

Under this binding, adder1 generates temp1 and adder2 generates temp2.

Binding-Configuration at Control step2

adder1

Register2Register1

Mux Mux

a b

control1=1

adder2

Register4Register3

Muxc

d e

control2=X

Multiplier

temp1 temp2

temp3

Binding-Configuration at Control step2

 control1 is 1, thereby binding temp1 in register1 and temp2 in register2

 control2 is X and adder2 is not used. In addition, register3 and register4

are not used.

 Binding of 3o to adder1

Under this binding, adder1 generates temp3

Binding-Configuration at Control step3

adder1

Register2Register1

Mux Mux

a b

control1=1

adder2

Register4Register3

Muxc

d e

control2=1

Multiplier

temp2temp3

temp3

e

out

Binding-Configuration at Control step3

 control1 is 1, thereby binding temp3 in register1; register2 is not

used

 control2 is 1, hereby binding e in register4. Register3 is not used.

 Binding of 4o to multiplier1

Under this binding, multiplier1 generates out.

Control Path

For the scheduling, allocation and binding considered in the running example we

have the following signal sequences for control1 and control2 in the three time steps.

 Step-1: control1 is 0 and control2 is 0

 Step-2: control1 is 1 and control2 is X

 Step-3: control1 is 1 and control2 is 1

We need to develop a sequential circuit having two output bits “control1” and“control2”

and they should have the values “00”, “1X” and “11” in three consecutive clock edges.

This circuit can be easily design using the concept of state machine implementation

Question and Answer

Question: Among the three sub-steps of HLS, scheduling, allocation and
binding, what can be done without information regarding design-library?

Answer: Scheduling and Binding can be done without information regarding
design-library. Scheduling assigns control steps to all operations in the CDFG,
after satisfying data-dependency between the operations, subject
constraints like number of steps, number of modules etc. So none of the
parameters are related to design-library. In case of Binding, operations and
variables are attached to circuit modules, which are selected from the
design library during the allocation phase. As circuit modules are already
selected from the design library during the allocation phase, binding can
work without any information from the design library.

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-II

Lecture-II and III

Scheduling Algorithms

Introduction

High Level Synthesis (HLS) involves three sub-parts namely,
scheduling, allocation and binding.

In this lecture, we will discuss scheduling algorithms, which automatically assign
control steps to operations subject to design constraints.

Scheduling problem can be of four types namely, unconstrained, time constrained,
resource constrained and time-resource constrained.

Introduction

•There are many algorithms proposed in the literature that solve these four types
of scheduling problem.

•Now, these algorithms can be classified into two types as heuristics and exact.
Exact algorithms like Integer Liner Programming for scheduling, provides optimal
schedule but consumes high processing time.

•In practical cases, these exact algorithms for HLS take prohibitive amount of
execution time. To cater to the execution time issue, several algorithms based on
greedy strategies have been developed that make a series of local decisions,
selecting at each point the single “best” operation-control step pairing without
backtracking or look-ahead. So they may miss the globally optimal solution,
however, they do produce results quickly, and those results are generally be
sufficiently close to optimal to be acceptable in practice. Such algorithms are called
heuristic algorithms (for HLS). Examples for heuristic algorithms for HLS comprise
As Soon As Possible (ASAP), As Late As Possible (ALAP), List Scheduling (LS) and
Force Directed Scheduling (FDS).

As Soon As Possible Scheduling
As-Soon-As-Possible (ASAP) scheduling is one of the simplest scheduling
algorithms used in HLS.

In ASAP scheduling, first the maximum number of control steps that are allowed is
determined.

Following that, the algorithm schedules each operation, one at a time, into the
earliest possible control step.

In other words, ASAP algorithm schedules operations in the earliest possible
control step, subject to satisfying the partial order, i.e., an operation is scheduled if
and only if all its predecessors are scheduled in earlier control steps.

 If ASAP algorithm can schedule all the operations within the allowed number of
control steps, scheduling is successful.

It may be noted that ASAP algorithm does not consider any resource constraints.

As Soon As Possible Scheduling
Algorithm 1: As Soon As possible

Input: Operations O , Maximum number of control steps M .

Output: Control step for each operations, Status of scheduling .

Steps

for each operation io O

DO

if io has no immediate predecessors (i.e., computation from inputs)

control_step(io) = 1. /* control_step(io) indicates control step

into which operation io is scheduled */

else

control_step(io) = maximum(control_step(jo))+ 1,where

 { | is immediate predecessor of }j io o o o .

 END

 If value of control_step(io), , iM o O  then Status of scheduling is Successful.

As Soon As Possible Scheduling

* *

a b c d

/

-

e

o1 o2

o3

o4

Step 1

Step 2

Step 3

temp1 temp2

temp3

a

- o5
Step 4

out1

*

f

o6

temp4

/

btemp5

temp6

-

b

o7

+

ftemp7

out2

g

o8

o9

ASAP scheduling for “out1=((a*b)/(c*d))-a-((e*f)/b)” and “out2=(g-b)+f”

As Soon As Possible Scheduling

In this case, it may be noted that operations
1 2 6 8, , ,o o o o do not have any direct

predecessors, i.e., they depend on input values. So these operations have the control

step as 1 (control_step(io)=1, 1,2,6,8i ). Operation
3o has 1 2,o o as predecessors,

so, control_step(3o) = maximum (control_step(1o),control_step(2o))+1=2. Similarly,

control step assignment for all operations can be explained.

This schedule is complete within 4 steps, thereby making it successful. The resource

requirements are—

 Step1: 3 Multipliers + 1 Subtractor

 Step2: 2 Dividers + 1 Adder

 Step3: NIL (subtractor from Step1 can be used)

 Step4: NIL (subtractor from Step1 can be used)

As Late As Possible Scheduling

•As-Late-As-Possible (ALAP) scheduling is almost similar to ASAP, but instead of
scheduling operations to early control steps, in ALSP, first the maximum number
of control steps that are allowed is determined.

