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Introduction 

•Any VLSI design we start with specifications and the first step is to obtain the 
Register Transfer Level (RTL) circuit.  
 
•RTL circuit is obtained from specifications using High Level Synthesis (HLS) 
algorithms.  As specifications are processed by HLS algorithms, they need to be 
represented using some modeling language.    
 
•Control and Data Flow Graph (CDFG), is one of the most widely accepted 
modeling paradigm for specifications that are processed by HLS tools.   
 
•Transformation techniques in the CDFGs, which lead to efficient circuit 
implementation in terms of area, frequency, power etc. HLS takes as input, the 
optimized CDFG, performs Scheduling, Allocation, Binding and generates RTL 
design.  
 
•In this module we will study algorithms pertaining to these steps--Scheduling, 
Allocation, and Binding. To start with, in this lecture, we introduce HLS and 
problem definition of Scheduling, Allocation and Binding.   



Introduction to HLS 
•A behavioural description (i.e., functional specifications) is used as the starting 
point for HLS. It specifies the behaviour in terms of operations, assignment 
statements, and control constructs in a Hardware Description Language (HDL) . 
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Introduction to HLS 

The first step in HLS is compilation of the HDL and transformation into an internal 
representation.  
 
Most HLS techniques use Control and Data Flow Graph (CDFG) as the 
representation, because it contains both the data flow and the control flow.  
 
This process also includes a series of compiler like optimizations namely, dead code 
elimination, redundant expression elimination etc.  
 
Further, it also applies hardware-library specific transformations such as, use of 
incrementers instead of adders, use of shifters instead of multipliers etc.  
 
It may be noted that in the last module, we have studied these compilation and 
transformation steps.  Sometimes we call these steps as pre-processing phase for 
HLS, where the optimized CDFG is provided to HLS engine. In some literatures, 
however, we include these pre-processing steps in the HLS procedure.  



Introduction to HLS 

The second step of the HLS, which plays a key role in transforming a CDFG (i.e., 
behavioral) representation into a RTL (i.e., structural) representation, is operation-
scheduling (called just “scheduling” in HLS terminology).  
 
 
Scheduling involves assigning operations of the CDFG to so-called control steps. A 
control step usually corresponds to a cycle of the system clock, the basic time unit 
of a synchronous digital system.  
  
The third step is Allocation, which chooses functional units and storage elements 
from the design library. The design library has several alternatives for a given 
functional unit or a storage unit.   For example, for a functional unit like adder, 
there can be many options like ripple-carry adder, carry-look-ahead-adder etc.  
Similarly, for storage elements there can be different types of registers like 
registers with only resets,  registers with both pre-sets and resets, registers with 
pre-sets, resets and load etc. Among the alternatives, the allocation algorithm 
must select the one that matches the design constraints best and maximizes the 
optimization objective.  



Introduction to HLS 

The fourth step is Binding. After the functional operations and storage operations 
are scheduled and components from design library are selected for such 
operations (allocation), then comes the role of binding. Binding assigns operations 
to functional units, variables to storage elements and data transfers to wires or 
buses such that data can be correctly computed and passed, according to the 
scheduling.  
  
 
 
The final step of HLS is data-path and controller generation. Depending upon the 
scheduling and the binding information, interconnection between the circuit 
modules of the data-path components are set up; this is called data-path 
generation. Further, an FSM is generated to control all the micro-operations 
required to control data-flow in the data-path; this is called controller generation.   
  



Scheduling Problem  

The scheduling problem involves determining the sequence in which the 
operations are executed to produce a control step schedule, which specifies the 
operations that execute in each control step.  

Let O be the set of all operations to be scheduled, which are obtained from the HDL 

code. If there is an operation 
jo O  which depends on the result of another operation 

an 
io O ,  then 

io  must finish its execution before operation 
jo  can begin. In such a 

case we say that there is a data dependency between the two operations   andi jo o  and 

io   is an immediate predecessor of jo . Data dependency results in a precedence 

constraint between the two dependant operations in scheduling. In other words, an 

operator can be scheduled only after all its predecessors are scheduled.  



Scheduling Problem  

Based on the above basic formulations we will discuss the following four types of 

scheduling problems   

Un-Constrained Scheduling (UCS) problem 

Time Constrained Scheduling (TCS) problem 

Resource Constrained Scheduling (RCS) problem 

Time-Resource Constrained Scheduling (TRCS) problem 

  

Now we elaborate on each of these types using the simple example expression 

“(a+b+c+d)*e”.  

For any HLS platform, there exists a module library comprising circuits for different 

functionalities like adder, multipliers, registers etc. Further, the library also has 

information regarding different parameters of the modules namely, frequency, area, 

power etc. Let T be the set of different types of modules that are available. For a 

given operation o , the type of the operation is determined by a type function 

:Ty O T ; ( )Ty o t implies that operation o can operate on module of type t . 



Unconstrained Scheduling (UCS) problem 
Given: 

A set of operations O , a set T  of different types of functional modules, a type 

function :Ty O T  and a partial order on O  determined by the precedence 

constraints.  

Find:  

A feasible schedule for all elements in O , taking appropriate modules from T  and 

obeying the partial order. 
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Unconstrained Scheduling (UCS) problem 

As the schedule is unconstrained we need to see that all elements in O  are scheduled, 

appropriate modules from T  are taken and partial order is maintained. In the above 

example, there are four operations (3 additions denoted as 
1 2 3, ,o o o and 1 multiplication 

denoted as 4o ), all of which are scheduled. Let the library have two types of resources, 

adders (denoted as 
1t ) and multipliers (denoted as 2t ). It may be noted that appropriate 

modules from T  are taken-- 1 2 3, ,o o o  are assigned to 1t  (i.e., adder is assigned to addition 

operations) and 4o  are assigned to 2t  (i.e., multiplier is assigned to multiplication 

operation).  

As the scheduling is unconstrained, we consider two adder modules (one for 
1o

and the other for 2o ) and a multiplier module (for 4o ). The adder module for 1o  

can be reused for 3o . The control steps required is 3.  



Time Constrained  Scheduling (TCS) problem 
Given: 

A set of operations O , a set T  of different types of functional modules, a type 

function :Ty O T , a time constraint (deadline) D  (i.e., maximum  control steps) 

and a partial order on O  determined by the precedence constraints.  

Find:  

A feasible schedule for all elements inO , taking appropriate modules from T , 

meeting the deadline D  and obeying the partial order.  

It may be noted that schedule of last example satisfies all requirements of 

unconstraint scheduling problem and along with that, it satisfies the three steps 

deadline (of timing constrained problem). Further, we may note that we cannot 

have a successful schedule if timing constraint is two control steps, as it will lead 

to violation of partial order. The time-constrained scheduling required two adders 

(for 1 2,o o , which is reused for 3o ) and a multiplier (for 4o ) . 



