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Introduction & Objectives

Few other methods, for solving LP problems, use
an entirely different algorithmic philosophy.
- Khatchian’s ellipsoid method
- Karmarkar’s projective scaling method

Objectives

e To present a comparative discussion between new
methods and Simplex method

e To discuss in detail about Karmarkar’s projective
scaling method
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Comparative discussion between new
methods and Simplex method

$ Khatchian’s
ellipsoid method
Simplex Algorithm Karmarkar’'s Algorithm and Karmarkar’s
\ Optimal solution point projective scaling
e method seek the

“ optimum solution

to an LP problem
by moving through
the interior of the
feasible region.

Feasible Region

v
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Comparative discussion between new

methods and Simplex method

1.

Both Khatchian’s ellipsoid method and Karmarkar’s
projective scaling method have been shown to be
polynomial time algorithms.

Time required for an LP problem of size n is at most an® ,
where a and b are two positive numbers.

Simplex algorithm is an exponential time algorithm
In solving LP problems.

Time required for an LP problem of size n is at most c2",
where c is a positive number
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Comparative discussion between new

methods and Simplex method

3.

For a large enough n (with positive a, b and c), c2">
anb.

The polynomial time algorithms are computationally superior to
exponential algorithms for large LP problems.

However, the rigorous computational effort of
Karmarkar’s projective scaling method, is not
economical for ‘not-so-large’ problems.
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Karmarkar’s projective scaling method
c ]

e Also known as Karmarkar’s interior point LP algorithm

e Starts with a trial solution and shoots it towards the
optimum solution

e LP problems should be expressed in a particular form
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LP problems should be expressed in the following form:

Minimize Z=C'X
subject to : AX =0

1X=1
with: X>0
_Cll
| Ca
1=0 1 - 1y, A=|
_le
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1/n
1/n
It is also assumed that X, =| | is a feasible solution and Z,;, =0
1/n ]
. . 1 (n-1)
Two other variables are defined as: r=———— and a= :
n(n-1) 3n

Karmarkar’s projective scaling method follows iterative steps to
find the optimal solution
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Karmarkar’s projective scaling method
c ]

In general, k" iteration involves following computations

a) Compute c, :[|—PT(PPT)‘1P]6T

where
XM 0 0 0
Pz{ADk] c_cD, S| X (2) 0o o0
1 k = )
0 0 0
0 0 0 X/(n)

If ,C, =0,any feasible solution becomes an optimal solution.
Further iteration is not required. Otherwise, go to next step.
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C

b) Y. =X,—-ar—"
C]
DY
C) Xk+1 — kK " new
1DkYneW
. _~n DY
However, it can be shown that for k =0, ﬁ =Y., Thus, X =Y.,
k " new

d Z= C'X, .,

e) Repeat the steps (a) through (d) by changing k as k+1
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Karmarkar’s projective scaling
method: Example

Consider the LP problem: Minimize Z =2X, — X,

subjectto: X, —2X, +X; =0
X, + X, +X; =1
Xiy Xy, X3 20
L (1/3]
0
1/3
Thus, n=3 C=|2| A=[1 -2 1] X,=|
-1
o 13

,_n-1) (38-1)_2

1 1 1
~ -0 3B-1) 6 3n  3x3 9
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Karmarkar’s projective scaling

method: Example

Iteration O (k=0):
D, =

C=C'D,=[0 2 -1]x

AD,=[1 -2 1]x

1/3
0
0
(1/3
0

0
(1/3
0

0
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0
1/3
0
0
1/3
0
0
1/3
0

0

0
1/3
0
0
1/3
0
0
1/3

=0 2/3 -1/3]

=[1/3 -2/3 1/3]
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Karmarkar’s projective scaling
method: Example

Iteration O (k=0)...contd.:

AD,\ [1/3 -2/3 1/3
P: =
1 1 1 1

1/3 1
1/3 -2/3 1/3 2/3 0
PPT—{ ]x -2/3 1 =[ ]
1 1 1 0 3
1/3 1
15 0
)"
0 1/3

D Nagesh Kumar, I11Sc Optimization Methods: M3L6



Karmarkar’s projective scaling
method: Example

Iteration O (k=0)...contd.:

PTPPT)'P=| 0 1 O

[ 1/6 |
c,=l-pr(Pr7)PleT 2| O

-1/6]

HCpH:\/(1/6)2 +0+(1/6)? :%
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Karmarkar’s projective scaling
method: Example

Iteration O (k=0)...contd.:
g

2>< 1
c. |w| o* %
YneW:)<O_a{r : ? \/6

(1/6 | [0.2692]
x| 0 |=]0.3333

o | +] V2
5 ~1/6| |0.3974
/3 I )
(0.2692] (0.2692 ]
X, =Y., =|0.3333 Z=C'X,=[0 2 -1]x|0.3333|=0.2692
0.3974 | 0.3974
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Karmarkar’s projective scaling
method: Example

lteration 1 (k=1): "0.2692 0 0

D,=| O 0.3333 0

0 0  0.3974
10.2692 0 0 ]

(_3=CTD1=[O 2 —1]>< 0 0.3333 0 =[O 0.6667 —0.3974]

0 0  0.3974]
02692 O 0

AD,=[1 -2 1]x| 0 03333 0 |=[0.2692 -0.6666 0.3974]
0 0 03974
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Karmarkar’s projective scaling
method: Example

lteration 1 (k=1)...contd.:

{ADlj [0.2692 ~0.6667 0.3974}
P = -

1 1 1 1
02692 17
0.2692 —0.6667 0.3974 0.675 0
PPT = x| —0.6667 1|=
1 1 1 0 3
0.441 0.067 0.493»3974 1)

PT(PPT) P=|0.067 0.992 ~0.059

0492 —0.059 0567
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Karmarkar’s projective scaling
method: Example

lteration 1 (k=1)...contd.: i )
0.151

C :[I—PT(PPT)_lP} CT =|-0.018

p

0132

Ic, | = /(0.151)” +(~0.018)" +(-0.132)? = 0.2014

/3] ] Lo _

2 1 [o01517 [0.2653
c, |¥3| 976

Y, =X, —ar =" |22 V6 | _0.018 || 0.3414
lc,| | : | o0.2014

~0.132| {0.3928

1/3 ] o )
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Karmarkar’s projective scaling
method: Example

lteration 1 (k=1)...contd.:

[0.2692 0 0 7 [0.2653] [0.0714°

D,Y,.,=| 0 03333 0 [x|03414|=|0.1138

0 0  0.3974| |0.3928] |0.1561
[0.0714]

1D,Y,,, =[1 1 1]x|0.1138 |=0.3413

new

01561
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Karmarkar’s projective scaling
method: Example

lteration 1 (k=1)...contd.: ) o .
0.0714 0.2092

w _ DY, _ 1

new

5 = = X
1D,Y,,, 0.3413

new

0.1138 |=| 0.3334

0.1561| | 0.4574
[0.2092]
Z=C"X,=[0 2 -1]x|0.3334 |=0.2094

04574

Two successive iterations are shown. Similar iterations can be followed
to get the final solution upto some predefined tolerance level
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Thank You
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