•Following that, the algorithm schedules each operation, one at a time, into the
latest possible control step. In other words, ALAP algorithm schedules operations
in the latest possible control step, subject to satisfying the (reverse) partial order,
i.e., an operation is scheduled if and only if all its successors are scheduled in
latter control steps.

•If ALAP algorithm can schedule all the operations within 1st control step (as we
move backward), scheduling is successful. It may be noted that like ASAP, ALAP
algorithm also does not consider any resource constraints.

As Late As Possible Scheduling

•As-Late-As-Possible (ALAP) scheduling is almost similar to ASAP, but instead of
scheduling operations to early control steps, in ALSP, first the maximum number
of control steps that are allowed is determined.

•Following that, the algorithm schedules each operation, one at a time, into the
latest possible control step. In other words, ALAP algorithm schedules operations
in the latest possible control step, subject to satisfying the (reverse) partial order,
i.e., an operation is scheduled if and only if all its successors are scheduled in
latter control steps.

•If ALAP algorithm can schedule all the operations within 1st control step (as we
move backward), scheduling is successful. It may be noted that like ASAP, ALAP
algorithm also does not consider any resource constraints.

As Late As Possible Scheduling
Algorithm 2: As Late As possible

Input: Operations O , Maximum number of control steps M .

Output: Control step for each operations, Status of scheduling .

Steps

for each operation io O

DO

if io has no immediate successors (i.e., computation generates outputs)

control_step(io) = M . /* control_step(io) is assigned the

 last control step */

else

control_step(io) = control_step(jo)- 1, is immediate successor of j io o .

 END

 If all io O are scheduled within control step1

then Status of scheduling is Successful

As Late As Possible Scheduling

* *

a b c d

/

-

e

o1 o2

o3

o4

Step 1

Step 2

Step 3

temp1 temp2

temp3

a

- o5
Step 4

out1

*

f

o6

temp4

/

b

temp5

temp6

g

-

b

o7

+

ftemp7

out2

o9

o8

scheduling for “out1=((a*b)/(c*d))-a-((e*f)/b)” and “out2=(g-b)+f”

As Late As Possible Scheduling

In this case, it may be noted that operations
5 9,o o do not have any direct successors,

i.e., they generate output values. So these operations have the control step as 4M  .

Operation 5o is the immediate successor of 4o , so, control_step(4o) = control_step(

5o)-1=3. Similarly, control step assignment for all operations can be explained.

This schedule is complete within the 1
st
 control step, thereby making it successful.

The resource requirements are—

 Step1: 2 Multipliers

 Step2: 1 Dividers + (multiplier from Step1 can be used)

 Step3: 2 subtractors + (divider from Step2 can be used)

 Step4: 1 adder + (subtractor from Step3 can be used)

ASAP versus ALAP

If ALAP is compared with ASAP, it may be noted that we have achieved the following.

 Saved 1 Multiplier by delaying
6o from step1 to step2.

 Saved 1 Divider by delaying
7o from step2 to step3.

 Increased 1 subtractor by delaying
8o from step1 to step3.

So, it may be observed that for the subpart of the expression, “(e*f)/b”, ALSP is better

compared to ASAP. However, for the expression, “out2=(g-b)+f” ASAP is better

compared to ALAP. As already mentioned, ALSP and ASAP are heuristics and may not

generate an optimal solution. By applying the scheme ALAP for “(e*f)/b” and ASAP

for “out2=(g-b)+f”, the schedule we obtain for 4M  is shown next.

ASAP versus ALAP

* *

a b c d

/

-

e

o1 o2

o3

o4

Step 1

Step 2

Step 3

temp1 temp2

temp3

a

- o5
Step 4

out1

*

f

o6

temp4

/

b

temp5

temp6

g

-

b

o7

+

ftemp7

out2

o8

o9

ALAP scheduling for “((e*f)/b)” and ASAP for “out2=(g-b)+f”

ASAP versus ALAP
It may be noted that the resource consumption in this case is as follows.

 Step1: 2 Multipliers + 1 subtractor

 Step2: 1 Divider + (multiplier from Step1 can be used) + 1 adder

 Step3: 1 subtractors + (subtractor from Step1 can be used) + (divider from

Step2 can be used)

 Step4: (subtractor from Step3 can be used)

So it may be noted that a schedule which is a “mix of ALAP and ASAP” provides

better solution than by the individual algorithms.

Now we will see FDS scheduling algorithm which is motivated from above fact of

combining ALAP and ASAP.

Force Directed Scheduling
•FDS starts by first finding ALSP and ALAP scheduling for all the operations.
Operations whose ALAP and ASAP schedules are same (i.e., same control step is
assigned by both ALAP and ASAP), are not considered to be re-scheduled by FDS as
there is no flexibility in their positions.

•Following that, all operations are listed whose ALSP and ASAP schedules are
different and the flexible range for such an operation is “ [control step assigned by
ASAP --to-- control step assigned by ALSP]”.

•Now, we schedule these operations in one of their flexible steps, such that total
count of operators is minimal.

•To accomplish this, operations of each type are considered one by one. For a
given type of operation, we analyze the total requirement of the number of
operators (of the type under question), by considering the combinations of
placing the corresponding operations in the steps within their intervals.
•We select the combination that leads to minimal number of operators.
•Once we are done with the operation of one type we move for the other
types, one by one.

Force Directed Scheduling
Before providing the algorithm for FDS scheduling certain notations are introduced.


iASAP : Control step scheduled by ASAP algorithm to operation

io


iALAP : Control step scheduled by ALAP algorithm to operation

io


iINTERVAL : [iASAP to

iALAP]


iRANGE :

iALAP - iASAP +1


,i jPROB : Probability of scheduling an operation io in control step j ,

ij INTERVAL ; 1

, ()i j iPROB RANGE 

 ,k jLIST : Set of all operations of type k in step j, i.e., set comprising all

operations io of type k such that ij INTERVAL .