Resource Constrained  Scheduling (TCS) problem 
Given: 

A set of operations O , a set T  of different types of functional modules, a type 

function :Ty O T , resource constraints max ,1 | |k k T   for each functional 

module of type ,1 | |kt k T   and a partial order on O  determined by the 

precedence constraints.  

 

Find:  

A feasible schedule for all elements in O , taking appropriate modules from T , 

meeting the resource constraints for each functional module type and obeying the 

partial order. 



Resource Constrained  Scheduling (TCS) problem 
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Resource Constrained  Scheduling (TCS) problem 

Illustrates a resource-constrained scheduling involving, one adder and one multiplier, for 

expression (a+b+c+d)*e.  

 

 

As the schedule is resource-constrained we need to see that all elements in O  are 

scheduled, appropriate modules from T  are taken, partial order is maintained and 

recourse utilization does not cross the limit.   

 

 

As there is one adder module (for 1 2 3, ,o o o ) and a multiplier module (for 
4o ), we cannot 

schedule 
1o  and 

2o  in one control step. So we schedule 
1o  is step1 and 

2o  in step2. To 

maintain the partial order, 
3o  is scheduled in step3 and 

4o  is scheduled in step4; it may 

be noted that these operators cannot be scheduled earlier.  

 

 

 

Therefore, the number of control steps is 4. Due to meeting the resource constraint, we 

cannot have a schedule in 3 steps  



Time Resource Constrained  Scheduling (TCS) problem 

Given: 

A set of operations O , a set T  of different types of functional modules, a type 

function :Ty O T , a time constraint (deadline) D , resource constraints 

max ,1 | |k k T   for each functional module of type ,1 | |kt k T  and a partial 

order on O  determined by the precedence constraints.  

Find:  

A feasible schedule for all elements in O , taking appropriate modules from T , 

meeting the deadline D , meeting the resource constraints for each functional 

module type and obeying the partial order.  

In time resource constraint scheduling, we need to meet both timing and resource 

constraints.   



Allocation Problem  
•Once a schedule is made (i.e., type of operators are determined along with 
their quantity), the allocation task determines the “exact” operator 
modules, available in the design library, to be used in implementation of 
the operators. Also, the area, power, frequency is determined after 
allocation.  
 
•A typical design library can be represented as a table given below. It has 
description regarding the type of modules (i.e., functionality), sub-types 
(namely, fast, slow, typical etc.), area, power, frequency etc.  In case of a 
modern sub-micron technology, a design library has many more entries 
namely, leakage power, current etc. 



Allocation Problem  

Sl. 

No 

Name of Module Type  Sub-type  Frequency Area Power 

1 Adder-slow 
1t  

1t S  
1t SF   

1t SA   
1t SP   

2 Adder-fast 
1t  1t F  

1t FF   
1t FA   

1t FP   

3 Multiplier-slow  
2t  2t S  

2t SF   
2t SA   

2t SP   

4 Multiplier-fast 
2t  2t F  

2t FF   
2t FA   

2t FP   

 

It may be noted that a fast module has higher frequency, higher area and higher power 

compared to its shower counterpart; so
1 1t S t FF F  , 

1 1t S t FA A  , 
1 1t S t FP P   and 

2 2t S t FF F  , 
2 2t S t FA A  , 

2 2t S t FP P  .  



Allocation Problem  

Let us consider the unconstrained schedule of the expression (a+b+c+d)*e, From the 

output of scheduling we know that 
1 2 3, ,o o o  are of type 

1t  and 
4o  is of 

2t . Further, we 

need two modules of type 1t  and one module of type 2t .  

 

Now, depending on requirement of frequency and available area-power overheads, 

we can select the sub-types for 1t  and 2t . If we have high area and power constraints, 

then we would use 1t S  for 1t  and 2t S  for 2t .  

 

It may be noted that time period of each control step is dependent on module having 

the lowest frequency because system clock frequency depends on the critical path. In 

general, a multiplier has much higher area and power requirements compared to an 

adder. Also, frequency of a multiplier is lower compared to an adder.  



Allocation Problem  

So, in the example, time period of each control step be 

2

1

t SF 

.  

Now, if have no area and power constraints, then we would use 1t F  for 1t  and 

2t F  for 2t .The time period of each control step is 

2

1

t FF 

.  

But, in general 
2 1t F t SF F  ; frequency of a fast multiplier is generally less compared 

to even a slow adder. So in spite of allocating fast adders to 1 2 3, ,o o o  (consuming high 

area and power), time period of control step is 

2

1

t FF 

, which is not dependent on  

1 1
 or t S t FF F  . So we can use slow adders without any compromise in overall time 

period of operation (i.e., time period of control step).  



Binding  
After all the operations are scheduled and allocation is done, we get information 

regarding exact type of circuit modules (from the design library) to be used and their 

numbers.  

We have seen in the allocation step, that operations in a control step are performed by 

different modules, however, modules are shared between operations (of same type) 

that are in different control steps.  In the unconstrained schedule example, an adder 

module will be shared between 1o  and 3o or 2o  and 3o . Due to sharing, in addition to 

operational modules (adders, multipliers etc.), we need multiplexers.  

Further, to store variables (a,b,c,d,e) and intermediate results (temp1,temp2.temp3) 

we need registers. Like operational modules, registers can be shared, which do not lie 

in same control step.  

All the above-mentioned steps (after scheduling and allocation) fall under Binding.  



Binding  
The binding task (also called resource-sharing step) assigns the operations and 
variables to hardware modules. A resource such as an operational module or 
register can be shared by different operations, data accesses, or data transfers if 
they are mutually exclusive. For example, two operations assigned to two 
different control steps are mutually exclusive since they will never execute 
simultaneously; hence, they can be binded to the same hardware unit. Binding 
can be classified into three sub-functions:  
  
Storage binding: This step assigns input, output and temporary variables to 
registers units. Two variables that are not alive simultaneously (i.e., not required 
in overlapping control steps) in a given control step can be assigned to the same 
register.  
  
Functional-unit binding: This binding step assigns operations to operational 
modules (like adder, multiplier etc.). Two operations of same type that are not in 
a single control step can be assigned to the same operational module.  
  
Interconnection binding: This step assigns an interconnection unit such as a 
multiplexer or a bus to a data transfer.  
 



Binding  

Although listed separately, the three sub-functions are intertwined and are to be carried 

out concurrently for optimal results.  

 

Now, we will illustrate Binding for the unconstrained schedule when allocation is-- two 

number of modules of type 1t S  for 1 2 2, ,o o o  and one module of type 2t F  for 4o . 



Binding  
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Binding  
At control step1,  we have 4 active variables (a,b,c,d), at step2 we have 2 active 

variables (temp1,temp2) and at step3 we have 2 active variables (temp3,e).  

