
Problems 

1. Most phytoplankton in lakes are too small to be individually seen with the unaided eye. 

However, when present in high enough numbers, they may appear as a green 

discoloration of the water due to the presence of chlorophyll within their cells.  Climate 

and water quality are among the factors influencing the quantity of phytoplankton in 

shallow lakes. Assume that the rate of increase of phytoplankton can be expressed as a 

linear function, g(X1, X2, X3) of three variables, namely X1 temperature of water, X2 

global radiations and X3 concentrations of nutrients. X1, X2, X3 can be modeled as 

normal random variables. Positive growth rates must be avoided. 

Although it is observed that temperature and radiation have no effect on effect on 

concentration of nutrients, so that ρ13 = ρ23 = 0, mutually they are highly correlated with 

ρ12 = 0.8. The equilibrium function is given by g(X1, X2, X3) = a0 + a1*X1 + a2* X2 + 

a3 *X3, 

where a0 = -1.5 mg/cubic m, a1 = 0.08 mg/ (cubic m. degree Celsius), a2 = 0.01 mg/mW 

and   a3 = 0.05 

 

Solution. 

 
Equilibrium (limit state), g(X1, X2, X3) = 0 
 
RANDOM 
VARIABLE,X 

Mean ,µ Coefficient of 
Variation, V 

Standard Deviation, 
σ 

X1,degree Celsius 16 0.5 8 
X2,W/square M 150 0.3 45 
X3,mg/cubic m 100 0.7 70 
 
Other variables are included in a0 because of difficulty in computing separately. 
 
Reliability index   22*0 iaiiaia σµβ ∑∑+=  
                               
   
                            

32.13
28.6=β   = 1.72 
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There is a chance that the equilibrium situation 96 percent. Hence the risk that algal 
biomass will increase is only 4 percent. 
 
 
2. The economic performance of the irrigation barrage located at a place in along a river 

could be improved by installing a hydropower station to meet the local energy demand. 

An engineer estimates the power demand X3 to be 600kW on average with variability 

µ 600kw. If standard turbo axial turbine was installed, power output can be estimated as 

7.5X1X2.Discharge X1 is measured in cubic m/s and hydraulic head in m;7.5 is 

coefficient accounting for gravity, density of water, and overall efficiency of installed 

equipment. Accordingly, power is given in units of kW. Although average discharge of 

22 cubic m/s and an average head of 5.2m are available, discharge head availability 

depends on natural flow variability; it is also subjected to the construction of barrage 

handling, which is operated with priority for irrigation demand. Discharge and head can 

be assumed to be independent normal variables, X1 and X2, with coefficients of variation 

0.2 and 0.15 respectively. Assuming that demand X3 normal and independent of 

discharge and head, evaluate that reliability of the plant. 

 
 
 
Performance function g(X1, X2, X3) = 7.5*X1*X2 – X3 
 
RANDOM 
VARIABLE 

UNIT MEAN COEFFICIENT 
OF 
VARIATION 

STANDARD 
DEVAITAION 

Normal 
Discharge  
 X1 

Cubic m/s 22 0.22 4.4 

Normal 
Hydraulic Head 
X2 

m 5.2 0.15 0.78 

Normal Power 
Demand  
X3 

kW 600 0.10 60 

 
 
 
 
 



Step1.Partial differentiation of performance functions with respect to each random 
variable. 
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Step2.computation of direction cosines,α . 
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Step3.calcualtion of new Xif 
   
         Xif  = α β  

 
 
Step4.using estimated values of mean and standard deviation, calculate Xif new 
 
 
        Xifnew = µ i   + σ  Xif   
 
Step5.repeat the iteration until reliability index value converge to single value. 
 
 
Evaluation of reliability 
 
Limiting state of interest   g(X1, X2, X3) = 7.5*X1*X2 – X3 = 0. Iteration process is 
illustrated in the following sections. 
 
  MEAN COEFFICINET 

OF 
VARIATION 

STANDARD 
DEVIATION 

INITIAL  x1f 22.0 17.8 17.7 17.7 
INITIAL x2f 5.2 4.6 4.7 4.7 
INITIAL X3f 600 620 623 623 
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f1α  0.770 0.787 0.790 0.791 
f2α  0.578 0.535 0.530 0.529 
f3α  -0.269 -0.308 -0.307 -0.307 

NEW x1f 17.8 17.7 17.7 17.7 
NEW x2f 4.6 4.7 4.7 4.7 
NEW X3f 620 622.8 622.7 622.7 
G(.)  
7.5 x1f * x2f - X3f 

-4.5*10e-5 7.5*10e-6 1.7*10e-5 1.8*10e-5 

β  1.24 1.23 1.23 1.23  
 
It can be noted that last two iterations give identical value.  This corresponds to reliability 

of 89% and the risk of failure of 11%. 

 

 

3. Consider a harbor breakwater constructed with massive concrete tanks filled with sand. 

It is necessary to evaluate the risk that the breakwater will slide under pressure of a large 

wave during major storm. 

 
 

The following information/data is necessary for analysis.  

