
CSL 852, Computational Geometry: Practice Problems

Voronoi diagram and delaunay triangulation

1. Prove the following about a set of points (no three are collinear and no four points are cocircular).
(i) The circumcircle of a delaunay triangle doesn’t contain any other input point.
(ii) A pair of points is an edge of Delaunay triangulation iff there is a circle passing through these
points that is empty.

2. Develop an O(n log n) algorithm for directly computing the Delaunay triangulation using divide and
conquer.

3. Show that given the Voronoi diagram, one can find the nearest neighbour

4. The Relative Neighbourhood Graph (RNG) of a set of points is one where there is an edge between
points pi and pj iff the lune(i, j) does not contain any other points inside it. Lune(i, j) is a region
that is common to the two circles with radius d(i, j) and centers pi and pj . Show that for any given
set of points S

Euclidean MST (S) ⊆ RNG (S) ⊆ DT (S)

5. Motion planning Given a scene with rectangular obstacles, and a disk of radius r, we would like
to find out a feasible path from an initial position to a final position (avoiding the obstacles).

Design and implement an efficient algorithm for this. You can use existing code for Voronoi Diagrams
and integrate with your algorithm.

Possible approaches:
1. You can grow the obstacles using Minkowski’s sum and compute the maximal connected regions.
Solution: While growing objects, make sure that the corners of rectangle are rounded. This can be
achieved by approximating the rounded corners with a large number of line segments. Then after
objects are grown, join all corner points of objects with each other and retain those which do not
pass through any object. Now using any shortest path algorithm, find a feasible path between the
initial and final point using the graph obtained by vertices and edges above.

2. Alternatively, you can approximate the obstacles by points on the boundary that are less than 2r
distance - denote this by S′. You can then compute the Voronoi Diagram V or(S′) and only retain
those edges in V or(S′) that at least r from the closest obstacle point. Now work with this sub-graph.
This has the disadvantage that the input size may blow up significantly but you can make reasonable
assumptions.

6. Given a set S of n points in the plane, design an efficient algorithm to find the largest empty circle,
that doesn’t contain any point of S and the center of the disk is within the CH(S).

Solution: It can be proved that the centre of the largest empty circle (where the centre has to be
internal to CH(S)) is either a Voronoi vertex or the intersection of a Voronoi edge with a convex
hull edge.
Once this is proved, the O(n log n) algorithm follows:
First compute V or(S) and put all Voronoi vertices in a list of candidates. Also, with every vertex,
maintain one of its closest points in S by choosing any incident face of an incident edge on it.
Since every Voronoi vertex need not lie inside the convex hull of S, do a planar point location for each
Voronoi vertex to determine if it is inside CH(S) or outside. For this compute CH(S) as upper hull
and lower hull. Then for each Voronoi vertex, determine, if it is inside or outside CH(S) by using

1

a binary search on the slabs obtained by drawing vertical lines through all vertices. You could first
do a binary search on the slabs formed by the upper hull vertices and locate in which slab a Voronoi
vertex lies and then check if it is above the upper hull or below. Then you could check for the lower
hull slabs. So this takes O(log n) time per Voronoi vertex and so O(n log n) in total.
Each Voronoi edge can intersect at most one edge of the upper hull and at most one edge of the
lower hull - so the total number of points of intersection between edges of V or(S) and CH(S) is
O(n). Use the line segment intersection algorithm to compute all the points of intersection - this
runs in O(n log n) time by the above justification. Whenever we compute the intersection of a Voronoi
edge with a convex hull edge, we not only store the point of intersection but also the closest point
corresponding to the incident face of the Voronoi edge involved.
Finally, for each Voronoi vertex and for each point of intersection computed above, compute the
distance to its closest point - this would be the radius of the largest empty circle centered at that
point. There are O(n) candidates and we have to choose the maximum among them - this takes O(n)
time. Hence, all the steps together take O(n log n) time.

7. Given a set S of n points in the plane, design an efficient algorithm to find the smallest enclosing
disk, that contains all point of S.
Hint: Use Randomized incremental construction and analyse carefully.