 

So we have a maximum of 4 active variables at step1, thereby leading to the fact that 

we required 4 registers;   a,b,c,d cannot share any register. However, registers can be 

shared between (a,b,c,d) and (temp3,e); (a,b,c,d) and (temp1,temp2); (temp1,temp2) 

and (temp3,e). However, variables listed in the brackets cannot share registers among 

themselves. As discussed in last section, we have two adder modules and one 

multiplier module. Based on these facts a possible binding is as follows  



Binding  

 Binding of 1o to adder1  and 2o  to adder2 (functional unit binding) 

 Binding of 
3o  to adder2 (functional unit binding) 

 Binding of a,temp1,temp3 to register1 (storage binding) 

 Binding of b,temp2 to register2 (storage binding) 

 Binding of c to register3 (storage binding) 

 Binding of d,e to register4 (storage binding) 

 Binding of 4o  to multiplier1 (functional unit binding) 



Binding-Configuration at Control step1  
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Binding-Configuration at Control step1  

 control1  is 0, thereby binding a in register1 and b in register2 

 control2  is 0, thereby binding d in register4  

 Binding c to register3 

 Binding of 1o  to adder1 

 Binding of 2o  to adder2 

Under this binding, adder1 generates temp1 and adder2 generates temp2. 



Binding-Configuration at Control step2  
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Binding-Configuration at Control step2  

 control1  is 1, thereby binding temp1 in register1 and temp2 in register2 

 control2  is X and adder2 is not used. In addition, register3 and register4 

are not used.   

 Binding of 3o  to adder1 

Under this binding, adder1 generates temp3 



Binding-Configuration at Control step3  
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Binding-Configuration at Control step3  

 control1  is 1, thereby binding temp3 in register1; register2 is not 

used 

 control2  is 1, hereby binding e in register4. Register3 is not used.   

 Binding of 4o  to multiplier1  

Under this binding, multiplier1 generates out.  



Control Path 

For the scheduling, allocation and binding considered in the running example we 

have the following signal sequences for control1 and control2 in the three time steps.  

 Step-1: control1  is 0 and control2  is 0 

 Step-2: control1  is 1 and control2  is X 

 Step-3: control1  is 1 and control2  is 1 

We need to develop a sequential circuit having two output bits “control1” and“control2” 

and they should have the values “00”, “1X” and “11” in three consecutive clock edges.  

This circuit can be easily design using the concept of state machine implementation  



Question and Answer 

Question: Among the three sub-steps of HLS, scheduling, allocation and 
binding, what can be done without information regarding design-library?  
 
Answer: Scheduling and Binding can be done without information regarding 
design-library. Scheduling assigns control steps to all operations in the CDFG, 
after satisfying data-dependency between the operations, subject 
constraints like number of steps, number of modules etc. So none of the 
parameters are related to design-library.  In case of Binding, operations and 
variables are attached to circuit modules, which are selected from the 
design library during the allocation phase. As circuit modules are already 
selected from the design library during the allocation phase, binding can 
work without any information from the design library.  
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Introduction 

High Level Synthesis (HLS) involves three sub-parts namely,  
scheduling, allocation and binding.  
 
In this lecture, we will discuss scheduling algorithms, which automatically assign 
control steps to operations subject to design constraints.  
 
 
Scheduling problem can be of four types namely, unconstrained, time constrained, 
resource constrained and time-resource constrained.  

 



Introduction 

•There are many algorithms proposed in the literature that solve these four types 
of scheduling problem.  
 
•Now, these algorithms can be classified into two types as heuristics and exact. 
Exact algorithms like Integer Liner Programming for scheduling, provides optimal 
schedule but consumes high processing time.  
 
•In practical cases, these exact algorithms for HLS take prohibitive amount of 
execution time. To cater to the execution time issue, several algorithms based on 
greedy strategies have been developed that make a series of local decisions, 
selecting at each point the single “best” operation-control step pairing without 
backtracking or look-ahead. So they may miss the globally optimal solution, 
however, they do produce results quickly, and those results are generally be 
sufficiently close to optimal to be acceptable in practice. Such algorithms are called 
heuristic algorithms (for HLS). Examples for heuristic algorithms for HLS comprise 
As Soon As Possible (ASAP), As Late As Possible (ALAP), List Scheduling (LS) and 
Force Directed Scheduling (FDS).  

 



As Soon As Possible Scheduling  
As-Soon-As-Possible (ASAP) scheduling is one of the simplest scheduling 
algorithms used in HLS.  
 
In ASAP scheduling, first the maximum number of control steps that are allowed is 
determined.  
 
Following that, the algorithm schedules each operation, one at a time, into the 
earliest possible control step.  
 
In other words, ASAP algorithm schedules operations in the earliest possible 
control step, subject to satisfying the partial order, i.e., an operation is scheduled if 
and only if all its predecessors are scheduled in earlier control steps. 
 
 
 If ASAP algorithm can schedule all the operations within the allowed number of 
control steps, scheduling is successful.  
 
It may be noted that ASAP algorithm does not consider  any resource constraints.  



As Soon As Possible Scheduling  
Algorithm 1: As Soon As possible  

Input: Operations O , Maximum number of control steps M . 

Output: Control step for each operations, Status of scheduling . 

Steps  

for each operation io O  

DO 

if io  has no immediate predecessors (i.e., computation from inputs) 

control_step( io ) = 1. /* control_step( io )  indicates control step 

into which operation io is scheduled */ 

else 

control_step( io ) = maximum(control_step( jo ))+ 1,where  

        { |  is immediate predecessor of }j io o o o .  

      END 

      If value of control_step( io ), , iM o O   then Status of scheduling is Successful.  



As Soon As Possible Scheduling  
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As Soon As Possible Scheduling  

In this case, it may be noted that operations 
1 2 6 8, , ,o o o o  do not have any direct 

predecessors, i.e., they depend on input values. So these operations have the control 

step as 1 (control_step( io )=1, 1,2,6,8i  ).  Operation 
3o  has 1 2,o o  as  predecessors, 

so, control_step( 3o ) = maximum (control_step( 1o ),control_step( 2o ))+1=2. Similarly, 

control step assignment for all operations can be explained.  

This schedule is complete within 4 steps, thereby making it successful. The resource 

requirements are— 

 Step1: 3 Multipliers + 1 Subtractor  

 Step2: 2 Dividers + 1 Adder 

 Step3: NIL (subtractor from Step1 can be used) 

 Step4: NIL (subtractor from Step1 can be used) 



As Late As Possible Scheduling  

•As-Late-As-Possible (ALAP) scheduling is almost similar to ASAP, but instead of 
scheduling operations to early control steps, in ALSP, first the maximum number 
of control steps that are allowed is determined.  
 
•Following that, the algorithm schedules each operation, one at a time, into the 
latest possible control step. In other words, ALAP algorithm schedules operations 
in the latest possible control step, subject to satisfying the (reverse) partial order, 
i.e., an operation is scheduled if and only if all its successors are scheduled in 
latter control steps.  
 
•If ALAP algorithm can schedule all the operations within 1st control step (as we 
move backward), scheduling is successful. It may be noted that like ASAP, ALAP 
algorithm also does not consider  any resource constraints.  