 ,k jCOST : Number of operators of type k required in step j.

,

, ,

i k j

k j i j

o LIST

COST PROB


 

Force Directed Scheduling
Algorithm 3: Force Directed Scheduling

Input: ALSP and ASAP Scheduling.

Output: Control step for each operations, Status of scheduling .

Steps

From ASAP and ALAP scheduling, for all operations (i.e., io O) compute

iINTERVAL ,
iRANGE ,

,i jPROB (for all j),
,k jLIST (for all j),

,k jCOST (for all j).

for each type of operation k K

DO

BEGIN /*loop finds best steps for all operations of type k */

()k best  ;

best_step=0;

for each operation io of type k whose 2iRANGE  .

BEGIN /*loop finds best step for io */

for each ij INTERVAL

BEGIN

Force Directed Scheduling

Temporarily schedule
io in step j and compute the value

of
,k jCOST (

()k new ) due to fixing the schedule of
io and

changes of schedule of other operations due to data

dependency.

If () ()k new k best   then assign value of () ()to k new k best  and

best_step=j.

END

Finally schedule io in step best_step and other operators due to

data dependency.

Update for all operations (i.e., io O) iINTERVAL , iRANGE ,

,i jPROB (for all j), ,k jLIST (for all j), ,k jCOST (for all j).

END

END

Force Directed Scheduling
Now we will illustrate the FDS algorithm with the running example of scheduling

“out1=((a*b)/(c*d))-a-((e*f)/b)” and “out2=(g-b)+f”.

Next Figure illustrates
iINTERVAL and

iRANGE , for all the operations. Here we

have four types of operators; let k=1 represent multiplier, k=2 represent divider, k= 3

represent subtractor and k= 4 represent adder.

Now we will illustrate FDS for scheduling all operations of type k=1. Computation of

,i jPROB , for all the multiplication operations are as follows.

 1,1PROB =1; 2,1PROB =1; 6,1 0.5PROB  ;

 1,2PROB =0; 2,2PROB =0; 6,2 0.5PROB  ;

Further, ,k jLIST for the first two steps for multiplication operations are 1,1LIST ={

1 2 6, ,o o o } and 1,2LIST ={ 6o }. So, 1,1 1 1 0.5 2.5COST     and 1,2 0.5COST  .

Force Directed Scheduling

o1 o2

o3

o4

Step 1

Step 2

o5

o6

o7

* *

*

/

-

-

/

o9+

o8

-

RANGE1={1} RANGE2={1}

RANGE3={1}

RANGE4={1}

RANGE5={1}

RANGE6={2}

RANGE7={2}
RANGE8={3}

RANGE9={3}

INTERVAL1=[1,1] INTERVAL2=[1,1]

INTERVAL5=[1,1]

INTERVAL3=[1,1]

INTERVAL4=[1,1]

INTERVAL6=[1,2] INTERVAL8=[1,3]

INTERVAL9=[2,4]

Step 4

Step 3

INTERVAL7=[2,3]

iINTERVAL and iRANGE for “out1=((a*b)/(c*d))-a-((e*f)/b)” and “out2=(g-b)+f”

Force Directed Scheduling

Among three multiplication operations, we have freedom only in scheduling
6o (

6 2RANGE ). If we schedule
6o in step1 then

 1,1PROB =1; 2,1PROB =1; 6,1 1PROB  ;

 1,2PROB =0; 2,2PROB =0; 6,2 0PROB  ;

 1,1LIST ={ 1 2 6, ,o o o } and 1,2LIST ={}.

 1,1 3COST 

 () 3k new  ; as () () (), is assigned 3k new k best k best    and best_step=1

Force Directed Scheduling
We can also schedule

6o in step2, which results in

 1,1PROB =1; 2,1PROB =1; 6,1 0PROB  ;

 1,2PROB =0; 2,2PROB =0; 6,2 1PROB  ;

 1,1LIST ={ 1 2,o o } and 1,2LIST ={ 6o }.

 1,1 2COST 

 () 2k new  ; as () () (), is assigned 1k new k best k best    and best_step=2.

So we schedule 6o in step2, which results in fixing the schedule of 7o in step3

(due to data dependency); 7o loses its flexibility. This is shown in next figure .

Force Directed Scheduling

o1 o2

o3

o4

Step 1

Step 2

o5

o6

* *

*
/

-

-

/

o9+

o8

-

RANGE1={1} RANGE2={1}

RANGE3={1}

RANGE4={1}

RANGE5={1}

RANGE6={1}

RANGE7={1}
RANGE8={3}

RANGE9={3}

INTERVAL1=[1,1] INTERVAL2=[1,1]

INTERVAL5=[1,1]

INTERVAL3=[1,1]

INTERVAL4=[1,1]

INTERVAL6=[2,2]

INTERVAL8=[1,3]

INTERVAL9=[2,4]

Step 4

Step 3

INTERVAL7=[3,3]

o7

. iINTERVAL and iRANGE for “out1=((a*b)/(c*d))-a-((e*f)/b)” and “out2=(g-b)+f” after

6o is scheduled in step2

Force Directed Scheduling
Similarly, computation of

,i jPROB , for all the subtraction operations are as follows.


4,3PROB =1.

 8,1PROB =0.33; 8,2PROB =0.33; 8,3 0.33PROB  ;

Further, ,k jLIST for the first three steps for subtraction operations are 3,1LIST ={
8o }

and 3,2LIST ={
8o } and 3,3LIST ={

4 8,o o }. So, 3,1 0.33COST  , 3,2 0.33COST  and

3,3 1.33COST  .

