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Jepics to be covered
Basic concepts
Conservaton Laws
Critical Flows

Unrform Elovs

Graaually:Vared Elows
rapialy; Vvared rFlows

Unsteaay; Flows



Basic Concepts

Open Channel flews, deall with filew: of water In: opem chanmnels

Pressure IS atmespheric at the water suriace and: the
pressure is egualltorthe depth of: water at any: section

Pressure head! Is the ratio) off pressure and the specific weight
OF Water

Elevation head or'the datum headlis the height of the
section Under consideration aboeve; a datum

Velocity head (=12/2g) is due to the average velocity: of filow
In that vertical section



Basic Concepts Cont...

Total head =p/7 + v-/2g + Z
Pressure head = p/7
Velocity head =12/2g

Datum head' = =

ihe flew: of Water'ini an openi channellis mainly: duerteo head
dradient and gravity.

Openi Channelsi are mainly: usedito) transport water: fox
Irrigation, industry: and demestic water supply:



Conservation Laws

[he main CorServation Iaws USed Il OPern clannels are

Conservation Laws

Conservation of Mass
Conservation of Momentum

Conservation of Eneragy.



Conservation of Mass

Consenvation or/ass

117 a1y, CoRLrol VolUme Cons/Stirg. O tHe ud. (- Waler) tunaer
consiaeratiorn, el nert crange. o1 miass i tie) contiol Volumieé
aue toNRHew: ard ouL How: s eqgual to tHE tHe EL rate) of
ClaIge) o1 iass i tie Contio) Volulié

Tihis leadsi to the classical contintity: equation: balancing the
Inflew,, out flew! and the 'storage; chiange in the contirol
Velume.

Since we are considering only: water which is treated as
Incompressible, the density efifect can be ignered



Conservation of Momentum and energy

Conservation or Viomentimn

1115 /aw.Stales trat therate ol clignge. Ol omentumi. the
COnLIOI VoI /s Equal Lo tHE NEL TOICEs actifig. O e

control volume

Since the water' under consideration Is moving, It Is acted
Uponi by external ferces

Essentially this leads terthe Newton:s second Iaw.

Cconservanon of Energy
[1IS /aw. States triat neltner the: enerqy. car. be) created or

destroyed. It only. changes Jts form.



Conservation of Energy.

Mainly in: epen: channels the energy: will be in the form off petential energy
and Kinetic energy.

Potentiallenergy’ is due to the elevation of the water parceliwhile the
KINEtiC energy. IS due toItsfmevement:

In the; context off openi channel flow: the totallenergy’ due these; factors
petween any twe) sections Is conserved

Tihis censervation off energy: principle; leads torthe classical Bermoulli’s
equation

Pl + V224 + z = Constarnt

When used between two sections this equation has to account for the
energy loss between, the two sections which is due te the resistance to the
flow: by the bed shear etc.



Types of Open Channell Flows

Dependig On e roude AUmber (=) tieiow i &l Opes
Clhannel s classified. s SUb. critical iow;, Stper: Critical
oW, and. Critical Hiow, WHere [roude number camn be derned.

7
as |

Jey

Open chamnnel filow

Sub-critical flow: Critical flow: Super critical flow

F<1 F=1 F>1



Types of Open Channel Flow Cont...

Open Channel Flow

Unsteady Steady
Varied Uniform Varied
Gradually Gradually

Rapidly Rapidly



Types of Open Channell Flow: Cont...

Steaady, Flow.

Elow! IS said ter be steady: When discharge does not
change; along the course off the channel flow

Unsteaay  rFlovy

Flow! IS said to be Unsteady Whenrthe discharge
changes withrtime

Unform. oW,

Flow! [sisald tor be unifiorm Whem both the depthrand
discharge is same at any two) sections ofi the channel



Types of Open Channell Cont...

Graaually. Varied Flow.

Elow! Is said te be gradually varied When ever'the
depthl changesi gradually aleng the, channel

raplaly varea fow:

Whenever the flow: depth changes: rapialy along| the
channelfthe flow!is termed rapidly: varied flow

Spatially, varead fiow.

Whenever the depth off flow' changes gradually’ due
to chamnge in discharge the flow: isi termed spatially.

varied: flow



Types of Open Channell Flow: cont...

Unsteaay; Flovy

Whenever the discharnge and depti ol flow: changes
with: time, the flow: s termeal unsteady: flow

Tiypes of possible flow

Steady unifiorm flow Steady non-uniferm; filew. Unsteady nen-uniferm flow

kinematic wave diffusion wave dynamicwave



Definitions

SpPEcific Energy,

[l /5 dEeNfed . as tie enerqy.acquired by the water at
SECUoN aUeto. s deplii ard. the Veloety, Witid Willc/i Lt

/5 oW,

Specific Energy’ E is given by, £ =V + V/2g
Where y s the depth of flow at" that: section
and V. Is the average velocity: off flow

Specific;energy: istminimum at critical
condition



Definitions

Specliic Force

[t /s aefired: st tie st of the [HomERum Of tHe oW Passiig
LHrOUGII tHE ClaIIAE] SECHON! PEr UL tIme) Per unit: welglit or:
Waler arna. teliorce. per Uit welglit orwater

F = (¥/gA +yA
Iihe; specific forces off twoi sections are equal
provided that the external forces and the weight
effect off water' inl the reachl between: the two
SEctions can be; Ignored.

At the critical state of flow: the Specific force is a
minimum fer the given discharge.



Criticall Elow.

[FIOW.IS. critical wihen the %)ec/ﬁc enerqy. /s mimum.
AlSorWiheRever: the How: Clarges: o SUb) critical to.
SUPES: clitical Or Vice Versa LHe iow figs 1o, go
trrougr! critical conaition

JIgUIre s SHowi. i IEXL SIide

Sulb-critical flew-therdepthr of filow: will be higher
Whereas the velocity will' be Iower:.

Super-critical flew-the depth of flow: will be lower
put the velocity will be higher

Criticall flow: Flow over a free over-fall



Specific energy diagram

E-y curve

Depth of water Surface (y)

=9 Alternate Depths
o h | -
) . ~
N Specific Energy (E) >

Critical Depth

Specific Energy Curve for a given discharge



Characteristics ofi Critical Elow
Specific Energy’ (£ = y+0/2gA7%) is minimum

[FOr SPECIfiic energy: to be a minimum: a&/ay. = 0.
dE _ | Q* dA

o el

owever, dA=Jjdy, Whnere IFis the width ofi the
channel at the water surface; then applying ad&/ay, =
O, Wil resdit 11 1olowig




Characteristics of Critical Elow

For a rectangular channell A, /7.~y

Follewing the derivation fier a rectangular channel,

Iihe same principlenisivalid for trapezoidal and other
ClOSS| SECLINS

Critical flow condition defines amn unique relationship

petween depthiand discharge Which Is very: usefuliin the
design of flow' measurement: structures



Uniform Elows

Tihis isione of the most Important CoNncept: in 6pen channel
flows

Tihe most Impoertant egquation for uniiorm! flow! Is Mamning's
equation given: by,

Where R = the hydraulic radius = A/P
P'=wetted permeter = 1, S;).

Y = depthiof the channell bed

Sp= bed slepei(same; asithe energy slope, Sy

= the Manning's dimensional empirical constant




Uniform Flows

Energy Grade Line 2

Datum

Steady Uniform Flow in an Open Channel



Uniform Elow

Example : Elow! iniani epen channel
Tihis concept Is used Infmost of the openi channel flow: design

the uniform! flow: means that there is neracceleration to the
flow: leading to the weight: component: of the flow: being
palanced by the; resistance; offered by the bed shear

N terms off discharge; the Manning's equation IS given by

Q :lARZ/?ﬁsl/Z

n




Uniform Elow

This isia noni linear eqguation: in;y: the depthi of filew: fer which
MOst of the computations will' be made

Derivation off Unifiern fow equation| Is given: below, Where

= Weighticompoenent off the filid mass in the
direction| of flew

= bed shear stress

= surface area of the channel



Uniform: Elow

Tihe fiorce balance eguation: cani be Writien;as

Wsin@ —7,PAx =0

Or yAAxsm 6 — 7 ,PAx =0

A

Or T, = y;siné’

Now: A/Pisithe; hydraulic radius, R, and: s/i6.s
therslope off the channel S,



Uniform: Elow

Iihe shear stress can be expressed as

T, :cfpV2/2

Where & s resistance coefiicient; Vis the mean
Velocity: pi Is the mass density

herefore the previous equation cani be written as

v’ _ 2g ol
Or CfIO?:}/RSO V = ? RSO—C RSO

where C'is| Chezy's constant
[For Manningis eguation




Gradually Varied Flow

[F10W. 15! Sald to. be. gradually. Viared WiHenever: tie deptii or
HOW. Clignged. graaually

The governing eguationfior gradually: varied flow isigiven by

W
IS S

dy _S,—S,

dx 1-F~°

lere the variation off depth’ y/with' the channelf distance x:
nown terbe ajfilnction off bed slepe; S, Friction Slope: S,

<|ple

the flew! Froude numier /=

This Is a nen linear equation; with the depthivarying as a
non linear function



Gradually Varied Flow

.r Energy-grade line (slope = Sf)

-— e
———
r——_
- e e
-— e
_— e

Y Water surface (slope = Sw)

————

v2/2q |

>

777777777777777 Channel bottom (slope = So)
N

— Datum
| |

Total head at a channel section



Gradually: Varied Elow

Derivation:of gradually: varied flow: Is as follows...

iherconservation off energy. at tWe sections of:a
ieach off length Ax; cani be Writien as




Gradually Varied! Flow

Dividing threugh: Ax anadl taking the limit as 4x
dPpProaches Zero, gives us

dy d(Vj 5,-S,

dx dx\ 2

After simplitication,
dy Sy =3,

dc 1+d(V?/2¢) dy

Eurther simplification’ cani be done in; terms ofi
Froude nUmier

d(v) df 0
dy 2g dy 2g4°



Gradually: Varied Flow

After diffierentiating the right side of the; previous
eguation,

Finally the deneral differentiall eguation cani be

WHItten as
dy S-S,

dx 1-F°



Gradually: Varied Flow

Numerical integration: ofi the; gradually: varied flow: eguation
will-give the water surface profile along the channel

[Dependingl oni the depth of flew: Wherelt lies When compared
with' the nermal depthrand the critical depth aloeng withrthe
pedl slope compared withi the firiction| slope dififerent types of
profiles are formed suchias M (mild), € (critical)), S (steep)
profiles. All these have;real examples.

VI (mild)-lizthe slope. isiso small that the normal depth
(Uniterm flow: depth)) isi greater than| critical depth for the
given discharge, then the slope of the channel isimild.



Gradually: Varied Flow

C (critical))-Ifr the slope’s normal depth eguals; its critical
depth;, thenwe call it a critical slepe, denoted by €

S (steep)-ifithe channel slepe isi soi steep that a nermal
depth lessithan criticallis produced, then the channel is
steep, and water surface profile designated as S



Rapidly: Varied Flow

This filew: has very pronounced curvature of the streamlines

It IS such that pressure distrhbution cannet berassumed to
e hydrestatic

Tihe rapid variation in: flew: regime; ofiten; take place in shert
span

When rapialy: varied filow: 6ccurs ini a sudden-transition
structure, the physical characteristics off the flow! are
pasically fixed" by the belndary: geometry of the structure as
wellfas by the state of the; filow.

Examples:
Channel expansion andcanmnel contraction
Sharp crested welrs
Broad' crested weirs



Unsteady: flows

When the flow: conditions vary with respect to time, we, call
it Unsteady: flows.

Some terminologies used for the amnalysis oif unsteady: flows
are defined below:

Wave: itis definedl as al temporal or spatial Variation of: flow,
depth and rate off dischardge.

Wave lengiyi: It is the distance between tweradjacent Wave
crests or trough

Amplitude: it is the height between the maximum water
level and the stillfwater level




Unsteady flows: definitions

Wave celerity (). relative Velocity: off a Wave With respect:
to fluidiin: whIch It 1s filewing withy 1/

Absoluterwave velocity (V). VEIoCIty: With respect: to

fixed reference as given below

PlUs signi i the wave is traveling inithe flow: direction and
minus; fer Ifi the, wave is/ traveling/in the direction oppesite to
How,

For shallow water waves ERtsall Where y=undisturbed
flow' depth.



Unsteady: flows examples

Unsteaady, flows oceul auerto iollowing Ieasoris:

SUKGES In' pewer' canals or' tunmnels

Surdes in upstream or dewnstreami channels producead b¥
startinlg Or' stepping off pumps;and opening and closing o

CONLIoIfgates

Waves in navigation: channels preduced by: the operation| of
navigation;IocKs

Floodi Waves i stieams, [ivers, and drainage channels due
10 rainstorms andisnowmelt

Tiides in estuaries, bays and! inlets



Unsteady: flows

Unsteady: flow' commonly: encountered inian 6pen channels
and deals with translatery: waves. liransiatoery: Waves Is a
dravity: Wave that propadates in amn open chamnnel and
resultsiin appreciable displacement of the Water particles in
aldirection: parallel to the flow

[For purpose; off analytical discussion, unsteady: fow!Is
classified inter twoe types, namely, gradually varied and
rapidly: varied unsteady. filow

In gradually varied flow: the curvature of the Wave: profile is
mild, and the change in depthiis gradual

In the rapidly varied flow' the curvature, off the wave profile
IS very large and so the surface of the profile may become
virtually discontinuous.



