

Advanced Topics in Optimization

Piecewise Linear Approximation of a Nonlinear Function

Optimization Methods: M8L1

Introduction and Objectives

Introduction

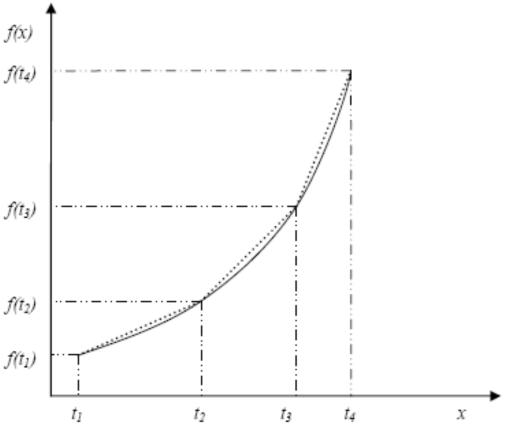
- There exists no general algorithm for nonlinear programming due to its irregular behavior
- Nonlinear problems can be solved by first representing the nonlinear function (both objective function and constraints) by a set of linear functions and then apply simplex method to solve this using some restrictions

Objectives

- To discuss the various methods to approximate a nonlinear function using linear functions
- To demonstrate this using a numerical example

Piecewise Linearization

- A nonlinear single variable f(t₄) function f(x) can be approximated by a piecewise linear function
- Geometrically, f(x) can be shown as a curve being represented as a set of connected line segments



Piecewise Linearization: Method 1

- Consider an optimization function having only one nonlinear term f(x)
- Let the x-axis of the nonlinear function f(x) be divided by 'p' breaking points $t_1, t_2, t_2, ..., t_p$
- > Corresponding function values be $f(t_1)$, $f(t_2)$,..., $f(t_p)$
- ▶ If 'x' can take values in the interval $0 \le x \le X$, then the breaking points can be shown as

$$0 \equiv t_1 < t_2 < ... < t_p \equiv X$$

> Express 'x' as a weighted average of these breaking points

$$x = w_1 t_1 + w_2 t_2 + ... + w_p t_p$$

$$i.e., x = \sum_{i=1}^{p} w_i t_i$$

 \rightarrow Function f(x) can be expressed as

$$f(x) = w_1 f(t_1) + w_2 f(t_2) + \dots + w_p f(t_p) = \sum_{i=1}^p w_i f(t_i)$$

where
$$\sum_{i=1}^{p} w_i = 1$$

Finally the model can be expressed as

Max or Min
$$f(x) = \sum_{i=1}^{p} w_i f(t_i)$$

subject to the additional constraints

$$\sum_{i=1}^{p} w_i t_i = x$$

$$\sum_{i=1}^{p} w_i = 1$$

- This linearly approximated model can be solved using simplex method with some restrictions
- Restricted condition:
 - \rightarrow There should not be more than two ' w_i ' in the basis and
 - Two ' w_i ' can take positive values only if they are adjacent. i.e., if 'x' takes the value between t_i and t_{i+1} , then only w_i and w_{i+1} (contributing weights to the value of 'x') will be positive, rest all weights be zero
- In general, for an objective function consisting of 'n' variables ('n' terms) represented as

Max or Min
$$f(x) = f_1(x_1) + f_2(x_2) + + f_n(x_n)$$

> subjected to 'm' constraints

$$g_{1j}(x_1) + g_{2j}(x_2) + \dots + g_{nj}(x_n) \le b_j$$
 for $j = 1, 2, \dots, m$

The linear approximation of this problem is

Max or Min
$$\sum_{k=1}^{n} \sum_{i=1}^{p} w_{ki} f_k(t_{ki})$$

subjected to
$$\sum_{k=1}^{n} \sum_{i=1}^{p} w_{ki} g_{kj}(t_{ki}) \leq b_{j}$$
 for $j = 1, 2, ..., m$

$$\sum_{i=1}^{p} w_{ki} = 1 for k = 1, 2, ..., n$$

Piecewise Linearization: Method 2

'x' is expressed as a sum, instead of expressing as the weighted sum of the breaking points as in the previous method

$$x = t_1 + u_1 + u_2 + \dots + u_{p-1} = t_1 + \sum_{i=1}^{p-1} u_i$$

where u_i is the increment of the variable 'x' in the interval (t_i, t_{i+1}) i.e., the bound of u_i is $0 \le u_i \le t_{i+1} - t_i$

The function f(x) can be expressed as

$$f(x) = f(t_1) + \sum_{i=1}^{p-1} \alpha_i u_i$$

where α_i represents the slope of the linear approximation between the points t_{i+1} and t_i $\alpha_i = \frac{f(t_{i+1}) - f(t_i)}{t_{i+1} - t_i}$

> Finally the model can be expressed as

Max or Min
$$f(x) = f(t_1) + \sum_{i=1}^{p-1} \alpha_i u_i$$

subjected to additional constraints

$$t_1 + \sum_{i=1}^{p-1} u_i = x$$

$$0 \le u_i \le t_{i+1} - t_i, \quad i = 1, 2, \dots, p-1$$

Piecewise Linearization: Numerical Example

- The example below illustrates the application of method 1
- Consider the objective function

Maximize
$$f = x_1^3 + x_2$$

subject to

$$2x_1^2 + 2x_2 \le 15$$
$$0 \le x_1 \le 4$$
$$x_2 \ge 0$$

> The problem is already in separable form (i.e., each term consists of only one variable).