Among two subtraction operations we have freedom only in scheduling 8o (

8 3RANGE ). If we schedule 8o in step1 then

 4,3PROB =1.

 8,1PROB =1; 8,2PROB =0; 8,3 0PROB  ;

 3,1LIST ={ 8o }, 3,2LIST ={} and 3,3LIST ={ 4o }.

 3,1 1COST 

 () 1k new  ; as () () (), is assigned 1k new k best k best    and best_step=1

Force Directed Scheduling
We can also schedule

8o in step2, which results in

 4,3PROB =1.

 8,1PROB =0; 8,2PROB =1; 8,3 0PROB  ;

 3,1LIST ={}, 3,2LIST ={ 8o } and 3,3LIST ={ 4o }.

 3,2 1COST 

 () 1k new  ; as () () (), is not changedk new k best k best    and best_step=1

We can also schedule 8o in step3, which results in

 4,3PROB =1.

 8,1PROB =0; 8,2PROB =0; 8,3 1PROB  ;

 3,1LIST ={}, 3,2LIST ={} and 3,3LIST ={ 4 8,o o }.

 3,3 2COST 

 () 2k new  ; as () () (), is not changedk new k best k best    and best_step=1

Force Directed Scheduling

o1 o2

o3

o4

Step 1

Step 2

o5

o6

* *

*
/

-

-

/

o9+

o8
-

RANGE1={1} RANGE2={1}

RANGE3={1}

RANGE4={1}

RANGE5={1}

RANGE6={1}

RANGE7={1}

RANGE8={1}

RANGE9={3}

INTERVAL1=[1,1] INTERVAL2=[1,1]

INTERVAL5=[1,1]

INTERVAL3=[1,1]

INTERVAL4=[1,1]

INTERVAL6=[2,2]

INTERVAL8=[1,1]

INTERVAL9=[2,4]

Step 4

Step 3

INTERVAL7=[3,3]

o7

. iINTERVAL and iRANGE for “out1=((a*b)/(c*d))-a-((e*f)/b)” and “out2=(g-b)+f” after

8o is scheduled in step1

Force Directed Scheduling

Similarly, it may be verified that FDS will schedule
9o in step2; final schedule is

shown in next figure.

 It may be noted that this schedule is same as the one for ALAP+ASAP. Therefore,

FDS obtains an optimal schedule considering a merger of ASAP and ALSP.

Force Directed Scheduling

o1 o2

o3

o4

Step 1

Step 2

o5

o6

* *

*
/

-

-

/

o9
+

o8
-

RANGE1={1} RANGE2={1}

RANGE3={1}

RANGE4={1}

RANGE5={1}

RANGE6={1}

RANGE7={1}

RANGE8={1}

RANGE9={1}

INTERVAL1=[1,1] INTERVAL2=[1,1]

INTERVAL5=[1,1]

INTERVAL3=[1,1]

INTERVAL4=[1,1]

INTERVAL6=[2,2]

INTERVAL8=[1,1]

INTERVAL9=[2,2]

Step 4

Step 3

INTERVAL7=[3,3]

o7

. iINTERVAL and iRANGE for “out1=((a*b)/(c*d))-a-((e*f)/b)” and “out2=(g-b)+f” after

9o is scheduled in step2

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-II

Lecture-III

Scheduling Algorithms

List Scheduling
•All the scheduling algorithms we discussed till now were heuristics based on time
constants, in terms of number of control steps. Now we discuss another heuristic
scheduling algorithm which is resource constrained—List Scheduling.

•Unlike ASAP, ALAP or FDS scheduling, which process operations individually in a
fixed order, list scheduling handles each control step individually (in increasing
order).

•List scheduling works by trying to schedule “maximum” number of operations in
the control step, subject to resource constraints and data dependency.

•During the scheduling process, list scheduling uses a ready list (hence the name)
to keep track of data-ready operations subject to data dependency.

•The ready list in a control step comprises those unscheduled operations that can
be scheduled into the current control step without violating the data dependency

•As long as there are operations in the ready list that meet the resource
constraints, operations are chosen from that list and scheduled into the current
control step.

List Scheduling
•If more than one operation from ready list can be scheduled in a control step, but
violates resource constraints, then choice among the ready operations is made by
a priority function.

One common priority function is “
iALAP - iASAP ” (i.e., range where the operation

can be scheduled). Operations with smaller ranges (i.e., smaller mobility) are given

higher priority, since there are fewer possible control steps into which those

operations can be scheduled, and since delaying them to a later control step would

more likely increase the overall length of the schedule.

List Scheduling
Algorithm 4: List Scheduling

Input: Operations O , Maximum number of operators of type k
maxk .

Output: Control step for each operations.

Steps

Prepare 1READYLIST (ready list for first step) , which comprises all operations

whose predecessors are input variables.

for each operation 1io READYLIST

DO

BEGIN

Schedule all operations 1io READYLIST in control step1. If there is

violation in resource requirement (i.e., number of operations of type k in

1READYLIST is more than maxk), then schedule according to priority

function.

 END

List Scheduling

Till there are operations
io to be scheduled

DO

BEGIN

Prepare jREADYLIST for the next control step (i.e., scheduling over for

step j-1)

Schedule all operations i jo READYLIST in control stepj. If there is

violation in resource requirement then schedule according to priority

function.

END

List Scheduling

Now we will illustrate list scheduling for the running example of “out1=((a*b)/(c*d))-

a-((e*f)/b)” and “out2=(g-b)+f” . Next Figure illustrates the schedule for each control

step. We assume that we have two multipliers (max1 2), one divider (max2 1), one

subtractor (max3 1) and one adder (max4 1).