Unsteady flows cont...

Continuity, equation fer unsteady: flow: in amn 6pen
chiannel oy
D =0
ox Ot

[FOr a rectangular channel of infinite width, may: be

WHItten P
_q + _y =0

ox Ot

When the chamnellis te fieed laterally, withia
supplementary: dischiarge off @ per unit Iength; for
Instance, inte an area that: s being floeded over a
dike



Unsteady flows cont...

Tlhe eqguation
00 o4

=g =0
ox Ot 1

ihe generall dynamic; equation fier graaually.
varied unsteady fow: st given: oy




Review off Hydraulics of
Pipe Elows

Modulez
3 lectures
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General Introduction

Pipe flows' are mainly due to pressure difference between
WO SECctions

iHere alse the total head IS made Up oi pressurerhead, dattm
nead andivelocity head

Tihe principle off continuity, energy, mementum! s alse used
In; this type of flow.

[For example, to designi a pipe, We Use; the; continuity’ and
energy’ equations; to obtain the reguired pipe diameter

Then applying the momentum eguation, we get the forces
acting on bends for a given discharge



General introduction

In the design and operation of ai pipeline, the main
considerations' are head l0Sses, forces and Stresses
aActing on| the pipe material, and discharge.

IHead 1SS} fior al gIvVen  discharge relates to: flow
efficiency; 1.e an optimum; size ofi pipe;will vield the
least overall cost off installation and eperation| fok
the desired discharge.

Chooesing a smallipipe results in lew: initiall costs,
IOWeEVer, subseguent: costs may: be; excessively.
arge because of highr energy: cost from large heaad

OSSES




Energy eqguation

he design; el conduit should bersuchi that it'needs least
cost for a given: discharge

Tihe hydraulic aspect of the' preblemi reguire applying the
one dimensionallsteady: flow! ferm of the energy: equations

2 2
D1 4 )2 V3

—ta—+z1thy,=—+ar—=—+z0 + hy + Iy
y 28 Py 2g

Where  p/y=pressure head
aVZ/2g =Velecity head
7z =elevation head
/1,=Meadisupplieaiby a pump
fy=head supplied to a turbine
11, =head loss between 1 and 2




Energy: eguation

Energy Grade Line
Hydraulic Grade Line

v2/29

[

>
a 7

S

Y
z=0 Datum

The Schematic representation of the energy equation




Energy eqguation

Velocity, heaa

Inr ed/2/2g; the velocity: Vs the mean: Velogcity: in' the
conauit at al given sectionrand isfobtained: by,
V/=0)/A, where, Q'Is the discharge, and A Is the
Cross-sectional’ areal of the conduit.

ihe Kinetic energy: correction fiactor 1S given by o,
andi it is defines as, where u=velocity atiany: poeint
N the section

ju3dA

_ 4
V34

o as minimum Value of unity When the velocity Is
uniform across the section

(04



Energy eguation cont...

VVelocity liead cont...

o 1as values greater than unity. depending on the degree ofi
Velocity variationI across) a SEction

o laminar flew in a pIpe, velocity: distrbution IS parabolic
dCross! the section off the, pipe;, and o has value ofi 2.0

IHowever, I the flow: isi turbulent, as Is the usual case for
water flow’ through! the large; conduits, the Velocity: Is fairly.
Unifiorm over most off the conduit section, and o has value
near unity’ (typically: 1.04< o < 1.06).

Tiherefore, In hydraulic' engineering| fox ease of application
N pIpe flow, the value of o Is usually assumed: tor be; unity,
and' the velocity head' is then simply: 14/2g.



Energy: eqguation: Cont...

PUImp) or tUrplne neaad.

Tihe head supplied by a pump:Is directly
elated to the; power supplied te; the filow: as

given: Below

Likewise it headfis supplied to turbing, the
power supplied tothe turbine will be

Tlhese twoereguations represents the, pewer

supplied directly: or' pewer taken out directly.
fromi the flow




Energy eguation cont...

Heaa-Ioss ter

hehead 0SS term /7 accounts fier the conversion
O mechanicall eneray. torinternal energy: (lneat),
Wien| this ConNVErsion OCcuUrs, the internallenergy.is
Mot readily: converted back to Usefiulmecnanical
eneray, therefore it Is called /iead /oSS

IHead less results from Viscous resistance to: flow
(friction)) at the conduit wall or firomi the Viscous
dissipation: of turbulence; usually: 6ccurring with
separated flow, such as in bends, fittings or outlet
WOKKS.



Head! loss calculation

IHead loss; s due to firiction; between the: fluidi and
the pipe wall and turbulence withinrthe Huid

Tihe rate of headlloss depend on| reugnness
element size apart firom: velocity: and pipe diameter

Eurther the headiloss also depends on Whether the
pipe is hydraulically’smeoth, reoudh o Ssemewhere
I between

In water distribution system:, head less is alse due
to bends, valves and changdes in pipe diameter



Head loss) calculation

IHead less for steady: flow: through' a straight pipe:
04y =Ap4,

Ap=4LZ'()/D

r0 = foV?/8

2
pobp L VT
/4 D 2g

Tihis isf knewni as: Darey-\Weishach equation

/=S, Is slope of the, hydraulic and' energy: grade
lines for a pipe of constant diameter



Head loss) calculation

Head loss 1 lamipar flow:

Hagen-Poiselille equationi gives K= 32V
szg

Combining above withi Darcy-\Weisbachr equation, gives!fi

_ bdu

/

- poVD

Alsorwe can write inf terms)off Reynolds number

]

NI"

This relation is valid for /<1000



Head! loss calculation

Heaa I6Ss I turbulent How:

In turbulent: flow, the friction factor IS al function off both
Reynoelds number and pipe rotughness

As the reughness size or the velocity Increases, filow:is
whiolly rough and - depends onl the; relative; rotughmness

Where graphical determination ofi the friction fiactor IS
acceptable, It isipossible toruse al Moody: diagram.

Tihis diagrami gives the firiction factor over'a wide range of
Reynolds numBers for laminar flow: and smoeoth, transition,
and rough turbulent filow



Head loss) calculation

Tihe guantities shown| in Moody’ Diagram are dimensionless
SO they: cami be; used withr any: system off Units

Moody: st diagram cani be; fellowed firom any: reference: book

MIINOR LOSSES

Energy: lesses caused by valves, bends and Changes ini pipe
diameter

This is smaller than firiction losses in straight sections: ofi
pipe; andtfor all practical pUrpeses IgRere

Minor'losses) are significant in valves and fittings, which
creates turbulencein excess of that preduced! in a straight

pIpe



Head loss calculation

Minor Iosses can be expressed infthree waysk

A minor loss coefificient K may be used: to give
nead |ess as alfunction off velocity: head,

;2

h=K-—
2g

Minor Iosses may: be expressed ini terms) of the
eguivalent: lengtir of stralght pipe, Or as PIpe
diameters (1L/D) which produces)the; same head

loss. )
LV

h=f——0m
fD 2g




Head loss calculation

A flow: ceefiicient €, Which gives al flow: that will
Pass throughi the valve at a pressure; drop) of

L psi may: be; specified. GIven: the flow: coefficient
the head 1ess Can be; calculatedas

18.5x10° D%y ?
C§2g

h

ihe: flow! coefficient canr be related! tor the minor 10ss

COEffiicient By,

o 18.5 x 10% D2

2



. Energy: Equation for' Flow: in; pipes

Energy equation for pipe flow

The representsielevation, pressure, and velocity: forms
of energy. The energy equation for a fluid moving| in aiclosed conduit:is
wiitten between tworlocations at aldistance (length) L apart.. Eneray.
losses for flow! throughi ducts and pipes consist of major lesses and

Minor LLoss Calculations fior Eltid Elow

2
o=kl

2g

Minor lesses are due to fittings such as valves and elbows



Major Loss Calculation for Fluid Flow

Using Darcy-Weisbach Friction Less Equation

-l-l.l-lll-lll.

If non — circular duct, D computed from D = -

Major lesses are due te firiction between| the moyving fluid
and the/inside; walls of the duct.

Tihe Darcy-\Weisbachr method! s generally’ considered more
accurate tham the Hazen-Williams methed.  Additionally,
the Darcy-\Weisbach method s validi for any: liguid or gas.

Moody: Eriction Factor Calculator

f=—  forRe=2100|laminar flow)
E._E: N a

for 5000< Re<10° (turbulent flowyand 107" = D =10




Major LLoss Calculation n pipes

Using Hazen-Williams; Eriction’ Less Equation

D

=Vi & R, —Ttxlii”llﬂflf'“

Hazen-Williams, is;only: valid for Water at ondinary.
temperatures (401te 75°F). TheHazen-Williams method' s
Very: popular, especially: among civil engineers, since Its
friction coefificient (€)i1s not a function off Velocity: or duct
(pipe) diameter.  Hazen-Williams s simpler than Darcy-
Weisbachl fer calctlations Where one can: Solve or filow-

rate; velocity, or diameter



Transient flow through leng pipes

Intermediate flew while;changing firom: ene

steady: state ter anether Is called transient
How,

TIhiS oceurs due te designi or' operating
Errers or equipment: malflnction:

Tihis transient state pressure causes Iots ofi
damage; o the; network system

Pressure rise in al clese conduit caused by an
Instantaneous change in flow: velocity:



Transient flow throughi loeng pipes

I the flew velocity at a peint dees vary: with time;, the flow
IS Unsteady

When the flew conditions ane; changed firomiene steady,
state to another, the intermediate; stage flow! Is referread! to
as; transient: flow.

Tihe terms fiuidl transients and hydraulic transients are used
I practice

The diffierent flow' conditions inia piping System are
discussed asi below:



Transient flow through lengi pipes

Consider a pipe length off lengtir L

Water Is flowing firem a| constant: level Upstream) reservoir
{0/ a valve at dewnmstream

Assume Valve Is instantaneously: closed at time; t=¢; firfom
the full open| position ter halif open: position.

ThIS reduces the; filew: velocity through the valve, thereby,
INcreasing the pressure at the valve



Transient flow: through leng pipes

Tihe increased pressure will preduce a pressure wave that
willltravel back and ferthiin the pipeline untillit Is
dissipatedl because; oft friction and flew: conditions; have
PEcome steady again

Tihis time when the flow’ conditions have become steady:
adainy, let us callit ;.

SO the filow regimes cani be categerized Into
Steaay flew fier t<t;

Transient flow for ty<t<t;

Steady filow: for t>t;



Transient flow throughi leng pipes

Tiransient-state pressures are sometimes reduced to the
Vapor pressure of a liguid that: results In separating the
liguidl celumn at that sectiony; this isirererredito as liguid-
colUmn; separation

[ the flow! conditions are repeated after a fixed time
Interval, the flow:Is called! periodic flow, and the time
Interval at Whichithe, conditions are; riepeatedtis called
PEriod

The analysis off transient state conditions ini closed conduits
may. be classified into twoe categories: lumped-system
approach and distributed! system approach



Transient flow through leng pipes

In the /umped. systeni approachs the conduit walls
dre assumed rigid and the liguid in; the conduit is
assumed' Incompressible; so thattit benaves like a
fgid mass, etherway: flow: variables: are fUnctions
OfF time only.

IR the, dlstriputed system appreachr the liguid s
assumed slightly: compressible

Therefore flow: velocity: vary: aleng the length of the
ConAuIt in addition to the variation in time



Transient flow through leng pipes

Flow: estaplisiinient

Tihe 1D form| off momentim eguation fior'a controlf volume
that IS fixed in space and does not change shape may: be
WrItten as

d
S F =—f pVAdy + (PAY ?) put —(PAV %),

I the liguid is assumed incompressible and the pipe Is rigid,
then at any instant the velocity aloeng therpipe will'be same;

2 2
(LAY )in = (PAV ™) out



Transient flow through leng pipes

Substituting fer all'the fercesiactingl en the control
velume

. d
pA + yAL sin a — tgDL = d—(VpAL)
[

Where
pl=i(1=V272g)

0. =PIPE SIOPE

D=pjpe)digmeter
L=pIpe/engtyi

W =SPECIc Welgnt or Hiuid.

7,=SlEar Stress at thiel pipeiwall



Transient flow threugh long pipes

Erictional force is replaced by yiA, and /5,=A+Ls/m o and /i
from Darcy~-weishach! frction eguation

Tihe resulting equation yields:

Wheni the flow'is fully: established, aV/at=0.
e final velocity: 17, will Be;suchrthat:

:|:1+£:|VL2

D | 2g

We use the above relationship to get the time for filow. to
establish g 2LD  dv

D+ fL yi—yp?




Transient flow through: long pipes

Chiange I pressure ave o rapia iow: crianges

Whenithe flow' chianges are; rapid, the fiuid
compressibility 1s needed to taken| interaccount

Changes are net instantaneeus; threughout the
system,, rather pressure Waves move back and
forth in the piping system.