As Late As Possible Scheduling  

•As-Late-As-Possible (ALAP) scheduling is almost similar to ASAP, but instead of 
scheduling operations to early control steps, in ALSP, first the maximum number 
of control steps that are allowed is determined.  
 
•Following that, the algorithm schedules each operation, one at a time, into the 
latest possible control step. In other words, ALAP algorithm schedules operations 
in the latest possible control step, subject to satisfying the (reverse) partial order, 
i.e., an operation is scheduled if and only if all its successors are scheduled in 
latter control steps.  
 
•If ALAP algorithm can schedule all the operations within 1st control step (as we 
move backward), scheduling is successful. It may be noted that like ASAP, ALAP 
algorithm also does not consider  any resource constraints.  



As Late As Possible Scheduling  
Algorithm 2: As Late As possible  

Input: Operations O , Maximum number of control steps M . 

Output: Control step for each operations, Status of scheduling . 

Steps  

for each operation io O  

DO 

if io  has no immediate successors (i.e., computation generates outputs) 

control_step( io ) = M . /* control_step( io )  is assigned the  

      last control step */ 

else 

control_step( io ) = control_step( jo )- 1,  is immediate successor of j io o .  

      END 

      If all  io O  are scheduled within control step1  

then Status of scheduling is Successful  



As Late As Possible Scheduling  
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As Late As Possible Scheduling  

In this case, it may be noted that operations 
5 9,o o  do not have any direct successors, 

i.e., they generate output values. So these operations have the control step as 4M  .  

Operation 5o  is the immediate successor of 4o , so, control_step( 4o ) =  control_step(

5o )-1=3. Similarly, control step assignment for all operations can be explained.  

This schedule is complete within the 1
st
 control step, thereby making it successful. 

The resource requirements are— 

 Step1: 2 Multipliers   

 Step2: 1 Dividers + (multiplier from Step1 can be used) 

 Step3: 2 subtractors + (divider from Step2 can be used) 

 Step4:  1 adder + (subtractor from Step3 can be used) 



ASAP versus ALAP 

If ALAP is compared with ASAP, it may be noted that we have achieved the following.   

 Saved 1 Multiplier by delaying  
6o  from step1 to step2. 

 Saved 1 Divider by delaying  
7o  from step2 to step3. 

 Increased 1 subtractor by delaying  
8o  from step1 to step3. 

So, it may be observed that for the subpart of the expression, “(e*f)/b”, ALSP is better 

compared to ASAP. However, for the expression, “out2=(g-b)+f” ASAP is better 

compared to ALAP. As already mentioned, ALSP and ASAP are heuristics and may not 

generate an optimal solution. By applying the scheme ALAP for   “(e*f)/b” and ASAP 

for “out2=(g-b)+f”, the schedule we obtain for 4M   is shown next.  
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ASAP versus ALAP 
It may be noted that the resource consumption in this case is as follows.  

 Step1: 2 Multipliers  + 1 subtractor 

 Step2: 1 Divider + (multiplier from Step1 can be used) + 1 adder  

 Step3: 1 subtractors + (subtractor from Step1 can be used) + (divider  from 

Step2 can be used) 

 Step4:  (subtractor from Step3 can be used) 

So it may be noted that a schedule which is a “mix of ALAP and ASAP” provides 

better solution than by the individual algorithms.   

Now we will see FDS scheduling algorithm which is motivated from above fact of 

combining ALAP and ASAP.  



Force Directed Scheduling  
•FDS starts by first finding ALSP and ALAP scheduling for all the operations. 
Operations whose ALAP and ASAP schedules are same (i.e., same control step is 
assigned by both ALAP and ASAP), are not considered to be re-scheduled by FDS as 
there is no flexibility in their positions.  
 
•Following that, all operations are listed whose ALSP and ASAP schedules are 
different and the flexible range for such an operation is “ [control step assigned by 
ASAP --to-- control step assigned by ALSP]”.  
 
•Now, we schedule these operations in one of their flexible steps, such that total 
count of operators is minimal.  
 

•To accomplish this, operations of each type are considered one by one. For a 
given type of operation, we analyze the total requirement of the number of 
operators (of the type under question), by considering the combinations of 
placing the corresponding operations in the steps within their intervals.  
•We select the combination that leads to minimal number of operators.  
•Once we are done with the operation of one type we move for the other 
types, one by one.  



Force Directed Scheduling  
Before providing the algorithm for FDS scheduling certain notations are introduced.  

 
iASAP : Control step scheduled by ASAP algorithm to operation 

io  

 
iALAP : Control step scheduled by ALAP algorithm to operation 

io  

 
iINTERVAL : [ iASAP  to

iALAP ] 

 
iRANGE : 

iALAP - iASAP +1 

 
,i jPROB : Probability of scheduling an operation  io  in control step j , 

ij INTERVAL ; 1

, ( )i j iPROB RANGE   

 ,k jLIST : Set of all operations of type k in step j, i.e., set comprising all 

operations io  of type  k  such that ij INTERVAL .  

 ,k jCOST : Number of operators of type k required in step j. 

,

, ,

i k j

k j i j

o LIST

COST PROB


   



Force Directed Scheduling  
Algorithm 3: Force Directed Scheduling   

Input: ALSP and ASAP Scheduling. 

Output: Control step for each operations, Status of scheduling . 

Steps  

From ASAP and ALAP scheduling, for all operations (i.e., io O ) compute 

iINTERVAL , 
iRANGE , 

,i jPROB  (for all j), 
,k jLIST (for all j), 

,k jCOST (for all j).  

for each type of operation k K  

DO 

BEGIN /*loop finds best steps for all operations of type k */ 

( )k best  ;  

best_step=0; 

for each operation io  of type k whose 2iRANGE  . 

BEGIN /*loop finds best step for io */ 

for each ij INTERVAL   

BEGIN 



Force Directed Scheduling  

Temporarily schedule 
io  in step j  and compute the value 

of 
,k jCOST (

( )k new  ) due to fixing the schedule of 
io and 

changes of schedule of other operations due to data 

dependency.  

If ( ) ( )k new k best    then assign value of ( ) ( )to k new k best   and 

best_step=j.  

END  

Finally schedule io  in step best_step and other operators due to 

data dependency. 

Update for all operations (i.e., io O ) iINTERVAL , iRANGE , 

,i jPROB  (for all j), ,k jLIST (for all j), ,k jCOST (for all j). 

END 

END 



Force Directed Scheduling  
Now we will illustrate the FDS algorithm with the running example of scheduling 

“out1=((a*b)/(c*d))-a-((e*f)/b)” and “out2=(g-b)+f”.  

 

Next Figure illustrates 
iINTERVAL  and 

iRANGE , for all the operations. Here we 

have four types of operators; let k=1 represent multiplier, k=2 represent divider, k= 3 

represent subtractor and k= 4 represent adder.  

 

Now we will illustrate FDS for scheduling all operations of type k=1. Computation of 

,i jPROB , for all the multiplication operations are as follows.   

