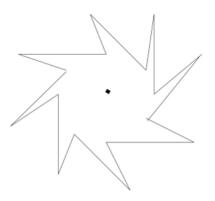
CSL 852, Computational Geometry: Practice Problems

Introduction using basic visibility problems

1. Construct a polygon P and a placement of guards such that the guards can see every point on the boundary of P but there is at least one point in the interior that is not visible to the guards.

Solution: Place the guards in the figure at all corner points. Each guard sees all points on 2 edges intersecting his point. But no guard sees the centre bold point of the figure.



- 2. Design a polyhedron (3 dimensional version of a polygon) such that guards placed at every vertex may not be able to cover the entire interior.
- 3. Let $\mathcal{M}(S)$ denote the set of maximal points of a planar point set S. Denote $L_0 = \mathcal{M}(S)$ and $S_0 = S$ and let $S_i = S_{i-1} - L_{i-1}$ and $L_i = \mathcal{M}(S_i)$ for $i \ge 1$. You can think about L_i 's as the maximal layers that are successively obtained by stripping away the previous layers. Design an O(npolylog(n)) algorithm for computing all the maximal layers. Solution: Do a line sweep in the decreasing order of x (i.e. sort the points on their x coordinate value) let this sorted set be $p'1, p'_2 \dots p'_n$. Initialize $L_0 = p'_n$ and as we sweep left, assume that we have inductively computed the layers correctly till p'_{i+1} . When we consider p'_i then suppose the layers are $L_0, L_2 \dots L_j$ and let $Y_0, Y_1, \dots Y_j$ denote the highest y coordinates of the points in the respective layers.

Claim: p'_i belongs to L_k iff $Y_{k+1} > y'_i > Y_k$ if such a k exists or start a new layer j + 1 if $y'_i < Y_j$ Using a dynamic dictionary, this can be found in $O(\log n)$ steps and therefore the entire algorithm takes $O(n \log n)$ time.