Pipe wallsi to be rigid andl the liguid tor be slightly
compressible



Transient flows through long pipes

Assume thatithe flow! velocity at the downstream
end isichianged firom: l/ter /41, thereby: chanding
the pressure; firom: piter p+4p

Tihe change In pressure will produce a pressure
wave that: will'prepagate i the, upstream! direction

Iihe speed o the wave be 4

Tihe; unsteady flow: sittiation can be; transfiormed! Intoe
steady flow: by assuming the velocity reference
system move with the pressure wave



Transient flows through long pipes

Using mementun equation; with controli volume approach to
Solve, fior 4P

he systemis new: steady, the momentum: equation new.
DR (o ADVA=(V +a+AVY(p+Ap)V +a+AV)A—

V+a)p(V +a)A

By simplifying and discarding| terms ofi Righer order, this
eguation becomes

—Ap =2pVAV +2pAVa+Ap\V> +2Va+a’

Tihe general form off the equation fox CORSErVation of Mass
for ene-dimensionall flows: may: be, Writien as

d%
0=— j pAdx +(pVA),, —(pVA),



Transient flows through long pipes

[For ai steady. flow: first termi onl the; right hand side isi zero, then we ebtain
0=(p+Ap)V +a+AV)A—p(V +a)4

Simplifying this equation), \WWe have

PAV

Ap=—
o V+a

We may: approximate; (1/+g)'asiaj, because V<<a

pAV

Since We can write as

g

Note: change in pressure head due to an instantaneous chan?e in flow.
velocity Is' approximately 100 times the change in the flow: velocity:




Intreduction te; NUmerical
Analysis and lts Role In
Computational Hydraulics

Module 3

2 lectures



Contents

NUmerical cCompUing
Computer arthmenec
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EXAnpIles of pronlenis
Aeeang nuymercal
treatment



What is computational hydraulics?

It IS ene off the; many. fields of science in Which the
application off cCOMpPULErs gIVES FSe; torar NEW: Way,
OF Werking, WhICh Is Intermediate between: purely,
theoreticalland experimental.

Tihe hydraulicsithat isf reformulated to sult digital
MaCNINE! Processes, Isicalled computational
nydradlics

It IS concerned with simulation off the filew! of
water, together with' itsi conseguences, using
numerical methods on computers



What is computational hydraulics?

Tihereiis net a great deall of difiference with
computationalfhydrodynamics orcomputational
fuid dynamics, but these terms are toe much
iestricted to) the fluid as such.

It seems ter be typical of practicall problems in
nydraulics that they: are rarely: directed ter the flow
Py itself;, but rather to Some Consequences of It,
SUCH! as Torces on ebstacles; transport: of heat,
sedimentation off alchanngell or decay: of ar pollttant:



Why numerical computing

The higher mathematics can be treated by this method

Whenithere is neranalytical selution), numercalianalysis
can deal such physical preblems

Examples .= siri (%), has No clesed! formi selution.

Tihe fellowing integral gives) the Iength’ offone arch of the
above curve

T

w/ +cos > (x)dx

0

INUmericall analysis: can compute the Iength off this, curve by,
standard methods that apply: teressentially: any: integrand

Numerical computing helps in finding efifective;and efificient
approximations of functions



Wiy Numerical computing?

inearization of nen linear equations
SOIVES for a large; system of linear’ equations

Deals the ordinary. diffierentiall eguations of any.
erder and complexity.

NUumericall selution of Partial differential
eguations are off great Importance; in selving
physicallworld problems

Solutien: of initial and belndary: valte preblems
and estimates the eigen values and
EIgEenVvectors.

Fit curves to data by a variety: off methods



Computer arithmetic

Numericall method is tedious and repetitive; arthmetic,
Which! is not possible te selve without the help of computer.

On the other hand Numericalfanalysisiis anrappreximation,
WhICh! leadsi towards some degree of errors

Tihe errors caused by Numericall treatment are defined in
terms of fiellowing:

[rupecation error ;: the ex can be appreximated threugh
cubic polynomial as'shewn below.

eX1s an infinitely long series asigiven below: and the error IS
due to the truncation ofi the series




; through mat

Computer arithmetic

Rouna-ofif error : di (?Ita| computers always use floating| peint
nUMDBErs of fixed word length; the true values are net expressed
exactI%/ by’ sUCh representations. SUch error due to) this computer
IMpPErection! is round-ofi: erroer.

Error 1 or ﬁlna/ aata’: any physical problem Isirepresented
ematical expressions Which have some coefficients that
are/ Imperfectly: known.

Blunders;:: computing machines make mistakes very: infieguently,
BUt since; humans anrelinvelved in pregramming, operation, Input
preparation, and output interpretation, bIURNAErs o gross Errors do
OCCUr more frequent y than we like to admit:

Propagated error ; prepadated error isithe error caused In the
succeeding steps due to the occurrence of error in the earlier step;
such error’is im addition to the lecal errors. Ifi the errors magnified
continuously as the method continues, eventually: they will
overshadow: the true value, destroying Its validity, we call'such a
method wnstap/e: For stap/emethod (Which isidesired)— errors made
at early’ points die out as the method continues.



Parallel precessing

It Is a computing method that can only: be
perfermed oni systems containing tWo: or more
PIOCESSONSI Operating simultaneously. Parallel
DIOCESSING USes several processors; allfworking) on
different aspectss off the same programi at the; same
tUime, In order te share: the computational Ioad

[For extremely: large scale; proplems; (shoert term
weather ferecasting), simulation: te; predict
derodymnamics PEHOMaRCE, Mage Processing,
artificial intelligence;, multiphase flow in grotnd
water regime etc), this speeds Up: the computation
adeguately.



Parallel processing

Most have just one CPU; but
some models have several. There are even
with: thousands; off CPUs. With
single-CPU computers; It Is possible to
perfiorm parallelf processing by connecting

the computerstin a . IHOWEVer, this
type off parallel’ processing requires Very
sophisticated called

sofitware.

Note that parallel processing diffiers, firom
, Infwhich a single CPU executes
severall programs at once.



Parallel processing

TVpes ofi parallel Frocessing job: Im general there are three
types ol parallel’computing jobs

Parallel task

Paramenic sWweep,
fasK owy

Parallel task

A parallel task can take a number of forms, depending on the
application and the software that supports it. For a
Message Passing Interface (MPI) a%p ication, a parallel task
usually consists of a single executable running concurrently
on multiple processors, with communication between the
processes.



Parallel processing

Paramenic Sweep

A parametric sweep consists of multiple instances of the
same program, usually serial, running concurrently, with
input supplied by an input file and output directed to an
output file. There is no communication or interdependency
among the tasks. Typically, the parallelization is performed
exclusively (or almost exclusively) by the scheduler, based
on the fact that all the tasks are in the same job.

fiask ow

A task flow job is one in which a set of unlike tasks are
executed in a prescribed order, usually because one task
depends on the result of another task.



Intreduction te: humerical analysis

Any: physical problem in hydraulicsiis represented
threughra set of differentiall eguations.

ihese; equations describe; the very: findamental
|aWs O CONSErVation: off Mmass and moementum: in
terms of the; partial’ derivatives off dependent
Variables.

[For any: practical purpose; we need te know: the
Values off these variables instead! of the values of:
their derivatives.



Intreduction tor numericall analysis

Tihese variables are ebtained frem Integrating those
ODES/PDEs.

Because o the presence off nonlinear terms a closed form
solution off these equations IS net obtainable, except fior
some, very simplified cases

Therefore they need to be analyzed numerically, for Which
several numericall methods are available

Generally the PDEsiwe deal in the computationall hydraulics
IS categorized! as elliptic, parabolic and hyperbelic eguations



Intreduction to numerical analysis

JE JO/IOWIrG IMELHIOAS IaVEe IEer USEed 1or:
Aumercal iategration ortie OPES

Euler method

Modified Euler methoed
RUnge-Kuttarmethod
Predictor-Corrector methoad



Intreduction to numericall analysis

e Jo/OWIrg IMELNOAS IaVel DEeern USed. 1or:
nAuUmercal Inteqgraton o e PPES

Characteristics method
Finite diffierence; method
FiRite element method
EiRite; volume method
Spectrall method
Boundary element method



Problems needing numericall treatment

Computation off normal depth
Computation off Water-surface profiles

Contaminant transpert N stieams) threudh
ahn adVection-adiSPErsion Process

Steady: state Ground water flow: system
Unsteady state; ground water flow: system
FIOWS Inl PIPE; NELWOIK

Computation of Kinematic and dymnamic
WaVve equations



Solution of System of
Linear and Nen Linear
Equatiens

Moduler4
(4 lectures)



Contents
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Vietrnoa or
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systems crPieara andad.
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Sets of linear eguations

Reallworld problems are presented through ai set of
simultaneous;equations

Solving al set: off simultaneous linear equations nNeeds
several efficient technigues

We need to represent the set of equations! through matrix
algebra



Matrix notation

Viatrx : a rectangular array: (nx m) off AUmDbEers

Matrix Adaition:
C = A+B = [a,+ by] = [c;l, where

Matrix Multiplication:
AB'=C =i[a;|[b;] = [c;l, Where




Matrix notation cont...

*AB = BA
KA = C, Where Cij = kal]

Al general relationorAx:= Dls

No.ofcols.

kzl ikre> 88 [ =1,2,..., No.ofrows




Matrix notation cont...

Matrix multiplication; gives set: of linear eguations as:
ay X A Xt a8y X =1y,
do Xy A Xo ..+ a0 X =15,

do Xy @ Xort. Ea X =0

In; simplermatrix notation We can: Write:
AXx = b, where




Matrix netation cont...

Diagoenalimatrix: (C enly diagonal elements ofi a
sguare matrix arernoenzero and all ofi-diagenal
elements| are zZero)

Identity: matrix ( diagonal matrix-withrall
diagonal’ elements;unity’ andrallfofi-diagonal
elements, are; zero)

Tihe; order 4 identity: matrix 1S showni BeElow




Matrix netation cont...

Lower: trangular matix:
i all the elements above the
diagenal are; zere

Upper: thangularimatiix:
i7all the elementssbelow! the
diagonal are; zere

[ri=adiagoral matre i
NONZero elementsionly on
the diagonal and in the
position adjacent to the
diagonal




Matrix netation cont...

Transpose of a matrix A Examples
(AD): Rows are written as
COIUMNS; GF Vis|al Versa.

Determinant: off a square
matrix A IS diven by:

A:[au alz}
a4

det(4) = ayjaz; —azjapn



Matrix notation cont...

Characteristic polynomialpyii) and e/genvalies
A Of a matrix:

Note: eigenvalles) are most important infapplied
mathematics

(oI a sguare: matrix A we definerpar) as
uA) = JA - AL = det(A - 11);

lifwerset pu(L) = 0}, selvefor the rooets, We géet
eigenvaluesioff A

liTA IS mx N, then pA(L) is pelynemiall off degree
N

Elgenvector W' is a NeNZero) Vector such that
Aw= 1w, 1.e., (A - 1L)w=0



Methods off selution off set of eguations

Direct methods are those that provide the solution in a finite and pre-
determinable number of operations using an algorithm that is often
relatively complicated. These methods are useful in linear system of
equations.

Djrect methods orsoltion
Gaussian elimrination method

4X1— 2X2+ X3 =15

—3X1—X2+ 4X3 =8
X1— X9+ 3X3 =13

Stepl: Using Matrix notation We cani represent the set off equations as




Methods of solution cont...

Step2: The Augmented! coefficient matrix with the right-hand! side
VECLOK

3R + 4Ry — —10
I)Rl +4R3 -

4 ) 1 15]

—10 19 77

Step4: The array in the upper triangular matrix represents the
eguations which: after Back-substitution gives the solution the values
of X{,X5,%;3




Method! off solution cont...

Puring the triangularization Step, iiF a Zero) IS
encountereadon the diagonal, We can not use
that row! te eliminate; coefificients below: that
Zero) element; 1IN that case We periorm the
elermentary; row. operations

We, Begin withi the previous augmented
Matrix

N allarge set offequations multiplications
will'give veryilarge and unwieldy: numoers toe
OVerfilow the computerss register' memory, We
will therefore eliminatera;;/a;; times the first
eguation frem the I th eguation



Method of solution cont...

to guard against: the zero: in; diagonall elements,
iearrange; the eguations, soi as) to) put the
coefficient of largest magnitiide on the diagonal at
each step: This is called Pivoting. The diagenal
elements resulted are called pivot elements:

Partial piveting , WhICh places a Coerficient: of
larger' magnittide onrthe diagenal by row
Interchanges) only, willfguarantee arNeRZEro) divVISor:
[ there isia solution off the set o equations.

Tihe round-ofi errer (chopping asiwellias reunding)
may. cause large effects. In certain cases the
coefficients sensitive to round offi error, are callea
HI=conartionea matrix.




Method! ofi solution cont...

LU decomniposition of A

i the coefficient matrix A can be; decomposead
InterIower and Upper tiangularmatrix thenrwe
write: A=1*U, usually: we get L*U=A", where A'is
the permutation: of the rews off A due to row
INterchangde from: piveting

Now: we get det(l.>U)= det(L)rdet(U)=det(U)
Then det(A)=det(U)

Gauss-Jordan method
In' this method, the elements above the diagonal
are made zero at the same; time; Zeres are
created below the diagonal



Method of solution cont...