 1,1PROB =1; 2,1PROB =1; 6,1 0.5PROB  ; 

 1,2PROB =0; 2,2PROB =0; 6,2 0.5PROB  ; 

Further, ,k jLIST  for the first two steps for multiplication operations are 1,1LIST ={

1 2 6, ,o o o } and 1,2LIST ={ 6o }. So, 1,1 1 1 0.5 2.5COST      and 1,2 0.5COST  .  



Force Directed Scheduling  
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Force Directed Scheduling  

Among three multiplication operations, we have freedom only in scheduling 
6o  (

6 2RANGE  ). If we schedule 
6o  in step1 then  

 1,1PROB =1; 2,1PROB =1; 6,1 1PROB  ; 

 1,2PROB =0; 2,2PROB =0; 6,2 0PROB  ; 

 1,1LIST ={ 1 2 6, ,o o o } and 1,2LIST ={}.  

 1,1 3COST   

 ( ) 3k new  ; as ( ) ( ) ( ),  is assigned 3k new k best k best     and best_step=1 



Force Directed Scheduling  
We can also schedule 

6o  in step2, which results in  

 1,1PROB =1; 2,1PROB =1; 6,1 0PROB  ; 

 1,2PROB =0; 2,2PROB =0; 6,2 1PROB  ; 

 1,1LIST ={ 1 2,o o } and 1,2LIST ={ 6o }.  

 1,1 2COST   

 ( ) 2k new  ; as ( ) ( ) ( ),  is assigned 1k new k best k best     and best_step=2.  

So we schedule 6o  in step2, which results in fixing the schedule of 7o  in step3 

(due to data dependency);  7o  loses its flexibility. This is shown in next figure .   



Force Directed Scheduling  
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Force Directed Scheduling  
Similarly, computation of 

,i jPROB , for all the subtraction operations are as follows.   

 
4,3PROB =1. 

 8,1PROB =0.33; 8,2PROB =0.33; 8,3 0.33PROB  ; 

Further, ,k jLIST  for the first three steps for subtraction operations are 3,1LIST ={
8o } 

and 3,2LIST ={
8o } and 3,3LIST ={

4 8,o o }. So, 3,1 0.33COST  , 3,2 0.33COST   and 

3,3 1.33COST  .  

Among two subtraction operations we have freedom only in scheduling 8o  (

8 3RANGE  ). If we schedule 8o  in step1 then  

 4,3PROB =1. 

 8,1PROB =1; 8,2PROB =0; 8,3 0PROB  ; 

 3,1LIST ={ 8o }, 3,2LIST ={} and 3,3LIST ={ 4o }.  

 3,1 1COST   

 ( ) 1k new  ; as ( ) ( ) ( ),  is assigned 1k new k best k best     and best_step=1 



Force Directed Scheduling  
We can also schedule 

8o  in step2, which results in  

 4,3PROB =1. 

 8,1PROB =0; 8,2PROB =1; 8,3 0PROB  ; 

 3,1LIST ={}, 3,2LIST ={ 8o }  and 3,3LIST ={ 4o }.  

 3,2 1COST   

 ( ) 1k new  ; as ( ) ( ) ( ),  is not changedk new k best k best     and best_step=1 

We can also schedule 8o  in step3, which results in  

 4,3PROB =1. 

 8,1PROB =0; 8,2PROB =0; 8,3 1PROB  ; 

 3,1LIST ={}, 3,2LIST ={}  and 3,3LIST ={ 4 8,o o }.  

 3,3 2COST   

 ( ) 2k new  ; as ( ) ( ) ( ),  is not changedk new k best k best     and best_step=1 



Force Directed Scheduling  
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Force Directed Scheduling  

Similarly, it may be verified that FDS will schedule 
9o  in step2; final schedule is 

shown in next figure. 

 

 It may be noted that this schedule is same as the one for ALAP+ASAP. Therefore, 

FDS obtains an optimal schedule considering a merger of ASAP and ALSP.  



Force Directed Scheduling  
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List Scheduling  
•All the scheduling algorithms we discussed till now were heuristics based on time 
constants, in terms of number of control steps.  Now we discuss another heuristic 
scheduling algorithm which is resource constrained—List Scheduling.  
 
•Unlike ASAP, ALAP or FDS scheduling, which process operations individually in a 
fixed order, list scheduling handles each control step individually (in increasing 
order).  
 
•List scheduling works by trying to schedule “maximum” number of operations in 
the control step, subject to resource constraints and data dependency.  
 
•During the scheduling process, list scheduling uses a ready list (hence the name) 
to keep track of data-ready operations subject to data dependency.  
 
•The ready list in a control step comprises those unscheduled operations that can 
be scheduled into the current control step without violating the data dependency 
 
•As long as there are operations in the ready list that meet the resource 
constraints, operations are chosen from that list and scheduled into the current 
control step.  



List Scheduling  
•If more than one operation from ready list can be scheduled in a control step, but 
violates resource constraints, then choice among the ready operations is made by 
a priority function. 

One common priority function is “
iALAP - iASAP ” (i.e., range where the operation 

can be scheduled). Operations with smaller ranges (i.e., smaller mobility) are given 

higher priority, since there are fewer possible control steps into which those 

operations can be scheduled, and since delaying them to a later control step would 

more likely increase the overall length of the schedule.  



List Scheduling  
Algorithm 4: List Scheduling   

Input: Operations O , Maximum number of operators of type k  
maxk . 

Output: Control step for each operations. 

 

Steps  

Prepare 1READYLIST  (ready list for first step) , which comprises all operations 

whose predecessors  are input variables.  

for each operation 1io READYLIST  

DO  

BEGIN 

Schedule all operations  1io READYLIST  in control step1. If there is 

violation in resource requirement (i.e., number of operations of type k  in 

1READYLIST  is more than maxk ), then schedule according to priority 

function.  

      END 



List Scheduling  

Till there are operations 
io  to be scheduled 

DO 

BEGIN 

Prepare jREADYLIST  for the next control step (i.e., scheduling over for 

step j-1 ) 

Schedule all operations  i jo READYLIST  in control stepj. If there is 

violation in resource requirement  then schedule according to priority 

function.  

END 



List Scheduling  

Now we will illustrate list scheduling for the running example of “out1=((a*b)/(c*d))-

a-((e*f)/b)” and “out2=(g-b)+f” . Next Figure illustrates the schedule for each control 

step.  We assume that we have two multipliers ( max1 2 ), one divider ( max2 1 ), one 

subtractor  ( max3 1 ) and one adder ( max4 1 ).   



List Scheduling  

For step 1, the 
1READYLIST  comprises 

1 2 6 8, , ,o o o o . We cannot schedule all three 

multiplication operations 
1 2 6, ,o o o  as 

max1 2 . Mobility of the operations are shown in 

the figure. We assume that mobility is the priority function. As mobility of 1 2,o o  is 0, 

while for 
6o  mobility is 2, we schedule only 1 2,o o  in step1. It may be noted that in 

step1 we can schedule 8o  without violating resource constraint of subtractor.   