D Nagesh Kumar, IISc

> Split up the objective function and constraint into two parts

$$f = f_1(x_1) + f_2(x_2)$$

$$g_1 = g_{11}(x_1) + g_{12}(x_2)$$

where

$$f_1(x_1) = x_1^3$$
; $f_2(x_2) = x_2$
 $g_{11}(x_1) = 2x_1^2$; $g_{12}(x_2) = 2x_2$

> $f_2(x_2)$ and $g_{12}(x_2)$ are treated as linear variables as they are in linear form

Consider five breaking points for x₁

i	t_{1i}	$f_i(t_{1i})$	$g_{1i}(t_{1i})$
1	0	0	0
2	1	1	2
3	2	8	8
4	3	27	18
5	4	64	32

 \rightarrow $f_1(x_1)$ can be written as,

$$f_1(x_1) = \sum_{i=1}^{5} w_{1i} f_1(t_{1i})$$

= $w_{11} \times 0 + w_{12} \times 1 + w_{13} \times 8 + w_{14} \times 27 + w_{15} \times 64$

 $\triangleright g_{11}(x_1)$ can be written as,

$$g_{11}(x_1) = \sum_{i=1}^{5} w_{1i} g_{1i}(t_{1i})$$

= $w_{11} \times 0 + w_{12} \times 2 + w_{13} \times 8 + w_{14} \times 18 + w_{15} \times 32$

> Thus, the linear approximation of the above problem becomes

Maximize
$$f = w_{12} + 8w_{13} + 27w_{14} + 64w_{15} + x_2$$

subject to

$$2w_{12} + 8w_{13} + 18w_{14} + 32w_{15} + 2x_2 + s_1 = 15$$

$$w_{11} + w_{12} + w_{13} + w_{14} + w_{15} = 1$$

$$w_{1i} \ge 0 \text{ for } i = 1, 2, ..., 5$$

D Nagesh Kumar, IISc

Optimization Methods: M8L1

Piecewise Linearization: Numerical Example ...contd.

- This can be solved using simplex method in a restricted basis condition
- > The simplex tableau is shown below

Iteration	Basis	f	Variables								$\frac{b_r}{c_{rs}}$
			w_{11}	w_{12}	w ₁₃	w_{14}	w ₁₅	x_2	s_1		
1	f	1	0	-1	-8	-27	-64	-1	0	0	
	s_1	0	0	2	8	18	32	2	1	15	1.87
<	w_{11}	0	1	1	(1)	1	1	0	0	1	1

- \succ From the table, it is clear that w_{15} should be the entering variable
- \succ S_1 should be the exiting variable
- > But according to restricted basis condition w_{15} and w_{11} cannot occur together in basis as they are not adjacent
- \succ Therefore, consider the next best entering variable $\,W_{14}^{}$
- > This also is not possible, since S_1 should be exited and w_{14} and w_{11} cannot occur together
- > The next best variable w_{13} , it is clear that w_{11} should be the exiting variable

> The simplex tableau is shown below

Iteration	Basis	f	Variables							b_r	$\frac{b_r}{c_{rs}}$
			w_{11}	w ₁₂	w_{13}	W ₁₄	w ₁₅	x_2	s_1		
1	f	1	8	7	0	-19	-56	1	0	8	
	s_1	0	-8	-6	0	10	24	2	1	7	/3)
	w ₁₃	0	1	1	1	1	1	0	0	1	15

- \triangleright The entering variable is w_{15} . Then the variable to be exited is S_1 and this is not acceptable since w_{15} is not an adjacent point to w_{13}
- \triangleright Next variable W_{14} can be admitted by dropping S_1 .

Optimization Methods: M8L1

Piecewise Linearization: Numerical Example ...contd.

> The simplex tableau is shown below

Iteration	Basis f		Variables								$\frac{b_r}{c_{rs}}$
			w_{11}	w ₁₂	w_{13}	w_{14}	w ₁₅	x_2	s_1		
1	f	1	-7.2	-4.4	0	0	-10.4	4.8	1.9	21.3	
	W ₁₄	0	-0.8	-0.6	0	1	2.4	0.2	0.1	0.7	
	w_{13}	0	1.8	1.6	1	0	-1.4	-0.2	-0.1	0.3	

- \triangleright Now, w_{15} cannot be admitted since w_{14} cannot be dropped
- \triangleright Similarly w_{11} and w_{12} cannot be entered as w_{13} cannot be dropped

- > Since there is no more variable to be entered, the process ends
- > Therefore, the best solution is

$$w_{13} = 0.3$$
; $w_{14} = 0.7$

Now,

$$x_1 = \sum_{i=1}^{5} w_{1i} t_{1i} = w_{13} \times 2 + w_{14} \times 3 = 2.7$$

and
$$x_2 = 0$$

- > The optimum value is f = 21.3
- > This may be an approximate solution to the original nonlinear problem
- > However, the solution can be improved by taking finer breaking points

Thank You