List Scheduling

For step 1, the
1READYLIST comprises

1 2 6 8, , ,o o o o . We cannot schedule all three

multiplication operations
1 2 6, ,o o o as

max1 2 . Mobility of the operations are shown in

the figure. We assume that mobility is the priority function. As mobility of 1 2,o o is 0,

while for
6o mobility is 2, we schedule only 1 2,o o in step1. It may be noted that in

step1 we can schedule 8o without violating resource constraint of subtractor.

For step 2, the 2READYLIST comprises 3 6 9, ,o o o . We can schedule all three

operations 1 2 6, ,o o o as requirement is one multiplier, one divider and one adder, which

does not violate resource constraint. The 2READYLIST and scheduled operations in

step2 are shown in the figure (third and fourth rows).

List Scheduling

List Scheduling
For step 3, the

3READYLIST comprises
4 7,o o . We can schedule the two operations as

requirement is one subtractor and one divider, which does not violate resource

constraint. The 3READYLIST and scheduled operations in step3 are shown in the

figure (fifth and sixth rows).

For step 4, the 4READYLIST comprises 5o . We can schedule the operation as

requirement is one subtractor, which does not violate resource constraint. The

4READYLIST and scheduled operations in step4 are shown in the figure (seventh and

eight rows).

 As there are no more operations left, list scheduling is complete,

List Scheduling

Integer Linear Programming based Scheduling

•Integer Linear Programming (ILP), have been used to solve a wide range of
constraint based optimization problems

•ILP formulation for optimally solving the synthesis problem.

•The biggest advantage of using ILP is the quality of the solution; unlike the
heuristics based scheduling algorithms, described earlier, an ILP solver is
guaranteed to find an optimal schedule from these formulations. However, this
guarantee of quality comes at a price — ILPs cannot, in general, be solved in
polynomial time. Thus, the tradeoff is between the guarantee of solution quality
and a guarantee of quickly finding a solution.

Integer Linear Programming based Scheduling

•Now we will formulate the scheduling problem as ILP. Unlike the discussion on
other scheduling cases (above), we will not give a generalized algorithm to
formulate an ILP for a scheduling problem. However, we will consider the running
example and formulate ILP for the same and the discussion will give a generalized
idea of the procedure of such a formulation.

•In the ILP for scheduling, we have four sets of equations namely,

 (i) to capture the range ([ASAP-ALAP]) in which an operation can be
scheduled,
(ii) requirement that there is no violation of resource constraints,
(iii) data dependency and
(iv) optimize the resource requirements.

Range of scheduling
Let

,i jo denote the scheduling of operation
io in step j.

,i jo is a variable for the ILP.

For scheduling we consider 0-1 ILP, where, in the solution we can have only 0 and 1

values of the variables. In the running example, operation 1o must be scheduled in

step1.

The ILP equation capturing this fact is 1,1 1o  , which implies that for the ILP

solution, variable 1,1o can only have the solution as 1.

However, for operation 6o the equation is 6,1 6,2 1o o  , which captures the fact that

6o can be scheduled in step1 or step2. In the ILP solution either, 6,1o will have the

value 1 and 6,2 0o  (implying that 6o is scheduled in step1) or 6,2o will have the

value 1 and 6,1 0o  (implying that 6o is scheduled in step2).

Range of scheduling

o1 o2

o3

o4

Step 1

Step 2

o5

o6

o7

* *

*

/

-

-

/

o9+

o8

-

RANGE1={1} RANGE2={1}

RANGE3={1}

RANGE4={1}

RANGE5={1}

RANGE6={2}

RANGE7={2}
RANGE8={3}

RANGE9={3}

INTERVAL1=[1,1] INTERVAL2=[1,1]

INTERVAL5=[1,1]

INTERVAL3=[1,1]

INTERVAL4=[1,1]

INTERVAL6=[1,2] INTERVAL8=[1,3]

INTERVAL9=[2,4]

Step 4

Step 3

INTERVAL7=[2,3]

Range of scheduling
In a similar way, all the equations for the running example which capture range of

scheduling are given below:


1,1 1o  (range of 1o)

 2,1 1o  (range of 2o)

 3,2 1o  (range of
3o)

 4,3 1o  (range of 4o)

 5,4 1o  (range of 5o)

 6,1 6,2 1o o  (range of 6o)

 7,2 7,3 1o o  (range of 7o)

 8,1 8,2 8,3 1o o o   (range of 8o)

 9,2 9,3 9,4 1o o o   (range of 9o)

Requirement :no violation of resource constraints

In the running example, at control step1, we can have three multiplication operations

and a subtraction operation.

However, this requirement should not violate the resource constraints.

In the example we have multiplier, divider, subtractor and adder. Let

max max max max1 ,2 ,3 ,4 denote the maximum number of multipliers, dividers, subtractors

and adders, respectively.

So for the first control step, equation 1,1 2,1 6,1 max1o o o   , represents that

multiplication operations 1 2 6, ,o o o can be scheduled in step1, however, their number

must be less than maximum allowed multipliers (max1).

Requirement :no violation of resource constraints


1,1 2,1 6,1 max1o o o   (multipliers in step1)


8,1 max3o  (subtractor in step1)


6,2 max1o  (multiplier in step2)

 3,2 7,2 max2o o  (dividers in step2)


8,2 max3o  (subtractor in step2)

 9,2 max4o  (adder in step2)

 4,3 max3o  (subtractor in step3)

 7,3 max2o  (divider in step3)

 8,3 max3o  (subtractor in step3)

 9,3 max4o  (adder in step3)

 5,4 max3o  (subtractor in step4)

 9,4 max4o  (adder in step4)

Data dependency

It may be noted that there are some operations in the running example, whose

position are fixed namely, 1 2,o o in step1 and
3o in step2.

It may be noted that there is data dependency between 1 2,o o and 3o ; 3o can be

scheduled only after 1 2,o o .