 

For step 2, the 2READYLIST  comprises 3 6 9, ,o o o . We can schedule all three 

operations 1 2 6, ,o o o  as requirement is one multiplier, one divider and one adder, which 

does not violate resource constraint. The 2READYLIST  and scheduled operations in 

step2 are shown in the figure (third and fourth rows). 



List Scheduling  



List Scheduling  
For step 3, the 

3READYLIST  comprises 
4 7,o o . We can schedule the two operations  as 

requirement is one subtractor and one divider, which does not violate resource 

constraint. The 3READYLIST  and scheduled operations in step3 are shown in the 

figure (fifth and sixth rows). 

 

For step 4, the 4READYLIST  comprises 5o . We can schedule the operation  as 

requirement is one subtractor, which does not violate resource constraint. The 

4READYLIST  and scheduled operations in step4 are shown in the figure  (seventh and 

eight rows). 

 

 As there are no more operations left, list scheduling is complete,  



List Scheduling  



Integer Linear Programming based Scheduling  

•Integer Linear Programming (ILP), have been used to solve a wide range of 
constraint based optimization problems 
 
 
 
•ILP formulation for optimally solving the synthesis problem.  
 
 
 
•The biggest advantage of using ILP is the quality of the solution; unlike the 
heuristics based scheduling algorithms, described earlier, an ILP solver is 
guaranteed to find an optimal schedule from these formulations. However, this 
guarantee of quality comes at a price — ILPs cannot, in general, be solved in 
polynomial time. Thus, the tradeoff is between the guarantee of solution quality 
and a guarantee of quickly finding a solution. 
  
 



Integer Linear Programming based Scheduling  

•Now we will formulate the scheduling problem as ILP. Unlike the discussion on 
other scheduling cases (above), we will not give a generalized algorithm to 
formulate an ILP for a scheduling problem. However, we will consider the running 
example and formulate ILP for the same and the discussion will give a generalized 
idea of the procedure of such a formulation.  
  
 
 
•In the ILP for scheduling, we have four sets of equations namely, 

 (i) to capture the range ([ASAP-ALAP]) in which an operation can be 
scheduled,  
(ii) requirement that there is no violation of resource constraints,  
(iii) data dependency and  
(iv) optimize the resource requirements.  

 
 



Range of scheduling 
Let 

,i jo  denote the scheduling of operation 
io  in step j. 

,i jo  is a variable for the ILP.  

 

For scheduling we consider 0-1 ILP, where, in the solution we can have only 0 and 1 

values of the variables.  In the running example, operation 1o  must be scheduled in 

step1.  

 

The ILP equation capturing this fact is 1,1 1o  , which implies that for the ILP 

solution, variable 1,1o  can only have the solution as 1.   

 

However, for operation 6o  the equation is 6,1 6,2 1o o  , which captures the fact that 

6o  can be scheduled in step1 or step2. In the ILP solution either,  6,1o  will have the 

value 1 and 6,2 0o   (implying that 6o  is scheduled in step1) or 6,2o  will have the 

value 1 and 6,1 0o   (implying that 6o  is scheduled in step2).  



Range of scheduling 
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Range of scheduling 
In a similar way, all the equations for the running example which capture range of 

scheduling are given below: 

 
1,1 1o  (range of 1o ) 

 2,1 1o  (range of 2o ) 

 3,2 1o  (range of 
3o ) 

 4,3 1o  (range of 4o ) 

 5,4 1o  (range of 5o ) 

 6,1 6,2 1o o   (range of 6o ) 

 7,2 7,3 1o o  (range of 7o ) 

 8,1 8,2 8,3 1o o o   (range of 8o ) 

 9,2 9,3 9,4 1o o o   (range of 9o ) 



Requirement :no violation of resource constraints  

In the running example,  at control step1, we can have three multiplication operations 

and a subtraction operation.    

 

However, this requirement should not violate the resource constraints.   

 

In the example we have multiplier, divider, subtractor and adder. Let 

max max max max1 ,2 ,3 ,4  denote the maximum number of multipliers, dividers, subtractors 

and adders, respectively.  

So for the first control step, equation 1,1 2,1 6,1 max1o o o   , represents that 

multiplication operations   1 2 6, ,o o o  can be scheduled in step1, however, their number 

must be less than maximum allowed  multipliers ( max1 ).  



Requirement :no violation of resource constraints  
 

1,1 2,1 6,1 max1o o o    (multipliers in step1) 

 
8,1 max3o   (subtractor  in step1) 

 
6,2 max1o   (multiplier in step2) 

 3,2 7,2 max2o o   (dividers in step2) 

 
8,2 max3o   (subtractor  in step2) 

 9,2 max4o   (adder  in step2) 

 4,3 max3o   (subtractor  in step3) 

 7,3 max2o   (divider in step3) 

 8,3 max3o   (subtractor  in step3) 

 9,3 max4o   (adder  in step3) 

 5,4 max3o   (subtractor  in step4) 

 9,4 max4o   (adder  in step4) 



Data dependency 

It may be noted that there are some operations in the running example, whose 

position are fixed namely, 1 2,o o  in step1 and 
3o in step2.  

 

It may be noted that there is data dependency between 1 2,o o  and 3o ; 3o  can be 

scheduled only after 1 2,o o .  

 

However, as the positions of 1 2 3, ,o o o are fixed, we need not write explicit expressions 

in ILP for their data dependencies.  The three equations representing the range of 

scheduling of 1 2 3, ,o o o  ( 1,1 1o  , 2,1 1o   and 3,2 1o  ) capture that dependency relation;  

1 2,o o  is scheduled in step1 and 3o  is scheduled in step2, thereby satisfying “ 3o  can 

be scheduled only after 1 2,o o ” .  



Data dependency 
However, for operations like 

6o  (which can be scheduled in step1 or step2) and 
7o  

(which can be scheduled in step2 or step3), equation 
6,1 6,2 1o o   states that 

6o  can 

be scheduled in step1 or step2 and equation 7,2 7,3 1o o   states that 
7o  can be 

scheduled in step2 or step3.  

 

However, these two equations cannot guarantee that 6o  cannot be scheduled in step2 

along with 7o ; this will lead to inconsistency as there is dependency between 6o  and 

7o .  

 

So for such flexible operations we need equations in ILP representing the 

dependency.   



Data dependency 

6,1 6,2 7,2 7,3(1 2 ) (2 3 ) 1o o o o      captures this dependency; the mechanism is 

explained as follows.  

There are four solutions to the schedule of 6o  and 7o , after satisfying the equations 

representing their ranges (
6,1 6,2 1o o   and 7,2 7,3 1o o  ),  

(i) 6o  in step1 and 7o  in step2,  

(ii) 
6o  in step1 and 

7o  in step3,  

(iii) 6o  in step2 and 7o  in step2,  

(iv) 6o  in step2 and 7o  in step3. 