Usually, diagonal elements are made unity,
at the same time reduction! is; perfiormed,
this transforms) the; ceefficient matrix Into
an identity: matrix and the celumn of the
Hght hand Sside; thiansiorms; o) selttion
VECLOF

Pivoting isfnermally employed te’ preserve
the arithmetic accuracy



Method! off solution cont...

Example:Gauss-Jordan method
Consider the atigmented matrix as

Stepl: Interchanging rows ene and four, dividing the first
oW by 6, and reducing the first columni gives

1 0.16667 -1 -0.83335 1
0 1.66670 5 3.66670 -4

0 -3.66670 4 433340 -11
0 2 0 1 0




Method! ofi solution cont...

Step2: Interchangding rews 2 and: 3, dividing the
2ndirow: by —3.6667, and reducing the second
column gives

—1.5000 -1.2000  1.4000
2.9999  2.2000 -2.4000

15.0000 12.4000 —-19.8000
—5.9998 -3.4000 4.8000

Step3: We divide the 3™ row by 15.000and
make the other elements;in the third column
INto zeros



Method! ofi solution cont...

0.04000 —0.58000
—0.27993  1.55990

0.82667 —1.32000
1.55990 -3.11970

Step4: now: divide the 4% row: by 1.5599 andi create zeros
above the diagonal in the fourth column

—0.49999
1.00010

0.33326
—1.99990




Method! off solution cont...

Olher: direct Imetiods; o1 so/ution
Cholesky reduction (Doeolittle’s methed)

Jiransfiorms the coefficient matrix, A, Into the
product off two, matrices, I and U, where U has
Ones| onlits main diagenal. hen LU=A can| be
WEHItten as

30 B33
lp 143 g4




Method of solution cont...

ihe general fermulal for getting the
elementsioff L anadl U corresponding to) the
coefficient matrix fior m simultaneous
eguiation can' be written: as




Method of solution cont...

Iterative methods consists of repeated application
of an algorithm that is usually relatively simple

lterative method. o1 so/uLiorn

cogefificient; matrix s sparse; matrix (C has many,

Zeros)), this methoed s rapid and- prefierred over
direct methods,

applicable; to sets off nonlinear equations
Reduces;computer memory: reguirements

Reduces round-off error in the solutions
computed by direct methods



Method! ofi solution cont...

Two types of Iterative metheds: These methods are
mainly usertl in nenlinear system ol equations.

Iterative Methods

Point iterative method Block iterative method

Jacoby method. Gaulss-Siedel Viethod. SUcCesse oVver-relaxation metiiod.



Methods of solution cont...

Jacopl metnod.

Rearrange the set off equations to)solve for the variable
withi the largest coefficient

Example: 6x1 — 2xy + x3 =11,

X] + ZX2 — SX3 =—1,

— 2x1 + 7x2 + ZX3 =35.
x1 =1.8333 +0.3333x7 —0.1667x3
xy =0.7143 + 0.2857x; — 0.2857x3

x3 = 0.2000 + 0.2000x; + 0.4000x

Some Initial guessi to the values of the variables
Get the new set of' values ofi the variables



Methods of solution cont...

Jacopl meliod.cont.,,

Tihe new: set ofi Valuesi are substituted in the right
nand sides ofi the set off equations, to; get the next
approximation andi the precess IS repeated till the
CORNVErgence Is reachead

Tihis the set off equations can be Written: as

"D 1.8333 1 0.3333x)") - 0.1667x("

WD 20,7143 +0.2857x" - 02857

D =0.2000 + 0.2000x") +0.4000x)"



Methods of solution cont...

Gal/ss-Siedel method.

Rearrange the eguations such that each diagonal entry.Is
larger'in magnitude than' the; sum: off the magnitudes) ofi
the other coefificients in that row: (@/agonally; aomihant)

Makeinitial guess off all UnknewAs

Tihen Selve each eguation fior' unknewn, the iteration: will
converge fior any: starting guess values

Repeat the process till the convergence s reached



Methods of selution cont...

Gal/ss=Siedel method cont.,.

[FOr any: equation Ax=c We can Wiite

liRfthist method the' latest Value ol the x: are
used in the calculationsofi further x;



Methods of solution cont...

Sliccessive over-relaxation. method.

Tihis method rate off CORVErgence cam e
Improyved! by providing accelerators

FOr any. equation Ax=cWe: can Wiite




Methods off solution cont...

Sliccessiye over-relaxation. metinod.cont.,.,

Where determined using standard
Gauss-Siedell algoerithm

k=iterationlevel,

W=acceleration parameter (>1)
Another form




Methods of selution cont...

Stjccessive over-relaxation metinod. cont;,
Where I<w<Z2:  SOR method

O<w=<i:"  Wweighted averadge Galss
Siedell method

Previous valtie may: be needediinrnoenlinear:
proplems

It Is difficult te’ estimate w




Matrix Inversion

Sometimes the: problem: of selving the; linear:

algebraic systemy isloosely: referred to as matrix
IAVErSIoN

Matrix Inversion means, given aisguare matrix [A]
WIth nonzeror determinant; finding) a Second
matrix [A™] having the property that [A][AT=]1],
[1]1s the identity: matrix

[A]x=c
x= [A1]c
[AZIAI=[II=[AITAR]



Pathology off [inear systems

Any: physical problemi modeled by a set off linear
eguations

ROUNA-0fii errors give Imperfect prediction of
physical guantities, but assukés| the existence; of
splution

Arbitrary’ seti off equations may: ot assure Unigue
splution, suchr sittiation termed as “pathological™

NUumberofi related eguations lesss than the, Aumber
off UNKAGWNS, NOo Unigue solution, otherwise unigue
solution



Pathology of linear systems cont...

Redundant eguations' (infinity: of values ofi
UNKAGWANS)

X+V=5 2+ 2 =06
Inconsistent: eguations! (norselution)
X+ V=353 2X+2V=7

Singuiar matix(nx n system, nounigue selution)

NORSIIgUIEr mgtix; Coefficient nmatrx cam e
triangularized witheut having zeres on the diagenal

Checkingl INConsistency, redundancy: and Singularity: of
set off eguations:

Rank of coefficient matrix (rank less tham n gives
Inconsistent, redundant and singular system)



Solution: off nonlinear systems

Most off the real world systems) are; noenlinear and: the
lepresentative system ofi algebraic equations are; also
nenlinear

Tiheoretically, many. efificient selution methods are available
for linear’ equations; consequently’ the efforts are put te
first transform any: nenlinear system intoe linear system

T here are various methods available: for linearization

Vietiioa or iteratior,
Nonlinear systen) example:.  Balaiay oy
ASsUmMe X=1x.y), V=a(%y)

Initial guess fior' both x and. V.

Unknewnsion the left hand side are computed iteratively.
Most recently: computed values are used in evaluating| right
and side

2




Solution off nonlinear systems

Sufficient condition for ConVergence of this
procedure is

o

+@<1 8_g+6_g<1

ox| |oy ox| |0y

Inran interval about the root that includes the;initial
guess

Tihis method depends on the arrangement of x and
VAILE ROW X=T(X, V), and /=g X)) are Written

Depending on this arrangement, the method may.
Converdge or diverge



Solution of nonlinear systems

TThe method of iteration can be generalized to n
nenlinear' eguations Withr nr UtNkNeWRS: In this case,
theequations are arranged as

A sufificient condition fior the' iterative process to
CONVErge! Is




Newton technique of linearization

Linear approximation off the function using a tangent to the
curve

Iinitial’ estimater x; not tee far fifem the root

Move aleng the tangent torits intersection with' x-axis, and
take, that as the next approximation

Continue till x-values' are; sufficiently: close; or fiunction value
IS sUfficiently: near to, zero

INewton's algonithm Is Widely: Usedl because, at least ini the
near neighboernooed! of alreet, itiisimere rapidly: convergent
than any: of the other methods.

Method' Is guadratically: Convergent;, error off each step
approachesia constant K times the; square of the error of
the previous step.



Newton technique of linearization

TThe number' off decimall places off accuracy. doubles at each
teration

Problemi withi thisimethod!is that of finding| of 7(X).
Eirst derivative; 7(x) can be Written: as

tand= f(x)= L0

X0 —X]




Newton-Raphson method

F(x,y)=0, G(x,y)=0
Expand theeguation, using Tayler series aboeut X, andy.

F(xy+h,yy +k)=0=F(x,,y,) + Fy (X, y)h +Fy(xnayn)k

G(xy, +h, Y, +k)=0=G(xp,y,) + Gy (X, y) 1 + Gy(xnayn)k

Assume initial guess for X,y
Compute functions, derivatives and x.,y., hiand k, Repeat procedure



Newton-Raphson method

[For n nenlinear eguation

Fi(xp + Axp,x0 +Axy +...+ x, + Ax,,) =0

OF; OF;
—F(XI,X2, ,xn)+Ax1—+Ax2—+ +Ax

8x1 Ox 2




Picard’s technique of linearization

Nonlinear equation: s linearized through:
Picararsitechnigue; of linearization
NewtonI tecnnigue of linearization

e Picard's methnoed IS ene of the noest commonly/
USed schieme te selve the set efi nenlinear
differentialfeguatons.

Iihe Picand's method usually: provide rapid
CONVErgENCE.

A distinct advantage: of the: Picard s scheme! s the
Simplicity. and/less computatienall effiert per iteration
than more sophisticated methoeds like Newten-
Raphson method.



Picard's technigue off linearization

Tihe generall (parabolic type) equation: fer flow: in a
twor dimensionall, anisetrepiciNGN-NOMOJENEOUS
aduifier systemyris given: by the; fiollewing equation

Using the;finite difference approximation at a
typical interior nede; the above greund Water
eguiation reduces to

Bl,_]

hi -1+ Dy jhi j+ Ei jhi j+ By iy j+ Hy jhy g =R

l,]



Picard’s technigue of linearization
Where




Picard’s technigue of linearization

Sl,]
=—(B; j +D; j + F;, +Hl])+?

L, ] Ol, i
L — (Q)pi,j + (R)rl.’j + (R)Si,j

ihe Picard’s linearized form of the aboeve
eguation Is given by




Solutioni of Manning's equation by Newtonrs
technigue

Channel flow:is given by the Tellowingl equation

0-- SI/ZAR2/3

here Is ne general analytlcal selution to Mamning'sieguation
for determining the flow' depth, given the flow rate as the
flow: area A and hydraulic; radiusi R may: be complicated
functions of the flow: depth Itselfr.

Newton's technigue can: be iteratively tused te give the
AUmerical solution

Assume at iteration j the flow depthiy; Is selected and the
flow' rate Q; isicomputed from above equation, using the
arealand hydraulic radius' corresponding to y;



Manning's eguation by Newton's technigue

This Q; isicompared with theractual flow Q
Tihe selection ofi'y isidone, so that the error

s negligiply:small
The gradient of FwW.r.t y/Is
a9

@IS a constant



Manning's equation by Newton's technigue

Assuming Manning'si n constant

1
L4
n dy

-1/3
AR R A
153/2[2_61_%2/30’_)
J

n 3 dy dy

The subscript j outside the parenthesis indicates that the contents are
evaluated'for y=Yy:



Manning's equation by Newton's technigue

Now! the Newton's' method is as follows

Iterationsiare continued until there isinoessignificant change
Ny, and this will happen When the error fi(y) IS very: close to
ZEero



Manning's equation by Newton's technigue

Newton's method equation for solving Manning's equations

[For a rectangular channel A=B, Y, R=B,y/(B,,#2y) wWhere B,
S the chiannelfwidth, after the manipulation, the above
eguation; can' be'writien as

, , 1-0/0;
ey 2]
AR [ 5By, + 6y ]

3y;(By +2y;)

J




Assignments

1. Selve the follewing set off eguations by Gauss elimination:
X +x,+x;=3

2x,+3x,+x, =6

X=X, —X; =—3

IS rew! Interchange necessary. fior the aboeve; equations?

2. Selve the system  CREwIr sy
x—2y—6z=14,

x+6y=4,

a. Using the Gauss-Jacebiimethod

b. Using the Gauss-Siedel method. How: much faster is/ the
convergence than in part (a).?