 



Resultant horizontal force, Rh, depends on the balance between the static and dynamic 

pressure components, and it can be taken as quadratic function of Hb (indicated in Figure) 

under simplified hypothesis on the depth of the breakwater. 

Random deep water value X4 = Hs, which is found from frequency analysis of extreme 

storms in the area. 

Resultant vertical force,   Rv = X2 - FV 

Where  X2, weight of the tank reduced for buoyancy. 

 FV  , a vertical component of dynamic uplift pressure due to the braking wave. It is 

proportional to height of the height of the design wave, Hb, when the slope of sea bottom 

is known. 

Coefficient of friction, cf, can interpret as a random variable, X1, which represents 

inherent uncertainty associated with its field evaluation. 

Rv
Rhif   < cf , stability against sliding will exist. 

Additional variate X3 is introduced to represent the uncertainties caused the 

simplifications adopted to model the dynamic forces FV and Rh . 

Simplification of the shoaling effects indicates that the height Hb of the design wave is 

proportional to random deepwater value X4. 

 

All random variables are assumed to be independent. 

 

The constants a1, a2, a3 are depends on geometry of system. 

 

Accounting for the sea-bottom profile and the geometry, one estimate constants, a1=7,  

a2 =17m/KN, a3=145. 

 

Limiting state equation  

g(X1, X2,X3.X4) = X1X2- 70X1X3X4 -17X3X4 -17X3X4X4 -145X3X4 = 0         (1) 

 

 
 
 
 



 
Random variables Mean Coefficient of 

variation 
Standard deviation 

X1 0.64 0.15 0.096 
X2 3400 KiloNewton/m 0.05 108.80 
X3 1 0.20 0.2 
X4 5.16 0.18 0.93 
 
 
Partial derivatives of performance function with respect to each random variable 
evaluated at failure point. 
 

⎟
⎠
⎞⎜

⎝
⎛

∂
∂

1X
g

f    = (x2-70x3*x4) σ1 

 

⎟
⎠
⎞⎜

⎝
⎛

∂
∂

2X
g

f   = x1* σ2 

 

⎟
⎠
⎞⎜

⎝
⎛

∂
∂

3X
g

f = - (70*x1*x4 +17x4*x4+145 x4) σ3 

 

⎟
⎠
⎞⎜

⎝
⎛

∂
∂

4X
g

f    = - (70*x1*x3+34*x3*x4+145*x3) σ4 

 

 
For first iteration, we should take expectations as the initial values. 
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 Direction cosines ,αi    
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                         α1  = 292.19 ( )510*8.2 e

   = 0.550 

                                                 

                         α2  =108.80 ( )510*8.2 e
  = 0.205 

                         α3  = -283.97 ( )510*8.2 e
= -0.535 

 

                         α4  = -322.67 ( )510*8.2 e
= -0.608 

 
New failure point is given by 
 
x1(new) =µ1-  α1 * σ1 * β =0.64-0.053 β         - (2) 
 
x2(new) =µ2-  α2 * σ2 * β =3400-34.85 β        -(3) 
 
x3(new)=µ3-  α3 * σ3 * β =1+0.107 β             - (4) 
 
x4(new)=µ4-  α4 * σ4 * β =5.09+0.541 β        - (5) 
 
 
 
By substituting (2), (3), (4), (5) in limit state equation (1), we get solution for reliability 
index, β =1.379. 
 
 
Iteration process 
 
 I iteration II iteration III iteration IV iteration V iteration 
Initial x1f o.64 0.576 0.603 0.594 0.597 
Initial x2f 3400 3352 3378 3370 3373 
Initial x3f 1.00 1.147 1.088 1.105 1.009 
Initial x4f 5.16 5.825 5.637 5.704 5.681 
F(x*4f) 0.570 0.799 0.784 0.767 0.760 



F(x*4f) 4.4*10e-1 2.5*10e-1 3.0*10e-1 2.8*10e-1 2.9*10e-1 
invФ[F(x*4f)] 0.177 0.838 0.668 0.729 0.708 
Ø{invФ[F(x*4f)]} 0.393 0.281 0.319 0.306 0.311 
Mean of X*4f 5.090   5.590 5.424 5.481 5.461 
Standard 
deviation of X*4f 

0.899 1.136 1.065 1.090 1.081 
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-322.67 -488.34 -430.68 -449.30 -442.7 
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∂∑  2.8*10e5 2.8*10e5 2.8*10e5 2.8*10e5 2.8*10e5 

α1 0.550 0.525 0.536 0.533 0.534 
α2 0.205 0.182 0.193 0.190 0.191 
α3 -0.535 -0.605 -0.586 -0.593 -0.590 
α4 -0.608 -0.920 -0.811 -0.846 -0.831 
New x1f 0.567 0.603 0.594 0.597 0.591 
New x2f 3352 3378 3370 3373 3372 
Newx3f 1.147 1.088 1.105 1.099 1.101 
Newx4f 5.836 6.348 6.201 6.525 6.234 
 g 4*10e-5 6.3*10e-5 -3*10e-5 -2.1*10e-5 -2.5*10e-5 
β 1.379 0.726 0.899 0.837 0.83 
 
 
Reliability Ф(β) = 0.805 
 
Risk 1- Ф(β) = 0.195 