 

 Among the four cases only (iii) is to be avoided; it may be noted that 6,2 1o   (so, 

6,1 0o  ) and  7,2 1o   (so, 7,3 0o  ), will not satisfy “ 6,1 6,2 7,2 7,3(1 2 ) (2 3 ) 1o o o o    

” (however, will satisfy 6,1 6,2 1o o   and 7,2 7,3 1o o  ).   



Data dependency 
So, equation 

6,1 6,2 7,2 7,3(1 2 ) (2 3 ) 1o o o o      could incorporate the data dependency 

in the IPL.  

 

To generalize, the equation 6,1 6,2 7,2 7,3(1 2 ) (2 3 ) 1o o o o     , is formulated as 

follows.  

The parts of the equation, “ 6,1 6,21 2o o ” and “ 7,2 7,32 3o o ” are taken from the 

range equation for 6o  and 7o , respectively, after multiplying the terms with the 

corresponding control step number. Then we subtract the sub-equation of the  

successor from that of the processor and the result should be less than or equal to -

1. “less than or equal to -1” corresponds that 6o  is to be predecessor of 7o .  

 

Data dependency equations for the running example are as follows: 

 6,1 6,2 7,2 7,3(1 2 ) (2 3 ) 1o o o o      

 8,1 8,2 8,3 9,2 9,3 9,4(1 2 3 ) (2 3 4 ) 1o o o o o o        



Optimize the resource requirements 

This equation represents the optimization criterion to minimize the resource cost.  

In the running example, the equation is  

Minimize   “ max max max max1 2 3 4   ”, subject to satisfying all the equations for range, 

resource constraints and data dependency given above.  



Final Solution of the ILP 
If we solve the 0-1 ILP using any standard method, we get the following solution: 

 
1,1 1o   

 2,1 1o   

 
3,2 1o   

 4,3 1o   

 5,4 1o   

 6,1 6,20; 1o o    

 7,2 7,30; 1o o   

 8,1 8,2 8,31; 0; 0o o o    

 9,2 9,3 9,41; 0; 0o o o    

 max max max max1 2;2 1;3 1;4 1     



Final Solution of the ILP 

•It may be noted that this solution corresponds to the schedule of FDS; it can 
also be determined that this schedule is most optimal in terms of resource 
requirements if time step constraint is 4.  
 
 
 
•Now a question arises, if FDS can do the same schedule then why we need the 
complex ILP based solution. The answer to this question lies in the fact that FDS 
may not always lead to optimal solution while ILP guarantees to generate the 
most optimal solution.  In the question and answer section of this lecture, we 
illustrate a situation when FDS may not generate an optimal solution.  



Some issues 

First, we assumed that all types of operators have same cost in terms of 
resource requirements. However, in a real situation some operators involve 
much more hardware than others. Therefore, our scheduling algorithms need to 
consider also the cost of hardware of the operators.  
 
Secondly, we assume that each operator takes one control step to do the 
operation.  However, in a real situation some operators take more time to 
complete the computation 
 
Third, we assume that each operator can perform only one function. However, 
in practice most of the operators are capable of doing multiple types of 
operations e.g., an adder can do both addition and subtraction (with slight 
modification) 



Question and Answer 
Question: Illustrate an example of scheduling where FDS does not provide 
optimal results in terms of resource requirements. 
Answer 
Consider the following expressions “out1=(a+b+c)*d” and “out2=(e+f)*g” .  
ASAP and ALSP schedule for “out1=(a+b+c)*d” and “out2=(e+f)*g” are  
shown in next two figures.   
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Question and Answer 
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ALAP schedule for “out1=(a+b+c)*d” and “out2=(e+f)*g” 



Question and Answer 

iINTERVAL  and iRANGE  for “out1=(a+b+c)*d” and “out2=(e+f)*g” are shown in next 

figure.   
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FDS status of “out1=(a+b+c)*d” and “out2=(e+f)*g”  after  
4o  is scheduled in step2  



Question and Answer 

As FDS algorithm does not specify which type of operator to start with, let us consider 

adder first. 

 From FDS algorithm it may be noted operation 4o  can be scheduled in either step1 or 

step2, because both will lead to same cost in terms of resource requirements (number of 

adder is two).  

So let the operation 4o  be scheduled in step2, which implies that operation 5o  will be 

placed in step3.  

Now the total resource requirement is two adders and two multipliers.  



Question and Answer 

o1

o2

o3

Step 1

Step 2

o4

o5

+ +

+

*

*

RANGE1={1}

RANGE2={1}

RANGE3={1}

RANGE4={1}

RANGE5={1}

INTERVAL1=[1,1]

INTERVAL2=[1,1]

INTERVAL4=[1,1]

Step 3

INTERVAL5=[2,2]

INTERVAL3=[1,1]

FDS status of “out1=(a+b+c)*d” and “out2=(e+f)*g”  after  
5o  is scheduled in step2 



Question and Answer 

Let us see the other option and schedule operation 4o  in step1. Now by FDS operator 5o  

will be placed in step2. Now the total resource requirement is two adders and one 

multiplier. So FDS may provide non-optimal solution;  
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Introduction 
After the scheduling process, which assigns control steps to all the operations, in 
the allocation step, circuit modules from the design library are selected for 
executing the operations. Once circuit modules are selected, binding is done, 
which accomplishes the following:  
 

•Functional unit binding: All arithmetic and logic operations are binded to the 
specific circuit modules allocated from the design library.  
 
•Storage to register binding: A storage operation is created for each data 
transfer that crosses a control step boundary. Also, all inputs are to be stored 
in variables and binded to registers.  
 
•Data-transfer to interconnect binding: Any data transfer involves an 
interconnection between source and sink. Therefore, any data transfer is to be 
binded with an interconnection (from source to destination).  In addition, it 
might be noted that interconnects are shared by data transfers which leads to 
use of multiplexers in the sources and destinations.  

 



Example:  Binding of functional units, storages and data-transfer  
A schedule of expressions “out1=a+b+c” and “out2=d+e+f”  is shown. Let the 
allocation be as follows: 

•Two (ripple carry) adders  
•Four registers (D-flip-flops) 

We need two adders because in control step1 (also in step2)   two addition 
operations  are scheduled and each need an adder to operate. Also we need four 
registers because in step1, we need four variables (storage) namely, a,b,c,d. These 
four registers can be re-used in step2 for variables temp1,c,temp2,f.  
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Example:  Binding of functional units, storages and data-transfer  

Let us consider the following option of binding  

 Operations 1 2,o o  are binded to adder1   

 Operations 
3 4,o o  are binded to adder2   

 Variables a,temp1,out1 are binded to register1 

 Variables b,c are binded to register2 

 Variables d,temp2,out2  are binded to register3 

 Variables e,f  are binded to register4 

Some of the binding of the data-transfers with the interconnects are as 
follows: 

•adder1 to register1 (via Mux) is binded to data transfer “temp1=a+b” 
 
•Input a to register1 (via Mux) is binded to data transfer “reading a from 
input bus” 
 
•Input b (and c) to register2  (via Mux) is binded to data transfer “reading 
b from input bus” (“reading c from input bus”) 



Example:  Binding of functional units, storages and data-transfer  

Case 1 of Binding for the schedule above 
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Example:  Binding of functional units, storages and data-transfer  

•It may be noted that as two data transfers (point 1 and point 2, above)  are 
binded to regsiter1, we need a multiplexer that feeds to the input of register1. 
Similarly, we require a multiplexer at input of register3.  
 