Assignments

3. Solve the following system by Newton's method
e ebtain thersolution near (2.5,0:.2,1.6)

4., Beginning with (0,0,0), use relaxation tosolve

the system
6x, —3x, +x, =11

2x, +x, —8x; =—15

x,—7x,+x, =10




Assignments

5. Find the roots of the, equation te'4 significant
digitst using Newton-Raphsen method

6. Solve; the fellowing simultaneous noemlinear
eguations using Newton-Raihson methoed. Use

starting| values

x’+y> =4

xy =1



Numerical Differentiation
andiNumenrcal Integration

Module' 5
3 lectures



Contents

Dervatives ana lntegrals
lrategration fermulas
lrapezoyaal e
SIpPsoAs ilé

Newton:'s Coats formnuia
Gatvlssian-ouaarature

Viuiltple integrals




Derivatives

Deryatives lrom. difierence. tab/es

We use the divided difference table to) estimate values; for
derivatives. Interpolating pelynomiall 6if degree nithat fits at
POINtS Py, P1,---, Py 1Niterms, off divided dififierences,

f(x)=P,(x)+ error
= flxol+ flx0, %1 1(x — x0)

+ f1x0,x1,x2](x — xp)(x — x1)
+ oot f1X05 XY 5o X5 ] T (X — ;)

+ error

Now: we shoulal get a pelynemiallthat appreximates; the
derivative, (%), by dififerentiating| it

P, (x) = fTxg»x11+ fTxg %1 X2 1[(x = x1) + (x = x0)]
]”il (x —x0)(x = x1)...(x = Xxp_1)

i=0 (x—x;)

+ ...+ flxg,X],--X,




Derivatives continued

e get the error term fior the above, approximation, We
nave to diffierentiate the error term for P, (X)), the error term
for P.(X):

AR

Error =(x —xgp)(x = x1)...(x — x,,)

(n+1)!
Efior off the: approximation te (), When X=X, is

&in [X, X, %]

Error IS not zero even When X is'a tabulated value, in fact
the error of the derivative is less at some x-values between
the points



Derivatives continued

Evenly.spaced dalta

When the data are evenly spaced|, we camn Use: a table; of
function diffierences, te) construct; the interpolating
pelynemial.

(x —x;)

We use in terms of: KNe

h

s(s—1) Azf s(s—D(s—2)

Pn(S):ﬁ+SAﬁ ol 3]

L+ error;




Derivatives continued

The derivative;of P_(s) should approximate /()

d d
d_xP (S) _d_SP (S)—

n | j-1j-1 AJ
L+ 54T e -np AL

h =2 |k=01=0 J!

\Where

When X=Xi, S=O Error:%f(n_i_l)(é), 5 In [X]/...



Derivatives continued

Slmpler ionnulas
[Forward. difierence. approXimatior
For: an estimate of f1(x.), weiget

1

P R VAL L YU
f(X)—h[Afz 2Afz+3Afz ---inAfz]x=x,.

Withi ene term), linearly’ interpolating, using a pelynomial of
degree 1, we have (error'is O(h))

. 1 1
f(xi):Z[Afi]_Ehf ($),

With two terms, using a pelynemial off degree 2, we have
(error is O(h?%))

PRV J WSS v I S €)
S (x;) h[Afz 2Afz}+3hf (&),




Derivatives cont...

Central difierence’ approximation.

ASSUME, We Use al secondl degree polynomial that matches
therdifference; taple;at X X .1 andx..> BUt evaluate; it for
f'(X;1), using s=1, then

1

. 1
f(xip) = Z{Afi + EAzfi} +O(h?),
Or in terms of the f'= values We: can write
. 1 1
S (xiy1) = ;{(fm - fi)+ E(fi+2 —2fiq1 + fi)} + error

1 fiin— 1
:—f’+2 f’+err0r,

h 2

error = —%hsz) (&)= O(hz)




Derivatives cont...

iHigher-Order. Derivatives

We can develop formulas; fior' derivatives off RiIgher order
pased on evenly: spaced data

Difference operator: A (x;) = A = fiv1 — /i
SteppIng operator
0)f ;
Relation between E and A: E=1+ A
Dljificiglpietzllo)gie)elagelielgi N D( /) =df /dx, D" (f)=d" /1 dx" (f)

Lt Us start With! ey 5 Where [rysyga X))/ h

Dfjs = %f(xm) - %(ESf,-)

ld psey 1 s £
=~ (B f)=—(nE)E' f



Derivatives cont...

By expanding forfIn(1+A), We get 5 and =

fi = (Afl Ly §A3f, iA4fl-+...j,

" 1
fi = | K fi -2+
h

11 4 5 5
—A —A [+
12 Ji - 6 /i j

DIVIGEd. dIifErErcES
Central-aiiererce fonmnula
Extrapolation technigues
Second-derivative computations
Richardson extrapolations




Integration formulas

Tihe strategy: fior developing integration formula is
Similar te that fior numericall differentiation

Pelynemiallisi passed threugh the points defined by
the filunction

Then integrate; this polynomial appreximation: ter the
FUnction;

This allows: to) integrate al function: at knewn Values
Newitorn=Cotes jiteqration

b b
[ f(x)dx =[P, (xg)dx

a a

The polynomial approximation: of fi(’x) leads te’ an: error.

IVER as:
g E b( 5 Jhnﬂf(nﬂ)(cf)dx

Error = |
a

n+1



Newton-Cotes integration formulas

Tio develop the Newton-Cotes formulas, change; the
variable off integration fromi x to s. Also m

For any (%)), assume a pelynemial P.(x:) off degree; L ite
n=1

[ f()dx= [(fo + o )dx

s=1

=h [(fo + sAfp)ds
s=0

1
2
S 1
= hfoslh + haAvy S| =hfo + M)
0

= 2L+ i - f)l= 2o + i)



Newton-Cotes integration formula
cont...
Error in the aboeve; iIntegration cami be given as

Xq —1
Error = | S(S2 )

" " 1 2 J—
W f (e =11 (§) [~ —ds
0

IHIgher degree leads) complexity



Newton-Cotes integration formula
cont...
Tihe basic Newton-Cotes formula for n=1,2,3 I.e for

lInear; guadratic;and cubic polynomial
appreximations! respectively: are given: Delow:

X h "
[F0de=2fo + ) —%iﬁf ©)

X0

[ £ () = %(fo YAfi 4 fy) - %h%""@

X0

J £ (x)dx = %(fo YIRS f) %th""(g).

X0




Trapezoidall and SImpson’s rule

lrapezoidal rule-a  compoesite ermula
Appreximatingl /() on: (Xz X2) by a straight line

ROMBErg Integration
Improyve; accuracy: off trapezoidal rule

Simpsen’sirule

Newten-Cotes formulasi based on quadratic and
cubic interpolating pelynemialsi are Simpsonfs; rles

QUadratic- Simpson’s fule
Cubic- Simpson’s fule




Trapezoidal and Simpson’s rule cont...

frapezolaal riie-a composite fonilla

Iihe first of the Newton-Cotes fiormulas, based on
dpproximating /(X)) eni (X X,) by. al straightline; is
trapezoidal rule

_ M(m) = g(fl + Jfix1);

For [a, b subdivideal into n subintervals of size h,

b n
[/ = 22+ fir) =5 Ui+ fa+ fa+ Syt o )

b
J £ (0)dx =§(f1 S22yt 2Ly + fyn).




Trapezoidall and SImpson’s rule cont...




Trapezoidal and Simpson’s rule cont...

firapezolaal rile-a composite 1onula cont..,.,

1 3 "
llocal error :_Eh f (&),

Global error :_%}ﬁ[f"(gl)+f"(§2)+...+f"(§n)],

If we assume that (%) is contintuous on (a,b), there is
some; vValue of x 1n (3,b), say Xx=¢&, at:Which| the;value of the
sum in above eguation:is equallto n.f(€), since nh=b-a, the
glebal error DECOMES

Globall error
—(b—a)

= W21 (&)= 0(h?).

= ——h3nf (&) =

The error'is ofi 2% order in this case



Romberg Integration

We can Improve the accuracy. of trapezoidal rule
Integral by, a technigue; that IS similar' te
Richardsen extrapolation, this techrRigue Is kKnewn
as Rombergl integration

Trapezoidal method! hasian error of O(/¥), We can
combine two estimate off the integral that have h-
Vallies in a 2:1 ratio; by,

Better estimate=more accurate +(more
dccurate-less accurate)



Trapezoidall and SImpson’s rule

SIpPsoAs. e

Tihe composite Newton-Cotes formulas based on
guadratic and" cubic Interpolating polynomials are
KAOWNI as SIMPsen's rule

Quaaratic= Slimpson's ] e
Tihe second! degree Newton-Cotes fermula
Integrates al guadratic ever two intervals of equal

width), h h
f(x)dx = ;[fo 4f + 1)

This formula hasi a local error of O(h?2):

EPC)
E =——h
rror ===o AN



Trapezoidal and SImpson’s rule

Quaaratic- Slpsori’s ru/e conkL:..

For [a,b] subdivided into n (even) subintervals of
Size h,

(=2 [1@+Afi + 213+ 43+ 2fa 4ot Ay + S D)

Withran erfror of

\We can see that the error Is of 4 th order

The deneminator changes tor 180, because we
integrate over pairs off panels, meaning that the
local rule isiappliedi n/2 times



Trapezoidal and Simpson’s rule

CubIc- Slpsori ’5 rue
Tihe composite rule based on fitting feur poeints
with a cubic leads to Simpson’s rule

For n=3 firom: Newton's, Cotes formula we get

f(x)dx = —[fo +3fi+3f2 + f3]

Tihe local order of error is'same as 1/3 rd rule,
except the coefficient is larger



Trapezoidal and Simpson’s rule

CUbIc- SIpPsSoIs ru/e cont;..

1o geti the composite; rule; for [a, bl subdivided! into
n (N divisible by 3) subintervals of size h,

F)dr =2 @30 +3f2+2f3 303+ 3f5+ 2o

tot 2 3 +3f 0 +3fn_1 + f(B)]

Withran error: of




Extension of Simpson’s rule tor Unegually
spaced points

Wheni{(3)iis al constant, a straight line, or a
second degree polynoemial

sz
[ f(X)dx=wy fi + wa fo + W3 f3

_Axl

The functions fx)=1, 1(x)=x, I(x)=X, are used to
establishrwg, w,, Wz



Gaussian duadrature

Other formulas based on predetermined evenly spaced X
Valles

INOW Unknewns: 3 X-Values and 3 weights; total 6
UNKNOWIAS

[FOK; this a pelynomial off degree 5iis needed torinterpolate
Tihese formulas; are Gaussian-guadrature; iormulas
Appliediwhen ()1 1s explicitly known

Example: a simple;case of a two termi formula containing

fiour Unknewn: parameters. §
% [r®O=ar@)+r@).

_(-aj+bta dxz(b;“jdz
Ifwe let W > so that 2 then

j'f(x)dx:b;aj'f((b—a)t+b+aj

1

_(b-ay+b+a

2



Multiple integrals

Weighted sum off certain functienal values with one variable
neld constant

Add the weighted sum ofi these sums

IFFunction knewn at the nedes of a rectangular grid, we
Use these Values

d

[[ £ mada=| [ ] f(w)dyjdx = | [ | f(x,y)dXde

A a c

Newton=Cotes formulas are arconvenient

J-f(xa J/)dxdy = Zl vj lelﬁ]
j=1 =




Multiple integrals

Double integration: By AUMericall means
iedlces toe a double summation off Weighted
function Values

1
[ f(x)dx =
-1

> a4 f(x;).
=]

l

1 11

n n n
[ 1 1f(xy,2)dxdydz =3 Y. Y a;ajar f(x;,pis2k).
~1-1-1 i=1j=1k=1




Assignments

1. Use the Taylor series method te derive expressions for /(X))
and /(X)) andl their error terms using f-values that
precede 7z, ((lihese arecalled backward-diffierence

fermulas:)

2. Evaluate the fellowing integrals by
Galiss method! With 6 peints
Trapezoidall rulerwith 20 peints
Simpson’s fule with 10’ peints

Compare the; results. Is it preferable; to integrate backwards or
forwards?

1

-1
j e dx

5

) G (b)

0

0



Assignments

3. Compute, the integral of 7x)=sin(x)/x between x=0and x=1 using
Simpson’s 1/3 rule withi h=0.5 and then with h=0:.25. firom these two
results, extrapolate; to get a better result. What Is the; order of the
Error after the extrapolation? Compare your answer withi the; true
dnsSWer:.

4, Integrate thefollowing over the region defined by the portion: of a unit
circle that lies in the first guadrant. Integrate first with respect to x
helding y constant, Using /=0.25. subdivide the vertical lines into

four panels.
j j cos(x)sin(2y)dxdy

Use the, trapezoidal rule
Use Simpson’s 1/3 rule



AssIgnments

5. Integrate with' varying values of Ax-and Ay using the
trapezoidal rule in bothrdirections, and show: thatithe errox
decreasesi about in propertion ter /7

_H(xz + ) dxdy
00

6. Since Simpsoen(s 1/3 rule is exact When| 7(x))'isial CUbIC,
evaluation off the; fiellowing triple integral should be exact.
Confirmy by, evaluating both: numerically: and analytically.

120
j j j x> yz dxdydz
00

-1



Numerical Selutien of
Ordinary: Differential
Equatiens

Moedule; 6
(6 lectures)
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Introduction

Numerical selution off erdinary: differential
eguations isfan Important teel fior selving a nUuMmBer
of physicall real world problems Which are
mathematically: represented in terms of ordinary.
differential eguations.

Such as spring-mass system, bending off beams,
OPEn channel fiows, pIpe; filows! etc.

Tihe most: off the scientific laws are representedlin
terms of ordinary: differential eguations, so to selve
such systems we need efificient tools



Introduction

I the difierentiall eguation contains dervatives of
nthrerder, Itsi called nthr erder diffierential eguation.

Tihe solution| of any: differential equation sheuld be
suchrthat It satisfies) the difierentiall eguation aleng
With' certain initiall conditionsi on' the function.