However, as the positions of 1 2 3, ,o o o are fixed, we need not write explicit expressions

in ILP for their data dependencies. The three equations representing the range of

scheduling of 1 2 3, ,o o o (1,1 1o  , 2,1 1o  and 3,2 1o ) capture that dependency relation;

1 2,o o is scheduled in step1 and 3o is scheduled in step2, thereby satisfying “ 3o can

be scheduled only after 1 2,o o ” .

Data dependency
However, for operations like

6o (which can be scheduled in step1 or step2) and
7o

(which can be scheduled in step2 or step3), equation
6,1 6,2 1o o  states that

6o can

be scheduled in step1 or step2 and equation 7,2 7,3 1o o  states that
7o can be

scheduled in step2 or step3.

However, these two equations cannot guarantee that 6o cannot be scheduled in step2

along with 7o ; this will lead to inconsistency as there is dependency between 6o and

7o .

So for such flexible operations we need equations in ILP representing the

dependency.

Data dependency

6,1 6,2 7,2 7,3(1 2) (2 3) 1o o o o     captures this dependency; the mechanism is

explained as follows.

There are four solutions to the schedule of 6o and 7o , after satisfying the equations

representing their ranges (
6,1 6,2 1o o  and 7,2 7,3 1o o ),

(i) 6o in step1 and 7o in step2,

(ii)
6o in step1 and

7o in step3,

(iii) 6o in step2 and 7o in step2,

(iv) 6o in step2 and 7o in step3.

 Among the four cases only (iii) is to be avoided; it may be noted that 6,2 1o  (so,

6,1 0o ) and 7,2 1o  (so, 7,3 0o ), will not satisfy “ 6,1 6,2 7,2 7,3(1 2) (2 3) 1o o o o    

” (however, will satisfy 6,1 6,2 1o o  and 7,2 7,3 1o o ).

Data dependency
So, equation

6,1 6,2 7,2 7,3(1 2) (2 3) 1o o o o     could incorporate the data dependency

in the IPL.

To generalize, the equation 6,1 6,2 7,2 7,3(1 2) (2 3) 1o o o o     , is formulated as

follows.

The parts of the equation, “ 6,1 6,21 2o o ” and “ 7,2 7,32 3o o ” are taken from the

range equation for 6o and 7o , respectively, after multiplying the terms with the

corresponding control step number. Then we subtract the sub-equation of the

successor from that of the processor and the result should be less than or equal to -

1. “less than or equal to -1” corresponds that 6o is to be predecessor of 7o .

Data dependency equations for the running example are as follows:

 6,1 6,2 7,2 7,3(1 2) (2 3) 1o o o o    

 8,1 8,2 8,3 9,2 9,3 9,4(1 2 3) (2 3 4) 1o o o o o o      

Optimize the resource requirements

This equation represents the optimization criterion to minimize the resource cost.

In the running example, the equation is

Minimize “ max max max max1 2 3 4   ”, subject to satisfying all the equations for range,

resource constraints and data dependency given above.

Final Solution of the ILP
If we solve the 0-1 ILP using any standard method, we get the following solution:


1,1 1o 

 2,1 1o 


3,2 1o 

 4,3 1o 

 5,4 1o 

 6,1 6,20; 1o o 

 7,2 7,30; 1o o 

 8,1 8,2 8,31; 0; 0o o o  

 9,2 9,3 9,41; 0; 0o o o  

 max max max max1 2;2 1;3 1;4 1   

Final Solution of the ILP

•It may be noted that this solution corresponds to the schedule of FDS; it can
also be determined that this schedule is most optimal in terms of resource
requirements if time step constraint is 4.

•Now a question arises, if FDS can do the same schedule then why we need the
complex ILP based solution. The answer to this question lies in the fact that FDS
may not always lead to optimal solution while ILP guarantees to generate the
most optimal solution. In the question and answer section of this lecture, we
illustrate a situation when FDS may not generate an optimal solution.

Some issues

First, we assumed that all types of operators have same cost in terms of
resource requirements. However, in a real situation some operators involve
much more hardware than others. Therefore, our scheduling algorithms need to
consider also the cost of hardware of the operators.

Secondly, we assume that each operator takes one control step to do the
operation. However, in a real situation some operators take more time to
complete the computation

Third, we assume that each operator can perform only one function. However,
in practice most of the operators are capable of doing multiple types of
operations e.g., an adder can do both addition and subtraction (with slight
modification)

Question and Answer
Question: Illustrate an example of scheduling where FDS does not provide
optimal results in terms of resource requirements.
Answer
Consider the following expressions “out1=(a+b+c)*d” and “out2=(e+f)*g” .
ASAP and ALSP schedule for “out1=(a+b+c)*d” and “out2=(e+f)*g” are
shown in next two figures.

+

a b c d

+

*

o1

o2

o3

Step 1

Step 2

Step 3

out1

+

f

o5

*

g

o6

e

out2

Question and Answer

+

a b c d

+

*

o1

o2

o3

Step 1

Step 2

Step 3

out1

+

f

o5 *

g

o4

e

out2

ALAP schedule for “out1=(a+b+c)*d” and “out2=(e+f)*g”

Question and Answer

iINTERVAL and iRANGE for “out1=(a+b+c)*d” and “out2=(e+f)*g” are shown in next

figure.

o1

o2

o3

Step 1

Step 2

o4

o5

+

+

+

*

*

RANGE1={1}

RANGE2={1}

RANGE3={1}

RANGE4={2}

RANGE5={2}

INTERVAL1=[1,1]

INTERVAL2=[1,1]

INTERVAL4=[1,2]

Step 3

INTERVAL5=[2,3]

INTERVAL3=[1,1]

Question and Answer

o1

o2

o3

Step 1

Step 2o4

o5

+

+
+

*
*

RANGE1={1}

RANGE2={1}

RANGE3={1}

RANGE4={1}

RANGE5={1}

INTERVAL1=[1,1]

INTERVAL2=[1,1] INTERVAL4=[2,2]

Step 3

INTERVAL5=[3,3]
INTERVAL3=[1,1]

FDS status of “out1=(a+b+c)*d” and “out2=(e+f)*g” after
4o is scheduled in step2

Question and Answer

As FDS algorithm does not specify which type of operator to start with, let us consider

adder first.

