Advanced Topics in Optimization Piecewise Linear Approximation of a Nonlinear Function Optimization Methods: M8L1 ### **Introduction and Objectives** #### Introduction - There exists no general algorithm for nonlinear programming due to its irregular behavior - Nonlinear problems can be solved by first representing the nonlinear function (both objective function and constraints) by a set of linear functions and then apply simplex method to solve this using some restrictions #### **Objectives** - To discuss the various methods to approximate a nonlinear function using linear functions - To demonstrate this using a numerical example ### **Piecewise Linearization** - A nonlinear single variable f(t₄) function f(x) can be approximated by a piecewise linear function - Geometrically, f(x) can be shown as a curve being represented as a set of connected line segments ### **Piecewise Linearization: Method 1** - Consider an optimization function having only one nonlinear term f(x) - Let the x-axis of the nonlinear function f(x) be divided by 'p' breaking points $t_1, t_2, t_2, ..., t_p$ - > Corresponding function values be $f(t_1)$, $f(t_2)$,..., $f(t_p)$ - ▶ If 'x' can take values in the interval $0 \le x \le X$, then the breaking points can be shown as $$0 \equiv t_1 < t_2 < ... < t_p \equiv X$$ > Express 'x' as a weighted average of these breaking points $$x = w_1 t_1 + w_2 t_2 + ... + w_p t_p$$ $$i.e., x = \sum_{i=1}^{p} w_i t_i$$ \rightarrow Function f(x) can be expressed as $$f(x) = w_1 f(t_1) + w_2 f(t_2) + \dots + w_p f(t_p) = \sum_{i=1}^p w_i f(t_i)$$ where $$\sum_{i=1}^{p} w_i = 1$$ Finally the model can be expressed as Max or Min $$f(x) = \sum_{i=1}^{p} w_i f(t_i)$$ subject to the additional constraints $$\sum_{i=1}^{p} w_i t_i = x$$ $$\sum_{i=1}^{p} w_i = 1$$ - This linearly approximated model can be solved using simplex method with some restrictions - Restricted condition: - \rightarrow There should not be more than two ' w_i ' in the basis and - Two ' w_i ' can take positive values only if they are adjacent. i.e., if 'x' takes the value between t_i and t_{i+1} , then only w_i and w_{i+1} (contributing weights to the value of 'x') will be positive, rest all weights be zero - In general, for an objective function consisting of 'n' variables ('n' terms) represented as Max or Min $$f(x) = f_1(x_1) + f_2(x_2) + + f_n(x_n)$$ > subjected to 'm' constraints $$g_{1j}(x_1) + g_{2j}(x_2) + \dots + g_{nj}(x_n) \le b_j$$ for $j = 1, 2, \dots, m$ The linear approximation of this problem is Max or Min $$\sum_{k=1}^{n} \sum_{i=1}^{p} w_{ki} f_k(t_{ki})$$ subjected to $$\sum_{k=1}^{n} \sum_{i=1}^{p} w_{ki} g_{kj}(t_{ki}) \leq b_{j}$$ for $j = 1, 2, ..., m$ $$\sum_{i=1}^{p} w_{ki} = 1 for k = 1, 2, ..., n$$ ### **Piecewise Linearization: Method 2** 'x' is expressed as a sum, instead of expressing as the weighted sum of the breaking points as in the previous method $$x = t_1 + u_1 + u_2 + \dots + u_{p-1} = t_1 + \sum_{i=1}^{p-1} u_i$$ where u_i is the increment of the variable 'x' in the interval (t_i, t_{i+1}) i.e., the bound of u_i is $0 \le u_i \le t_{i+1} - t_i$ The function f(x) can be expressed as $$f(x) = f(t_1) + \sum_{i=1}^{p-1} \alpha_i u_i$$ where α_i represents the slope of the linear approximation between the points t_{i+1} and t_i $\alpha_i = \frac{f(t_{i+1}) - f(t_i)}{t_{i+1} - t_i}$ > Finally the model can be expressed as Max or Min $$f(x) = f(t_1) + \sum_{i=1}^{p-1} \alpha_i u_i$$ subjected to additional constraints $$t_1 + \sum_{i=1}^{p-1} u_i = x$$ $$0 \le u_i \le t_{i+1} - t_i, \quad i = 1, 2, \dots, p-1$$ # Piecewise Linearization: Numerical Example - The example below illustrates the application of method 1 - Consider the objective function Maximize $$f = x_1^3 + x_2$$ subject to $$2x_1^2 + 2x_2 \le 15$$ $$0 \le x_1 \le 4$$ $$x_2 \ge 0$$ > The problem is already in separable form (i.e., each term consists of only one variable). D Nagesh Kumar, IISc > Split up the objective function and constraint into two parts $$f = f_1(x_1) + f_2(x_2)$$ $$g_1 = g_{11}(x_1) + g_{12}(x_2)$$ where $$f_1(x_1) = x_1^3$$; $f_2(x_2) = x_2$ $g_{11}(x_1) = 2x_1^2$; $g_{12}(x_2) = 2x_2$ > $f_2(x_2)$ and $g_{12}(x_2)$ are treated as linear variables as they are in linear form Consider five breaking points for x₁ | i | t_{1i} | $f_i(t_{1i})$ | $g_{1i}(t_{1i})$ | |---|----------|---------------|------------------| | 1 | 0 | 0 | 0 | | 2 | 1 | 1 | 2 | | 3 | 2 | 8 | 8 | | 4 | 3 | 27 | 18 | | 5 | 4 | 64 | 32 | \rightarrow $f_1(x_1)$ can be written as, $$f_1(x_1) = \sum_{i=1}^{5} w_{1i} f_1(t_{1i})$$ = $w_{11} \times 0 + w_{12} \times 1 + w_{13} \times 8 + w_{14} \times 27 + w_{15} \times 64$ $\triangleright g_{11}(x_1)$ can be written as, $$g_{11}(x_1) = \sum_{i=1}^{5} w_{1i} g_{1i}(t_{1i})$$ = $w_{11} \times 0 + w_{12} \times 2 + w_{13} \times 8 + w_{14} \times 18 + w_{15} \times 32$ > Thus, the linear approximation of the above problem becomes *Maximize* $$f = w_{12} + 8w_{13} + 27w_{14} + 64w_{15} + x_2$$ subject to $$2w_{12} + 8w_{13} + 18w_{14} + 32w_{15} + 2x_2 + s_1 = 15$$ $$w_{11} + w_{12} + w_{13} + w_{14} + w_{15} = 1$$ $$w_{1i} \ge 0 \text{ for } i = 1, 2, ..., 5$$ D Nagesh Kumar, IISc Optimization Methods: M8L1 # Piecewise Linearization: Numerical Example ...contd. - This can be solved using simplex method in a restricted basis condition - > The simplex tableau is shown below | Iteration | Basis | f | Variables | | | | | | | | $\frac{b_r}{c_{rs}}$ | |-----------|----------|---|-----------|----------|-----------------|----------|-----------------|-------|-------|----|----------------------| | | | | w_{11} | w_{12} | w ₁₃ | w_{14} | w ₁₅ | x_2 | s_1 | | | | 1 | f | 1 | 0 | -1 | -8 | -27 | -64 | -1 | 0 | 0 | | | | s_1 | 0 | 0 | 2 | 8 | 18 | 32 | 2 | 1 | 15 | 1.87 | | < | w_{11} | 0 | 1 | 1 | (1) | 1 | 1 | 0 | 0 | 1 | 1 | - \succ From the table, it is clear that w_{15} should be the entering variable - \succ S_1 should be the exiting variable - > But according to restricted basis condition w_{15} and w_{11} cannot occur together in basis as they are not adjacent - \succ Therefore, consider the next best entering variable $\,W_{14}^{}$ - > This also is not possible, since S_1 should be exited and w_{14} and w_{11} cannot occur together - > The next best variable w_{13} , it is clear that w_{11} should be the exiting variable #### > The simplex tableau is shown below | Iteration | Basis | f | Variables | | | | | | | b_r | $\frac{b_r}{c_{rs}}$ | |-----------|-----------------|---|-----------|-----------------|----------|-----------------|-----------------|-------|-------|-------|----------------------| | | | | w_{11} | w ₁₂ | w_{13} | W ₁₄ | w ₁₅ | x_2 | s_1 | | | | 1 | f | 1 | 8 | 7 | 0 | -19 | -56 | 1 | 0 | 8 | | | | s_1 | 0 | -8 | -6 | 0 | 10 | 24 | 2 | 1 | 7 | /3) | | | w ₁₃ | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 15 | - \triangleright The entering variable is w_{15} . Then the variable to be exited is S_1 and this is not acceptable since w_{15} is not an adjacent point to w_{13} - \triangleright Next variable W_{14} can be admitted by dropping S_1 . Optimization Methods: M8L1 # Piecewise Linearization: Numerical Example ...contd. #### > The simplex tableau is shown below | Iteration | Basis f | | Variables | | | | | | | | $\frac{b_r}{c_{rs}}$ | |-----------|-----------------|---|-----------|-----------------|----------|----------|-----------------|-------|-------|------|----------------------| | | | | w_{11} | w ₁₂ | w_{13} | w_{14} | w ₁₅ | x_2 | s_1 | | | | 1 | f | 1 | -7.2 | -4.4 | 0 | 0 | -10.4 | 4.8 | 1.9 | 21.3 | | | | W ₁₄ | 0 | -0.8 | -0.6 | 0 | 1 | 2.4 | 0.2 | 0.1 | 0.7 | | | | w_{13} | 0 | 1.8 | 1.6 | 1 | 0 | -1.4 | -0.2 | -0.1 | 0.3 | | - \triangleright Now, w_{15} cannot be admitted since w_{14} cannot be dropped - \triangleright Similarly w_{11} and w_{12} cannot be entered as w_{13} cannot be dropped - > Since there is no more variable to be entered, the process ends - > Therefore, the best solution is $$w_{13} = 0.3$$; $w_{14} = 0.7$ Now, $$x_1 = \sum_{i=1}^{5} w_{1i} t_{1i} = w_{13} \times 2 + w_{14} \times 3 = 2.7$$ and $$x_2 = 0$$ - > The optimum value is f = 21.3 - > This may be an approximate solution to the original nonlinear problem - > However, the solution can be improved by taking finer breaking points ### Thank You