[FOr the nth order eguation), N Independent nitial
conditions must be specified.



Introduction

Tihese equations cani be solved analytically:alse, but
those are limited te certain Special forms of
eguations

hese eguations can: be linear or Aenlinear:

When the coefficients off these eguations are
constants, these; are linear differential equations

When the cogefficients, itselir are fURCctionNs of
dependent variables; these are nonlinear
differential eguations



Introduction

Numericall methods are not limited to) such standardl cases,
it can be used te;selve any: physical situations.

Innumerical methods we; geti selution' as a tabulation of
Valles off the filnction: at Varous Values offthe independent
variable and data cam be fit to: some; fiinctionall relationship,
INstead off exact functional relationship: as’ in the analytical
methods.

The disadvantage ofi this method isf that, we have to; re-
compute the entire table I the initial cConditions are
changed



Introduction

An eguation of the form: ay/ax=i(x), with fi(x) given and
with' suitable initiall conditions, say. y(a), also given cami be
Integrated analytically o numerically: by: the methods
discussed in the'previous) section, suchi as SImpson's 1/3
fule:

y(x)=y(a)+ | f(t)dt

I /(t)'cannot be integratedl analytically:a numerical
procedure can then be employed.

Tihe more general problem Is nonlinear and off the; ferm

ayyax=ir(x,y), i and y(a) given, the problem is to find y(x)
for x>a



Taylor-series method

Traylor seriesi in which we expand V. about the; peint
X=X, IS

V) = (30) + ¥ (0)x = 70) + L2 (- xg)? 4

If we assume m
Since is initial’ condition, first term is known

Y (XO)h2+ Y (XO)h3+...

7(x) = y(x0) + ¥ (x0)h + - :

Error term off the Tlaylor series: after the h* term can
e Written|as )
@) s

5!

Error =

where 0<&</i



Euler and modified Euler methods

I derivative; is complicated, Tlaylor Series IS not
comfortable tor tise, error IS difficult tordetermine

Euler method uses first two terms of Taylor series,
cheesing hi smallleneugh te truncate the series after the
first derivative term, then

"2
W(xg +h) = y(xg) + ¥ (x) + 2 (i)h |

Vil = Yn +hy n + O(h?).




Euler and modified Euler methods
cont...

Preblem Is' lack ol accuracy, requiring| aniextremely: small
Step) size

- we; use,; the arithmetic mean| off the slopes at the
PEegINMING and end of the Interval to compute V. .

n .

Yn+1

2

RIS assumption gives, us; an Impreved: estimate for y at

X1
V.1 Can not be evaluated till the true value offy, .1 IS
Known



Euler and modified Euler methods

Modified Euler method! predicts a value off V.4 by
simple Euler relation. It then uses this value; to
estimate V.1 givingl aniimproved estimate; of V. .4

Werneed to) re-correct V. . Value tillit makes the
diffierence negliginle

We can find out the error in the modified Euler
methed by comparing with: the; Tlaylor series



Euler and modified Euler methods cont...

This method is called Euler predictor-corrector method

L v 2 7@,

= -|— 'h_|__
Yn+l =Vn TVn 2y 6

Approximating y: by: forward difference, which has the error
of O(h):

Yn+l =Vn + h[y'n + %l:@ i O(h)]h] i O(h3),

! 1 ' 1 !
Yn+1=Vn * h(yn +EJ’ n+l —EJ’ nj + 0(h3)»




Runge-Kutta methods

fFourth and fifithrerder' Runge-Kutta methods

Increment to the V. isial welghted average off twe) estimates
Off the Inerement Which canibe taken asiky and k.

fihusHior the equation: ay/ax=in:y.)

Yn+l = Y +aky + bky

ky =hf (x,,yp),
ko = hf (x,, + ah, v, + Pky).

Wercan think ofi the Valles) k7 and 45 as) estimates off the
change in 'y When X advances by i, because they: are the
product off the change in x and a value for the slope of the
curve, ayyax:



Runge-Kutta methods cont...

Uses Etler estimate of the!first estimate of Ay the
other estimate Is taken with x:and y/stepped up: by,
the Iractions) zand [ off /7.andl el the earlier
estimate; of 4y, &,

OUr preblem IS o) devise a scheme; off cheesing the
feUr parameters' a, b, 5> We do; so; by making

EQUatIons... 32

Yn+l = Vn +hf(xn,yn)+7f (X, V) + ...

An eguivalent fiorm, since
af/ax=r+1ay/ax==r+1 1 is

1 1
Yn+l = Vn +hfn +h2 _fx +_fyf
2 2 .




Runge-Kutta methods cont...

Fourth order Runge-Kutta metheds are most
widely:Uused and are derived in similar fiashion

ihe lecal error termi for the 4 th order Runge-Kutta
methoed is O’ ;) the glebal error'would be O77).

Computationally: more efficient than the modified
Euler method, Because while; fiour evaltiation off the
function are reguired rather than two, the steps
can be many: foldl larger for the same; accuracy.



Runge-Kutta methods cont...

he most commonly: used set; of Values leads toe
the algoerithm

1
Yn+l = Vn "‘g(kl +2ky + 2k3 + ky)

kl :hf(xnayn)a

1 |
k2 :hf(xn +Eh9yn +5k1)9

1 1
k3 = G + = yn + = k2),

ka =hf(x, +h,y, +k3),




Multi-step methods

Runge-kutta type methods are called single; step method

Whenrenly: initial conditions are available, anility: tor perform
the next step with' a different step; size

Uses past values off Y. and V- ter construct a polynomiall that
approximates; the derivative function, and! extrapolate this
Inte) the next! interval

Tihe number off past peints that are used sets the degree of
the polynomiall and is; therefore respensible for the
truncation: eror.

The order ofi the, method Is equal to the power of h in the
glebal error term of the formula, WRICh IS also egual to ene
more than the degree ofi the polynomial.



Multi-step methods

Adams method, we write the differential equation: ady/ax=1(x;y) in the
oM ay=1xy)ax, and wWe integrate between X, and X+

X+l Xn+l

Jdy=yp1—yn= [/ (x,y)x

xl’l I’l

We approximate (3 Y,) as a polynomialiin X, derving this by making It
fit at several past peints

Using 3f past poeints, approximate; pelynomiallis, quadratic, and for 4
points the polynomiallis cubic

Vore the past peints, better the accuracy, until round-ofi error Is
negligible



Multi-step methods

Suppose that we fit a second degree; polynomial through
theilast three points (O, 1), (05 V-1 andi (X: o V,.5), Weldet
al uadratic appreximation to; the derivative fUnction:

£(xay) = %h%fn 2 f gt fya)a 4 %h@fn CAfyt fra)x S,

Now We Integrate betweenx- and X..1. lihe resultis a
fermula fer the iIncrement iny.

h
Yn+l — Vn :E(z3fn _16fn—1 + 5fn—2)



Multi-step methods

We have, the fiormula te advance y:

Vnsl = [23fn —16f,_1 +5fp_n]+O(h")

Fhis formula resembles the single; step: fiormulas,
N that the Increment tery. Is aiweighted sum: of
the derivatives times the step size, but dififers in
that past Vallues are usedl rather than estimates in
the ferwardl direction.

We cani reduce the error by using more past
points for fitting al polynomial



Multi-step methods

In fact, when the derivation Is dene; for feur
POINLS to get a CUbICc approximation to
15y, the follewinglis obtained

h

Ynel = ¥n + 22155 n =59t +37 fuz =9 fn31+ O(h°)




Multi-step methods

Milne’s imethod first predict a value fory. .1 by
extrapolating the valtes: for the derivative,

Diffiers firom Adamrs method, as It Integrates over more
than one; interval

The reguired past:values computed! by Riinge-Kutta or
Tlaylor’si series method.

In  thist method, the four equi-spaced starting Valles of V.
are known, at the points X, X, 1, X-,and X -

We may apply quadrature formula tor integrate as follows



Multi-step methods

Milne’'si method

28

Vel = V3 = (Zf i S 0 2)+%h5yv(§1)




Multi-step methods

ihe above predictor formularcan be; Corrected by,
the fellowing

h5

(fn+1+4f +f_1)——y (&)




Multi-step methods

Adam-Moulton Method, more stable than and as
efficient as Milne method: .

Adam-Moulten predictor fiormula:

251

j v
yn+l — yn +ﬁ[55f;1 _59fn—l +37ﬁ1—2 _9.fn—3]+%h5y (gl)

Adam-Moulten corrector formulas
h 19 .

yn+1 :yn +a[9f;1+1 +19f;1 _an—l +fn—2]_%h yv(é:Z)

Tihe efificiency of this method Is about twice that
off Runge-Kutta and Runge-kutta Fehlberg
methods



Application to systems off eguations
and higher-order eqguations

Generally: any: phaysicall proplems dealsiwith a set offhigher:
order diffierentiall eguations. For example, the fellowing
eguation represents a vibrating system'in Which: arlinear
SPring with' springl constant k restores a displaced mass of
welght W against al resisting ferce Whose resistance Is b
times the velocity. The 7(x,t)lis an externall forcing function

acting on the mass.




System off equations and higher-order
eguations

Reduce; to) al system ofi simultaneous first order eguations

[FO) @l Seconadl erder eguations; thelnitial value of the
function and its derivative are known I.€ the n values; of
the variables or Its derivatives, are; Knewn, WHEre; i is the
order off the; system.

Wheni some off the conditions are specified at the
POURNdaries ofi the specified intervall, we call' It a bounaary
Value problem



Systems of equations and higher-oraer
eguations

By selving fier second derivative, we cani normally’ express
Second order eguation as

Jhelinitial value of the fiunction: x.and Its derivatives are
specified

We convert to' 1° erder equationias

dx



Systems of equations and higher-oraer
eguations

Then we cani write

d '

This pair of equations is equivalent to the originall 279 order equation

[For eveni higher erders, eachioff the lower derivatives Is defined as a
new: function, givingl a set ofi n first-order eguations that: correspond to
an nthorder differential eguation.

[For a system of higher order equations, each isi similarly’ converted, so
that a larger set ofi first order equations results.



Systems off equations and higher-order
eguations

Tihus the; nthrerder differentiall eguation

(n—l))
b

Y = (XY sy
y(XO) — A19
y'('xO) — A29




Systems of equations and higher-oraer
eguations

Cani be converted Nt ar system: of i first-erder
differential’ eguations) by  Ietting) yz=yand

yl"l—l — yn’
Vo = L (X Vs 1)




Systems off equations and higher-oraer
eguations

With initial conditions

INow. the Tlaylor-Series method, Euler Predictor-Corrector method,
Runge-Kutta method, Runge-Kutta Fehlberg method, Adams-Moulten
and Milne methods cani be used to derive the various derivatives of the

filunction



. Examples off Open Channel Problems

Steady. flow! threughi epen chanmel
dv,

d
+—(p+z)=0
ot p)

PV

Where p = pressure intensity.
Steady, uniform: flow’ through openi channel

d
~ (p+1)=0
7 (p+)2)

Tihe eguation describing the variation off the flow
depth for'any: variation in; the: bottem) elevationfis
given: by




Examples off Open Channel Problems

[For gradually: varied flow,, Variation of V- Withrx

[For a| very: widerrectangular channel, REy,

dy _ gB(S,C°B%y’ - 0°)

dx  C?(gBy’ — aBO?)




Examples of Pipe Flow: Problems

[Laminar flow,, Velecity: distribution

2 2
u=10"" {—i(l?ﬂz)}

41 ds

ime fior flow! establisament: inrar pIpe

pA + yAL sin o — tgzDL = di(VpAL)
[

Surge tank water-levell Oscillations; the dynamic
eguation Is




Assignments

1. Use the simple Euler method to solve fer y(0.1)
from dy

$=x+y+xy y(0)=1

With /7=0:01. Repeat: this exercise with the modified
Euler method with /7=0.025; Compare: the, results.

2. Determine yat x=0.2(0.2)0,6/by: the Runge-Kutta
technigue; given that

dy 1

dx x+y



Assignments

3. Solve the fellowing simultaneous differential eguations; by
Using
A fourthrerder Runge-Kuttar method
A fourth order Milne' predictor-corrector algorthm

Q: _x_yz,%:—y—xz,y(O) =0,z(0)=1.0

dx dx

O 0.5>x>0.0

4, Express the third order eguation

y +ty —ty =2y=1,(0)=y (0)=0,y (0)=1,

a| set of first order equations and solve at ¢ =0.2,0.4,0.6 by
the Runge-Kutta method (/7=0.2).



Assignments

5. Find y at x=0.6, given that

y =y,»(0)=1,y'(0)=-1

Begin the; selutionr by, the; llayler-series method, getting

WO, 1) (0.2) y(0.3). The advance to x=0,6.employing the
Adams-Moulton technigue with! /7=0. 1 on the equivalent set
of filrst-erder eguations.

6. Solve the pair off sSimultaneous equations by the modified
Euler methoed for t=0.2(0.2)0.6. Recorxiect until reproduced

to three decimals.
dx dy

dt

— =+ ,x(0) = 0= = x =1, 5(0) =1,



Introduction to Finite
Difference Techniques
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Types off FD techniques

Most off the; physical situation! isi represented by,
nenlinear partial  difierentiall eguations! fior Which a
clesed ferm selution: is not available except in rew
Simplified cases

Severall numericall methods are available for the
Integration; off suchi systems. Among these
methoeds, finite difference methods have been
utilized very: extensively.