•It may be noted that even if two data transfers “reading b from input bus” 
and “reading c from input bus” are binded to register2, there is no multiplexer 
at input of register2. This is because we connect the input line to register2, 
where in step1 we have value of b and in step2 we have value of c.   
 
•For a similar reason we do not require a multiplexer for input of register4.  



Example:  Binding of functional units, storages and data-transfer  

Let us consider the another option of binding  

 Operations 1 4,o o  are binded to adder1   

 Operations 
2 3,o o  are binded to adder2   

 Variables a,temp2,out1 are binded to register1 

 Variables b,f  are binded to register2 

 Variables d,temp1,out2 are binded to register3 

 Variables e,c  are binded to register4 

The interconnects are illustrated in next figure and can be interpreted in a 
similar manner as discussed for the last case.  It may be noted that in this case 
also we require two multiplexers in the circuit.  



Example:  Binding of functional units, storages and data-transfer  
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Example:  Binding of functional units, storages and data-transfer  

Now, let us consider the third option of binding: 

 Operations
1 4,o o  are binded to adder1   

 Operations 
2 3,o o  are binded to adder2   

 Variables a,temp1,out2 are binded to register1 

 Variables b,f are binded to register2 

 Variables d,temp2,out1 are binded to register3 

 Variables e,c  are binded to register4 

 



Example:  Binding of functional units, storages and data-transfer  
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Example:  Binding of functional units, storages and data-transfer  

•It may be noted that in this case we require four multiplexers in the 
circuit. Two multiplexers at inputs of register1 and register3 are added for 
the same reason as discussed in the last two cases.  
 
•Now we see why two more multiplexers at inputs of both the adders are 
required. It may be observed from the figure that data transfer “a to 
operand of adder1” is binded to interconnect “register1 (source)--left 
input of adder1 (destination)” and “temp2 to operand of adder1” is 
binded to interconnect “register3 (source)--left input of adder1 
(destination)”. As there are two different interconnects for the left input 
of adder1, we require a multiplexer. Similarly, we require another 
multiplexer at input of adder2.  
 
•So, it can be concluded that depending on binding, the area taken by 
interconnects (including multiplexers) varies.  



Binding using clique partitioning  

In clique partitioning based binding, the operations and variables are modeled in 
terms of a graph. Each variable (if storage binding is done, or operation, if functional 
unit binding is done) is modeled by a node in the graph. There is an edge between 
two nodes only if the lifetime of the variables (or operations) does not overlap. 
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 It may be noted that variables a,b,c,d are required in step1 only, thereby 
making their life time only step1. Similarly, life time of variables 
temp1,c,temp2,f  is step2 and out1,out2 are alive only in step3.  



Binding using clique partitioning  
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Binding using clique partitioning  
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Binding using clique partitioning  

•It may be noted that there if two variables exits whose lifetime do not 
overlap, then they are connected by an edge. For example, out1 and a are 
connected by an edge while a and b are not.   
 
•Now, for binding, we need to determine maximal cliques in the graph. 
 
• The clique problem is to find complete subgraphs ("cliques") in a graph, 
i.e., sets of elements where each pair of nodes is connected.  
 
•For each maximal clique we need a hardware resource of the 
corresponding type. All variables (or operations) corresponding to the 
nodes of the maximal clique are binded to the hardware module selected 
for the clique.  
 
•It may be noted that a maximal clique comprises maximum possible nodes 
where each of them has an interconnecting edge. Variables (or operations) 
in a clique can share a resource. If we have maximal cliques then we can 
have minimal number of modules as more variables (or operations) share a 
single hardware module.  



Binding using Left-Edge Algorithm 
•In left edge algorithm, we first short, in ascending order, the variables (or 
operations) according to the starting step of their life times.  
 
• If there are more than one variable at the same level in the order (because of 
the same starting control step), then those variables are ordered based on the 
last control step. 
 
• For example, if there are three variables a,b,c where, a has life time from 
step1 to step3, b has life time  from step1 to step2 and c has life time  from 
step2 to step3, then the order is a<b<c. If there are some variables with same 
start and end control step then they are ordered arbitrarily.  
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Binding using Left-Edge Algorithm 
•Once the variables are arranged, we start with a register and traverse the 
variables (arranged in order) from left to right.  
 
•While traversing, we start filling the register with variables such that there is 
no overlap in the register. Once the traversal is complete, we delete the 
variables from the arranged list that are filled in the register.  
 
•If there are variables remaining in the list we take another register and repeat 
the procedure.  
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Binding using Left-Edge Algorithm 
We take register R1, and in the process of traversal we first start with variable 
a; variable a is filled in R1 and it occupies step1 in R1. Following that we 
traverse variables b,c,d but cannot put them in R1 as they would overlap with 
a.   Variable temp1 can be filled in R1 and it occupies step2. Finally variable 
out1 is put is R1. As there are more variables, we take another register R2 and 
repeat the procedure.  
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Binding using Iterative Refinement 
Binding using iterative refinement, as the name suggests, starts with an 
arbitrary “feasible” binding and at each step of iteration, variables (or 
operations) are swapped in between the registers (or operations) such that the 
new binding remains feasible. If the new binding comprises less interconnect 
area than the previous one, the new binding replaces the old one. Iteration 
continues until the interconnect area reaches the desired level or new 
iterations are not able to improve the area.  
 
For example, we may start with the binding given in last figure. Then we may 
swap variable out2 and “NULL” between R2 and R3; this schedule is better than 
the old one as it requires two multiplexers, while the old one requires three 
multiplexers. Similarly, we carry on with the iterations by swapping variables 
until we get the desired interconnect area or we find that there has been no 
improvement since last few (which can be a user defined threshold) iterations.   



Binding using Iterative Refinement 
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Question and Answer 

Question: We know that list scheduling provides optimal binding solution in P-
time where as clique partitioning requires exponential time for the same 
quality of solution. Why, still, clique partitioning is not considered obsolete?  
 
Answer: 
While list scheduling provides optimal solution, in terms of resource utilization 
of variables (i.e., registers) and operations (i.e., operators), in polynomial time, 
there is no provision of incorporating area of interconnects due to a given 
binding into the algorithm. However, in case of clique partitioning based 
solution weights can be assigned to the edges based on area that might result 
by binding the two operations (or variables) corresponding to the two nodes of 
the edge under question to a single operator (or register). So most of the area 
aware binding techniques consider clique partitioning (with required 
enhancements).  



Thank You 