 From FDS algorithm it may be noted operation 4o can be scheduled in either step1 or

step2, because both will lead to same cost in terms of resource requirements (number of

adder is two).

So let the operation 4o be scheduled in step2, which implies that operation 5o will be

placed in step3.

Now the total resource requirement is two adders and two multipliers.

Question and Answer

o1

o2

o3

Step 1

Step 2

o4

o5

+ +

+

*

*

RANGE1={1}

RANGE2={1}

RANGE3={1}

RANGE4={1}

RANGE5={1}

INTERVAL1=[1,1]

INTERVAL2=[1,1]

INTERVAL4=[1,1]

Step 3

INTERVAL5=[2,2]

INTERVAL3=[1,1]

FDS status of “out1=(a+b+c)*d” and “out2=(e+f)*g” after
5o is scheduled in step2

Question and Answer

Let us see the other option and schedule operation 4o in step1. Now by FDS operator 5o

will be placed in step2. Now the total resource requirement is two adders and one

multiplier. So FDS may provide non-optimal solution;

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-II

Lecture-IV

Binding and Allocation Algorithms

Introduction
After the scheduling process, which assigns control steps to all the operations, in
the allocation step, circuit modules from the design library are selected for
executing the operations. Once circuit modules are selected, binding is done,
which accomplishes the following:

•Functional unit binding: All arithmetic and logic operations are binded to the
specific circuit modules allocated from the design library.

•Storage to register binding: A storage operation is created for each data
transfer that crosses a control step boundary. Also, all inputs are to be stored
in variables and binded to registers.

•Data-transfer to interconnect binding: Any data transfer involves an
interconnection between source and sink. Therefore, any data transfer is to be
binded with an interconnection (from source to destination). In addition, it
might be noted that interconnects are shared by data transfers which leads to
use of multiplexers in the sources and destinations.

Example: Binding of functional units, storages and data-transfer
A schedule of expressions “out1=a+b+c” and “out2=d+e+f” is shown. Let the
allocation be as follows:

•Two (ripple carry) adders
•Four registers (D-flip-flops)

We need two adders because in control step1 (also in step2) two addition
operations are scheduled and each need an adder to operate. Also we need four
registers because in step1, we need four variables (storage) namely, a,b,c,d. These
four registers can be re-used in step2 for variables temp1,c,temp2,f.

+

a b

c

+

o1

o2

o3

o4

temp1

out1

Step 1

Step 2

+

d e

f

+

temp2

out2

Example: Binding of functional units, storages and data-transfer

Let us consider the following option of binding

 Operations 1 2,o o are binded to adder1

 Operations
3 4,o o are binded to adder2

 Variables a,temp1,out1 are binded to register1

 Variables b,c are binded to register2

 Variables d,temp2,out2 are binded to register3

 Variables e,f are binded to register4

Some of the binding of the data-transfers with the interconnects are as
follows:

•adder1 to register1 (via Mux) is binded to data transfer “temp1=a+b”

•Input a to register1 (via Mux) is binded to data transfer “reading a from
input bus”

•Input b (and c) to register2 (via Mux) is binded to data transfer “reading
b from input bus” (“reading c from input bus”)

Example: Binding of functional units, storages and data-transfer

Case 1 of Binding for the schedule above

Register1

a,temp1

Mux

a

b,c

temp1/out1

adder1

o1,o2

Register2

b,c
Register3

d,temp2

Mux

d

e,f

temp2/out2

adder2

o3,o4

Register4

e,f

Example: Binding of functional units, storages and data-transfer

•It may be noted that as two data transfers (point 1 and point 2, above) are
binded to regsiter1, we need a multiplexer that feeds to the input of register1.
Similarly, we require a multiplexer at input of register3.

•It may be noted that even if two data transfers “reading b from input bus”
and “reading c from input bus” are binded to register2, there is no multiplexer
at input of register2. This is because we connect the input line to register2,
where in step1 we have value of b and in step2 we have value of c.

•For a similar reason we do not require a multiplexer for input of register4.

Example: Binding of functional units, storages and data-transfer

Let us consider the another option of binding

 Operations 1 4,o o are binded to adder1

 Operations
2 3,o o are binded to adder2

 Variables a,temp2,out1 are binded to register1

 Variables b,f are binded to register2

 Variables d,temp1,out2 are binded to register3

 Variables e,c are binded to register4

The interconnects are illustrated in next figure and can be interpreted in a
similar manner as discussed for the last case. It may be noted that in this case
also we require two multiplexers in the circuit.

Example: Binding of functional units, storages and data-transfer

Register1

a,temp2,out1

Mux

a

b,f

temp1/out2

adder1

o1,o4

Register2

b,f
Register3

d,temp1.out2

Mux

d

e,c

temp2/out1

adder2

o3,o2

Register4

e,c

Example: Binding of functional units, storages and data-transfer

Now, let us consider the third option of binding:

 Operations
1 4,o o are binded to adder1

 Operations
2 3,o o are binded to adder2

 Variables a,temp1,out2 are binded to register1

 Variables b,f are binded to register2

 Variables d,temp2,out1 are binded to register3

 Variables e,c are binded to register4

Example: Binding of functional units, storages and data-transfer

Register1

a,temp1,out2

Mux

a

b,f

temp1/out2

adder1

o1,o4

Register2

b,f
Register3

d,temp2,out1

Mux

d

e,c

temp2/out1

adder2

o3,o2

Register4

e,c

Mux
Mux

temp2 temp1

Example: Binding of functional units, storages and data-transfer

•It may be noted that in this case we require four multiplexers in the
circuit. Two multiplexers at inputs of register1 and register3 are added for
the same reason as discussed in the last two cases.