Derivative of al function cam e approximated by
FD  quotients.



Types of FD technigues

Diffierential eguation Is converted into the difierence
eguation

Selution| ol diffierence eguation; is an: approximate selution
off therdifferentialfeguation.

Example: /(X)) be; a function off one INAEPENdENt: Variable X.
dssume at xq, function Be; /(X)) then by using| lraylor
SEres expansion) tae funcuon /(x;74%) may. be WHEen' as

(Ax)*

1 (0) + O(Aw)’

f(x0 + Ax) = f(x0) + Axf (xp) +




Types off FD technigues

F(xg)=ayyaxat x=x;
OAxP: terms of third order or higher order of Ax:
Similarly 7> A%) may: berexpressed as

(Ax)?

f(xg = Ax) = f(x0) — Axf (xg) + /" (x0) + O(Ax)’

2!

E@Uation: may: be Written' as

f(x0 + Ax) = f(x0) + Axf (xq) + O(Ax)?

Frem thisfequation
S A) = S0 | pay

dx Ax

x:in




Types off FD technigues

>/y=f(x)

B

X0-Ax X0 Xx0+Ax

Finite Difference Approximation




Types off FD technigues

Similarly

_ J(x0) =/ (xp =A%)

~ + O(Ax)

Neglecting O(AX) termsiiniabove equation We det
Forward difference formulalasi given; below

df| S+ A~ f(xp)
dx Ax

x:in

Backward diffierence fiormula as shown below
daf _ S (xo) — f(xp — Ax)

dx Ax

x:in

Both fiorward and! backward difference approximation are
first order accurate



Types of ED techniques cont...

Subtracting| the forwaradl laylor seres; From
packwalrd Taylos Series; reariange the
terms, and divide by Ax:

d| St A) =AY o

dx 2Ax

xszl-

Neglecting| the last term

a _ S (xp +Ax) — f(xp — Ax)

dx 2Ax

x:in




Types of ED technigques cont...

This approximation isi refierred to asi central finite diffierence
approximation

Error term is off order’ Oax), known: asi second! order
dccurate

Central-diffierence; approximations ter derivates are; more
daccurate thani forward or backward approximations [O(1F)
verses O(h)]

Consider FD approximation fior partialfderivative



Types of ED technigques cont...

FURction /(x, ) hasi twe: Independent variables; x:
and ¢

AssUme uniformr grid size off Ax-.and At

Finite Difference Grid Approximation




Explicit and implicit technigues

There are several possibilities fior' appreximating the; partial
derivatives

Jihe spatial partial dervatives replaced in terms of the
variables at the 'known time level are referred to) as the
explieittinite; difference

Jihe spatial partial dervatives replaced infterms of the
variables at the unknown time level are called! /mp/cit finite
diffierence

k'is known time level and k41 is' the unknown time; level.
Then ED approximation for the spatial partial derivative ,
oljox; at the gridi poeint (1, k) are as fellows:



Explicit and implicit technigues

EXPIICIE finite alfferences
Backward:

Eorward:

Central:




Explicit and implicit technigues
limplicit finite dififerernces

k+1 k+1
Backward: A
Ox Ax

Eorward:

k+1 k+1
Central: o i -

Ox 2Ax




Explicit and implicit technigues

By the known time level we, mean; that the
Values off diffierent dependent Variablesare
KRewRA' at this time

Wewant torcompute; thelr values at the
Unknewn time; level

Tihe known conditions' may: be; the values
speciiiedlas the initial . conditions or they
may: have been computed during previous
time step



Explicit finite difiference, schemes

[For the selution off hyperpolic partial differential
eguations, several explicit finite diffierence
SCHEMES ave PBEEN propesed

IR the fellowing section’ arnumber: of typical
schiemes ave been discussed Whichihas its high
ielevance inhydradlic, engineerng

Unstaple schemnie

[For any’ unsteady: situation, we can select the
fellowing finite-difference approximations:



Explicit finite difference schemes

ApPPreXImations

In the above rrefers to, dependent variables

Generally the finite difference scheme: Is Innerently.
unstable; I.e., computation become unstable irrespective ofi
the size of grid spacing, so the stability check is an
Important part of the numericall methods.



Explicit finite difference schemes

DIfftsne screme

This scheme Is slightly: varying than the unstable;scheme

Tihis methoed! Is easier to progran and: yields satisfactory,
results; fior typicall hydraulic engineering applications: In
this method' the partial derivatives and other vVariablesiare
approximated as fiollows:

%:fiﬁl_fi

OxX 2Ax



Explicit finite difference schemes

where

Tihese approximations are applied to the
CONSERVation and NeN-CoONSErRVation ferms of the
dovering equations;off the physical sittiations:.



Explicit finite difference schemes

VacCornmack Schemnieé

Tihis method Is anr explicit, twoe-step: predictor-corrector
scheme that Is a second order accurate Doth In space and
time and isjcapable; off capturingl the; shecks without
[SOlating them

hisimethoed has beeni applied for analyzing ene-
dimensional, tinsteady, opem channel flows: by various
nydraulic engineers

The general formulation for the scheme; hasi been| discussed
as



Explicit finite, difference schemes

NMacCormack Screme cont...

Twe altermative fermulations fer this secheme are
possible. In the first alternative, backward ED: are
Uised terapproximate the spatial partialf derivatives: in
the predictor part and forward ED: are utilized in the
COFECLOr pPalrt.

Tthe values, ofi the variables determined during the
predictor part are used during the corrector part

In the, second alternative  forward FDs are used in
the predictor and backward FD are used in the
CONFECLOr: part



Explicit finite difference schemes

MacCormack Screme conrt...

Generally it 1s recommended to alternate the
direction of differencing| frem one time step: to the
NEXL

Tihe EDrapproximations fior the first alternative of
this seheme s given! as follews. The; predictor




Explicit finite difference schemes

MacCormack Screme conrt...

Tihe subscript * refers to variables computed during
the predictor part

he corrector

thevalue ol /7 at therunknewn time: level k1S
given: by




Explicit finite difference schemes

L amibaa Scremeé

In thisischeme, the governing are. Is first transfiormed: Into
A-form  and then discretize them according to the signi of
the characteristic directions, thereby: enforcing| the correct
signall directions

Inraniepen: channel flow, thisiallows analysis| ofi filews
naving sub- andstpercritical flows:

Tihis schieme was propesed by Meretti (1979) and has Deen
used! for' the analysis of unsteady: openi chanmnel flow! by

Fennema and Choudhry (1986)



Explicit finite difference schemes

Lampbaa schenie conr...
Predictor




Explicit finite difference schemes

By Using| the aboeyve FDis and

and using| the values of diffierent: Varianles
computed during the; predictor part, weobtain the
eguations; fior UNnKNOWR! Variables.

The values at k+1 time step may: be determined
from the following equationS'




Explicit finite difference schemes

Gapuitl schiemeé

Tihis Is anl extension of the [Lambda seheme. This allows
analysis o subrand super critical flowsiand hasibeen used
for such analysis by Fennema and Chaudhy (1987)

Iihe general fiormulation for this scneme Isi comprised of
predictor’ and Corrector parts and the predictor part Is
subdivided! Inter twe parts

The A-form off the equations are used the partiall derivatives
are replaced as follows:



Explicit finite difiference; schemes

Gapuittl schieme cont:...

Tlaking| inter censideration the; cerrect signal
direction

Preaictor:

Stepi. spatial derivatives) are approximated: as
fellows:




Explicit finite difference schemes

Gaputtl scrieme cont..,
By substituting

Step2: In this part of the predictor part We Use the
fellowing finite-diffierence approximations:




Explicit finite difference schemes

Gapuittl schieme cont...

Corrector:1n this part the predicted valties are used
and the, corresponding Values off coefificients and
approximate the spatialfderivatives by: the fellowing
finite differences:

Tihe values at k+1 time step may’ be determined
from the fellowing eguations:

A= a1



Implicit finite difference schemes

In: this seheme,; of Implicit finite difference, the spatial
partial derivativesi and/or the Coefficientsiare replacediin
terms of the values at the unknown! time level

The unknown variables are implicitly, expressed In the
algebraic equations, thisimethods are called implicit
methods.

Several Implicit schemes; have been usedrfor the analysis of
unsteady openchannel flows: Tihe schemes are; discussed
One by one.



Implicit finite difference schemes

Prerssrani Sclienieé
Tihis method has been widely: used

Iihe advantage ofi this methed s that the! variable; spatial
grid may: be; used

Steep wave! frents may: be properly: simulated by varying| the
welghting coefificient

Tihis scheme also) yields an exact solution ofi the; linearized
form off the governing eguations fior ai particular value of Ax
and AL



Implicit finite difference schemes

Prefssimanm Scrhenie cont.. .

Generall formulation of the; partiall dervatives and
Other coefficients are; approximated as ellows:

of _ T D -G A
ot 2At

of _aUiq - - - )
ox Ax Ax

f= %a(f,-’ﬁl R %a AT



Implicit finite difference schemes

Prerssmann. Scremnie

Where o, Isi a weighting ceefficient and i refers to unknown
Variables and Coefificients:

By selecting al suitable value 1ox o, the scheme may: be
made; totally’ explicit: (a=0) or implicit (a=0)

The scheme ) is stableiff 0.55< a=<1



Assignments

1. A large flat steel plate;is 2 cm thick. If the initial

temperature withinr the plate are given, asia finction: of
the distance firom one; face, by the equations

u=100x i 0<x<1

u =100(2 - x) B,

Find the temperatires as a function off X and t I beth
faces are maintained at 0 degree; centigrade. Ihe one
dimensional heat flow: eguation: IS given; as fiollows

ou  k 0°u

ot J@xz

Take k=0.57 cp=0.455.



Assignments

2. Solve for the temperature at £=2.06 sec in the, 2-cm) thick
steel slab of problem (1) iff the initial temperatures; are
giveni by,

u(x,0) =100 sin (”2—’“}

Use the explicit method with Ax=0.25 cm. compare to: the

analytical selution:
Y 100 e ™ "sin( 7x /2)

5. Using| Crank-Nicolson method, selve the following eguation
0°u ou

k _cp = =
2 P 5 J (x)

Selve tistwinen: FACIER1e =] SUDjECt to) conditions
u(0,t) =0,u(l,t) =0,u(x,0)=20.

Take Ax=0.2, k=0.57 cp=0.435; solve for five time steps.
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Introduction

Inrapplied mathematics, partial differentiall eguation
IS al slibject off great significance

Tihese; type of equations generally: invelves two or
more Independent variables that determine the
PENAVIOK o the dependent variable:

ihe partial diffierential eguations are; the
iepresentative eguations in the fields ofi heat fow,
fuid fiow, electrical potential distrbution,
electrostatics, difftsion of matter etc.



Classification of PDEs

Many: physical pRenomenon ake al function 6 mere
tham ene independent: variable and must be
iepresented by arpartial — differential eguation,
usually: ofi second' or higher order.

We can write any second order equation (in two
Independent variable) as:




Classification of PDEs cont...

Iihe above partiall differential eguation cani be classified
depending on the value of 57- 4AC

Elliptic, it 52 - ZAC<0;
parabolic, i B2 - FAC=0;
WYPErbolic, iff 62 = ZAC>0.

It A/ 5,C are functions, of X,y,and/er U,the eguation may.

change frorm| onel classification! to another at Various POINtS
N the domain

[For lLaplace’s and Poisson’s eguation, 5=0, A=C=1, so
these; are always elliptic PDES




Classification ofi PDEs cont...

1D advective-dispersive transport process Is
iepresentedt tirough parabelic eguation, WhHere
B=0, C=0, so 5 - 4AC=0

I D'wave| equation IS represented through
hyperbolic equation, where B=0) A=1 and C=-
TG/, S0, B2 - FAC>0




ED Approximation of PDES

One method of solution Is te replace the derivatives by
difference gquotients

Diffierence eguation! is Wrtten fior' each node of the mesh

Solving these eguations gives Values of the function| at
each nodeioff the gridinetwork

LLet /1i=Ax= spacing of grid werk In x-direction

ASSUME /{x;) has continueus fourth: derivative w.r.t x.and V:



ED Approximation off PDES

When fis a function off both X andly, we get the 214
partiall derivative W.r.t X, uy/ ox?, by holding V
constant andtevaltuating| the function;at three points
WRHErex equals x,, x> +/7.and x-~7: the partial
derivative o2/ oyZis similarly: computed, holding x
constant.

lio selve the llaplace eguation on aikedion; in the X-
v plane, subdivide the region withr equi-spacedtlings
parallel to x-y axes



ED Approximation off PDES

o selve Laplace eguation; oni a Xy plane, consider a region
near (x;y,), We approximate

Replacing the derivatives by: difference guetients that
appreximate the derivatuves at the: point (), We det

V2u(x;. ;) = w(xi1, i) = 2ux;, yi) + ulxi—1, ;)
1°1
(Ax)’

2
(Ay)

=0



ED; Approximation: off PDES

It Is convenient to use; deuble subscript on U toe
Indicate; thex- and V- Values:

[FOr the sake of simplification, it/ isfusual to) take
Ax=Ay=1i
1

2
\% ul-,j = h—z ”i+1,j + ui_l,j + ul-,j+1 + ui,j—l — 4ui,j]= 0.