Solution: It can be observed that a smallest enclosing circle has at least three points on its boundary,
or only two in which case they are diametrically opposite. Choose a random order to add the points
and maintain the solution so far. If the new point pi lies inside the solution circle obtained so far,
then new solution is same as previous solution. Else, compute the smallest enclosing circle of points
so far, with pi on its boundary. This problem of finding the smallest enclosing circle passing through
a given point is further solved by RIC similar to above. But now if the new point considered lies
outside the solution circle obtained so far, then we have to compute the smallest enclosing circle
passing through 2 given points. This problem can be solved as follows : Assume w.lo.g. that both
points, say p and q lie on a vertical line. Define a first circle to be the smallest passing through p
and q. Let l be the line through p and q. For all points left of l, find the one that, together with p
and q, defines a circle whose center is leftmost. For all points right of l, find the one that, together
with p and q, defines a circle whose center is rightmost. Then decide which of these 3 circles is the
smallest enclosing circle.
Smallest enclosing circle for n points with two points already known takes O(n) time. Using this, do
the expected running time analysis of smallest enclosing circle for n points with one point known.
Use the fact that the probability that the i − th point addition is expensive is 2/i. This gives an
expected running time of O(n). Now using similar argument, show that the expected running time
for smallest enclosing circle with none of the points on boundary known, is O(n)

8. Given a set S of n points in the plane, design an efficient algorithm to find a disk D that encloses k
points (any of the k out of n points) and whose radius is no more than twice that of Do(n, k), the
smallest disk that contains k points. When k is Ω(n), show that your algorithm runs in O(n) time.
Hint: Prove the property that the smallest disk centered at q ∈ Do(n, k) that contains k points, will
be no more than twice the radius of Do.

Solution: Divide the plane into horizontal and vertical lines such that the number of points between
any two horizontal lines is k

4 . Same is the case with vertical lines. This can be done in O(n log n
k)

time using median finding together with recursion. Now for all the intersection points of the grid
induced by these lines, find the smallest circle centered at the point and containing exactly k of the
n given points. Return the smallest of these circles. It can be easily argued that the Do(n, k) must
contain one of the intersection points of grid, otherwise it cannot have k points inside it as it will lie

2

in the union of area of atmost one horizontal and one vertical strip, limiting the points inside it to
k
4 . Thus using the property given in hint, it is easy to see that the smallest circle returned above will
be less than twice the size of Do(n, k).
Since the intersection points of grid are O((nk)2) and finding each circle takes O(n) time, so total
time taken is O(n(nk)2), which when k is Ω(n) gives O(n).

9. Let S = {p1, . . . , pn} be a set of n points in the plane so that no three of them lie on a line. The
farthest-point Voronoi diagram of S is planar decomposition of the plane into maximal cells so that the
same point of S is the farthest neighbor of all points within each cell. That is, it is the decomposition
induced by the cells

Vorf (pi) = {x ∈ R2 | ‖pix‖ ≥ ‖pjx‖∀j}.

(i) Show that Vorf (pi) is convex.

(ii) Show that Vorf (pi) is nonempty if and only if pi is a vertex of the convex hull of S.

(iii) Show that if Vorf (pi) is nonempty then it is unbounded.

Solution:

(i) Fix a point pi ∈ S, for any other point pj ∈ S, let h−j denote the half-space defined by the
perpendicular bisector of pi, pj , not containing pi. The Voronoi cell of pi, is the intersection of
half-spaces h−j , i.e., Vorf (pi) =

⋂
j 6=i h

−
j , and therefore it is convex.

(ii) Part A: If pi is a vertex of the convex hull of S, then Vorf (pi) is non-empty.
Since no three points of S are collinear, we can choose a tangent τ to the convex hull at pi that
is not parallel to any side of the boundary of the convex hull. Let ρ be the perpendicular to τ
at pi. As we move along ρ such that the distance to pi increases, we can find a point q on ρ
such that the disk of radius ||qpi|| contains every point of the convex hull, other than pi, in its
interior.
So ||qpi|| ≥ ||qpj ||, for all i 6= j, so q ∈ Vorf (pi).
Part B: If pi is not a vertex of convex hull of S, then Vorf (pi) is empty.
Suppose for some pi that is not a vertex of convex hull of S, there is an x ∈ Vorf (pi). Let y
be the point of intersection of the ray −→xpi with the boundary of the convex hull of S such that
y does not lie on the segment xpi. Using triangular inequality, it can be shown that one of the
two vertices v of the convex hull that is adjacent to y is farther than pi from x. Contradiction.

(iii) Following the same argument as in (ii), Part A, for any point pi on the convex hull we can find
points q on the perpendicular ρ such that q ∈ Vorf (pi), as we move away from pi along ρ. So
the Voronoi region is unbounded.

3