•Now we see why two more multiplexers at inputs of both the adders are
required. It may be observed from the figure that data transfer “a to
operand of adder1” is binded to interconnect “register1 (source)--left
input of adder1 (destination)” and “temp2 to operand of adder1” is
binded to interconnect “register3 (source)--left input of adder1
(destination)”. As there are two different interconnects for the left input
of adder1, we require a multiplexer. Similarly, we require another
multiplexer at input of adder2.

•So, it can be concluded that depending on binding, the area taken by
interconnects (including multiplexers) varies.

Binding using clique partitioning

In clique partitioning based binding, the operations and variables are modeled in
terms of a graph. Each variable (if storage binding is done, or operation, if functional
unit binding is done) is modeled by a node in the graph. There is an edge between
two nodes only if the lifetime of the variables (or operations) does not overlap.

a b

ctemp1

out1

Step 1

Step 2

d e

ftemp2

out2

 It may be noted that variables a,b,c,d are required in step1 only, thereby
making their life time only step1. Similarly, life time of variables
temp1,c,temp2,f is step2 and out1,out2 are alive only in step3.

Binding using clique partitioning

b

a

c

temp1

e

d

f

temp2

out1
out2

The graph representation of
the variables, in terms of
lifetime is illustrated

Binding using clique partitioning

a

temp1

out1

c

b

d

temp2

out2

f

e

Binding using clique partitioning

•It may be noted that there if two variables exits whose lifetime do not
overlap, then they are connected by an edge. For example, out1 and a are
connected by an edge while a and b are not.

•Now, for binding, we need to determine maximal cliques in the graph.

• The clique problem is to find complete subgraphs ("cliques") in a graph,
i.e., sets of elements where each pair of nodes is connected.

•For each maximal clique we need a hardware resource of the
corresponding type. All variables (or operations) corresponding to the
nodes of the maximal clique are binded to the hardware module selected
for the clique.

•It may be noted that a maximal clique comprises maximum possible nodes
where each of them has an interconnecting edge. Variables (or operations)
in a clique can share a resource. If we have maximal cliques then we can
have minimal number of modules as more variables (or operations) share a
single hardware module.

Binding using Left-Edge Algorithm
•In left edge algorithm, we first short, in ascending order, the variables (or
operations) according to the starting step of their life times.

• If there are more than one variable at the same level in the order (because of
the same starting control step), then those variables are ordered based on the
last control step.

• For example, if there are three variables a,b,c where, a has life time from
step1 to step3, b has life time from step1 to step2 and c has life time from
step2 to step3, then the order is a<b<c. If there are some variables with same
start and end control step then they are ordered arbitrarily.

a b

ctemp1

out1

Step 1

Step 2

d e

ftemp2

out2

Binding using Left-Edge Algorithm
•Once the variables are arranged, we start with a register and traverse the
variables (arranged in order) from left to right.

•While traversing, we start filling the register with variables such that there is
no overlap in the register. Once the traversal is complete, we delete the
variables from the arranged list that are filled in the register.

•If there are variables remaining in the list we take another register and repeat
the procedure.

a

ctemp1

out1

Step 1

Step 2

d e

ftemp2

out2

b

R1 R2 R3
R4

Binding using Left-Edge Algorithm
We take register R1, and in the process of traversal we first start with variable
a; variable a is filled in R1 and it occupies step1 in R1. Following that we
traverse variables b,c,d but cannot put them in R1 as they would overlap with
a. Variable temp1 can be filled in R1 and it occupies step2. Finally variable
out1 is put is R1. As there are more variables, we take another register R2 and
repeat the procedure.

Register1

a,temp1,out1

Mux

a b,c

temp1

adder1

o1,o2

Register2

b,c,out2
Register3

d,temp2

Mux

d

e,f

temp2

adder2

o3,o4

Register4

e,f

Mux

Circuit for the binding

Binding using Iterative Refinement
Binding using iterative refinement, as the name suggests, starts with an
arbitrary “feasible” binding and at each step of iteration, variables (or
operations) are swapped in between the registers (or operations) such that the
new binding remains feasible. If the new binding comprises less interconnect
area than the previous one, the new binding replaces the old one. Iteration
continues until the interconnect area reaches the desired level or new
iterations are not able to improve the area.

For example, we may start with the binding given in last figure. Then we may
swap variable out2 and “NULL” between R2 and R3; this schedule is better than
the old one as it requires two multiplexers, while the old one requires three
multiplexers. Similarly, we carry on with the iterations by swapping variables
until we get the desired interconnect area or we find that there has been no
improvement since last few (which can be a user defined threshold) iterations.

Binding using Iterative Refinement

Register1

a,temp1

Mux

a

b,c

temp1/out1

adder1

o1,o2

Register2

b,c
Register3

d,temp2

Mux

d

e,f

temp2/out2

adder2

o3,o4

Register4

e,f

Question and Answer

Question: We know that list scheduling provides optimal binding solution in P-
time where as clique partitioning requires exponential time for the same
quality of solution. Why, still, clique partitioning is not considered obsolete?

Answer:
While list scheduling provides optimal solution, in terms of resource utilization
of variables (i.e., registers) and operations (i.e., operators), in polynomial time,
there is no provision of incorporating area of interconnects due to a given
binding into the algorithm. However, in case of clique partitioning based
solution weights can be assigned to the edges based on area that might result
by binding the two operations (or variables) corresponding to the two nodes of
the edge under question to a single operator (or register). So most of the area
aware binding techniques consider clique partitioning (with required
enhancements).

Thank You