We, can notice that five points are invelved: in the
above relation, known: as five point star fermula



ED; Approximation: ofi PDES

LLinear combination; of U's s represented: symbelically: as
DEelow.

Thisiapproximation has error off order O(fF) provided U/ is
sufificiently, smooth enough

We can alse derive nine point formula for LLaplace’s
equation by similar metheds to)get

In this case, off approximation the error is of order O(/),
provided: ulis sufificiently’ smooth enough



Methods ofi solution

appreximation; through FD: at: a set of grid peints (% V:), @
set of simultaneous linear’ eguations: resultsiwhich needs| to
e selved by lterative metioas

Liepmann.s Method.

Rearrange the FD form off l.aplace’s equation te give a
diagoenally: dominant system

Tihisisystem) is then solved by Jacobi or Guass-Seidel
iterative methed

Iihe major drawpack off this method! s the; slow.
COonvergence wnich isiacute winen there are a large system
of points, Decause thenr each iteration Is' lengthy and more
iterationss are required tormeet a given tolerance.



SOR method of solution

S, O.R meliiod — Accelerating. Converqgence

Relaxation methodl o Seuthwell, isiar way: ofi
attaining faster convergence in the iterative
method.

Relaxation IS net adapted ter computer solution: ofi
Sets off equations

Based on Southwell’s technigue, the use off an
eVerrelaxation factor' cam give significantly: fiaster
CONVErgence

Since we handle each equation N a standardiand
repetitive order, this method Is called st/iccessive
overrelaxation (S.0.R)




SOR method of selution cont...

Applying SOR method te l-aplace’s equation as given
pelow:

Iihe above; equation leads to

(k) (k+1) , (k) (k+1)
el _ MLy MLy T e T

y 4

Wernow: bothiadd andisubtract u;* onithe right hand
side, getting

(k) k1) (k) (k+1) _ 4, (k)
ij

Uirl,j THi—, ;7 T e TY 1 T

WD 0

i I/ 4




SOR method of solution; cont...

TThe numerator term willl be zere when! final values, afiter
CONVErdemnce, are used, termiin bracket called residual®,
WRICK IS “relaxed” to) Zzero

We canl consider the bracketed termi in the equation te: be
an adjustment toi the old value u;™, tergive the new and
Improved value; u; %)

I instead off adding the bracketed term, We add! a larger
valtie (thus “oeverrelaxing?), We get al faster’ convergence.

We modiiy the above equation by Includingl an
overrelaxation facter o te get the new: iterating| relation;



SOR method of solution; cont...

he new iterating| relation| after overrelaxation o, IS) as:

u(k) + u(k+1) + ul(l‘;)ﬂ + u(k+1) 4ul(.k)

D) (k) i+, " il
l] J 4

i,j—1

Maximum| acceleration Is ebtained for seme optuimum value
of oy which willr always lie in' between 1.0! tor 2.0l for

llaplace sieguation



ADI method of selution

Coerficient: matrix IS sparse matrix, When an
elliptical PDE is solved! by FDrmethod

Especially inrthe; 3D case, the number off NeNZEro
coefficients isia small fraction of the total, this is
called sparseness

Tihe relative sparseness INCreases as the number:
Off egqUations INCreases

Iterative methods are preferred for sparse matrix,
until they have a tridiagonal structure



ADI method of selution

Mere elimination does Not preserve; the sparseness
until the matrix itselitis; tridiagonal

Ereguently’ the coefficient matrix has aiband
StructuUre

Tiherelis a special regularity fior the nomnzero
elements

The elimination does not introduce NoNzero terms
outside ofi the limits defined: by the originall bands



ADI method of selution

Zeros in the gaps between| the parallelilines
are not preserved, though, so the; tightest
POSssible bandedness Is preferred

Sometimes it Is possible to order the points
50 that a pentadiagenal matrix results

Tihe best ofi the band structure s tridiagonal,
With' corresponding economy: ofi storage and
speed of solution.



ADI method of solution cont...

A method for the steady: state heat equation, called the alternating-

direction-implicit (A.D.T) methoed, results in tridiagonall matrices and! s
O growing pepularity.

A.DD.1 isi particularly” usefullin: 3D! problems; but the method isimore
easily’ explained: in twordimensions.

Wheniwe use A.D.I'in 2D, we write Laplace’s equation as

uy —2ug +up +uA—2u0 +upg 0

Vzu =

(Ax)* (Ay)?

Where the subscripts L R, A, and Biindicate nodes left, right, above, and

Ifoelow the central node 0. If Ax= Ay, we can rearrange to the iterative
orm



ADI method of selution

[terative form Is as:

WD GerD) () ) o () (6)

Using above equation, We proceed: threugh the nedes by
OWS, selving ai set off equations (tri-diagonal) that consider
the valuesiat nodesiaboyve and below: as!fixed guantities
that are, put into the RHS of the eguations

Afiter the row-wise traverse, we themn do: al similar Set of
computations DUt traverse the noedes column-wWise:

WD 9 (kv | Gevd) _ Ghel) o (kD) e



ADI method of selution

This removes the bias that weuld be present: iff we use; only;
the row-wise, traverse

The name ADI comes firom the fact that we alternate the
direction: after’ each, traverse

IS Implicit, BEcause We; do not det u, Values directly but
only. threughi selving ai set off eguations

AsSiin other iterative methods, We, can accelerate
convergence. We introduce ani acceleration factor, o) DY,
FEWHItING equations

u(()k+1) :u(()k) +p(u1(4k) _zu(()k) +u}(9k)) +p(u2k+1) _zu(()k+1) +”§zk+l)j

u(()k+2) :u(()k+1) +p(u2k+1) _2u(gk+1) +u§2k+1)) +p(uf4k+2) _Zu(()k+2) +u§3k+2))



ADI method of selution

Rearrangingl further ter give; the tri-diagenal
systems, We det

ju(()kﬂ) _ u%kﬂ) _ uf4k) _ (i _ 2ju(()k) N ugc)

yo,

1. 2]u(()k+2) k) e [% _ 2ju(()k+1) kD),




CGHS method

The conjugate Gradient (€G) method Was
originally’ proepesed by Hestens and Stiefel (1952).

Tihe gradient method selves N x Nfnonsingular
system off simultaneous linear eguations by,
[teration precess. There are Various! fiorms, off
conjugate gradient method

Tihe finite difiference appreximation: ofi the ground
water flow: governing equation atiallithe I.J nodes
N a rectangular flow: region: (J' rows!and: 1
columns) willflead to ai set ofi I.J/ linear equations
and asi many: UAknowns;



CGHS method

Tihe I.J eguations can be written: in the matrix

notations as

Where A'= bandedl coefficient matrix,
H=the coltmn Vector off URKNOWRS
Y= column: vector' off known guantities

Givingl ani initial guess: . for the selution vector Hi
WE Gan Write as follow.



CGHS method

Where d: Is a airectioni vector, [His the
approximation ter the solution vector H at
the, I th! iterative step.

A CG met
[teration; t
MINIMIZEC

Hei+1H§ =< Be;,1,€i41>

Where

106l CHEOSES d: stch tiat at eacn
1€ B noxim off the errer VEctor Is

-~ WHhHICh IS definedlas

0.5



CGHS method

Inrwhichi €. IS the error at the (i1 )th iteration; In
the aboeve; equation angle bracket denotes the
EUClideaniinner preduct, WhICh IS defined as

In the previous eguation B'is a symmetric pesitive
defiinite; (spd) Inner product matrix. Inthe case ofi
SYMMELrc positive definite matrix A, suchi as that
arising fromithe finite diffierence approximation of
the ground water flew! eguiation;, the ustial cheice
for the inner product matrix is. 5=A



CGHS method

A symmetric matrix A IS said to be; positive
definite if XIAX>0I Whenever x20 Where X is
any: colummni vecter. So the resulting
conjugate gradient methed minimizes the A
nerm ofi the error vector: (i.€. I,

Tihe; converdence off conjugate gradient
method depend’ upon: the distribution: of
eigenvalues off matrix A'and to; al lesser
extend upon the condition number [K(A)] of
the matrix. The condition AUMBEr off a
symmetric positive definite matrix Is defined

o> K(A) = Ama | A




CGHS method

Whereh - andid. . areitne; largest and smallest
eigenvalues' off A respectively. When k(A) Is large,
the matrix IS said te; be ill-conditioned), 1N this case
conjugate gradient method may: Converge slowly:

Tihe; condition nUMmMBErR may. be reducead: by
multiplying| the system by: ai pre-conditioning matrix
K=1. Then the systemi of linear equation: given: by
the eguation... can be modified as




CGHS method

Different conjugate; metheds are classified
depending; Upen the Varieus) CABICES off the pre-
conditioning matrix.

Tihe choice off K matrix should bersuch that only
ew calculations amnd net MUCh MEmOorY. storage
are reguired [n' each iteration tor acnieve this. With
dl PrOpPEr chpice of pre-conditioning matrix, the
iesulting preconditioned conjudate gradient
method can be quite efficient.

A general algorithm for the conjugate gradient
method isi given as, fiollow:



CGHS method

Initialize

H, = Arbitrary —initial — guess

Do while till the stopping criteria is' not satisfied



CGHS method

Qo i =<Si,1i >/ <Ap;, p; >

Hi.1=H;+a;p;

_ —
Si+1 =K T4

b; =< S;i1,¥41 >/ <s8;,1; >

l_9i+1: §i+1 + bil_7i

i =1i+1

End do



CGHS method

Whereir, Is the initial residue vector, s, Is a
VECtor, Py Istinitial conjugate airection
VEctor, . 1,54 and p..; are the
corresponding vectors at: (1IH-1)th iterative
step;, k-1 Is the preconditioning matrix and A
IS the given coefficient matrix. This
conjugate algoerithmrhas fiellewing two
theoretical properties:

(@) thevalue {1 i>0 converges tor the
solution H withinr n iterations

(b) the CG method minimizes |l for all
the values of |



CGHS method

here are three; types of operations, that are
perfiormed: by the CG methoed: INNEr
products, linear combination of Vectors and
matirx Vector multiplicatiens:

Tihe, computational characteristics off these
OpEerations Mave an Impact on the different
conjugate gradient methods.



Assignments

1. The eguation

IS an| elliptic equation. Soelve it on the unit sguare, subject to u=0 on
the boundaries. Approximate the first derivative by a central-
diffierence approximation. Investigate the effect of size of Ax on
the results, to determine at what size reducing It does not have
further effect.

2. Write and run'a program for poissen’s equation. Use it to solve

Viu = xy(x—2)(y - 2)

On the region KNERERARERHN ith u=0 on all

boundaries except for y=0, where u=1.0.



Assignments

5. Repeat the exercise 2, using A.D.I method. Provide, the
Poisson eguation: as well asithe boundary: CONAItionNs as
giveniin the exercise 2.

4, Tihe system! of equations given here (as aniatugmented
matrix) can e speeded by applyingl over-relaxation. Make
trials with varying values of the; fiacter to find the eptimum
value: (In' this case you willfprebably find this ter beless
tham URity, meaning itis under-relaxed.)
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Introduction

[For moest of the practical implications, the: filow
conditions inrargradually: variedl flow: are required: te
calculate,

Tihese calculations are performed! tordetermine the
water surfiace elevations reguired for the planning,
design|, anal eperation! o OPEN Channels so; that the
effiects off the addition 6if engineering woerks amnd the
chanmnel modifications on Water levelsimay: be
assessed

Also steady: state flow conditions are needed to
SpEcCify proper initial conditions for the, computation
of unsteady: filows




Introduction

Improper initial conditions intreduce false
transients/into the simulatien, WhIch may’lead to
Incorrect results

It IS possible; o) use unsteady flow: algoerithms
directly ter determine; the initial conditions, by
computingl fox Ieng simulation time

IHOWeVer:, stchia precedure isicomputationally
Ineffiicient and may’ not converge to the proper
steady state solution iff the finite-diffierence scheme
IS net consistent:



Introduction

\V/arious methods; to compute gradually: varied fows
dre reguired tordevelep

Methods, Which are suitable fo) ar computer
sojution, are adepted

Tiraditionally: there are twormetheds-adirect and
standard step methods

iHIgher erder accurater methods ter numerically,
Integrate; the, geverning differential equation are

required



Equation o gradually: varied flow

Consider the profile off gradually varied flow: in the elementary: length
dx of aniopen: channel.

Tihe total head above the datum atithe Upstreani SEcton; IS

V2

H=z+dcosl +a—
2g

iH= toetal head

Z = vertical distance of the channel botiom| above the datum
d= depth of flow section

0= botton slepe angle

o= energy: coefficient

V/='mean Vvelocity of flow through the section



Equation off gradually’ varied: flow
Diffierentiating

dx dx dx dx

e energy’ Slope,
Iihe slepe ofi the, chanmnel bottom,

SuBstituting these, sSIopes in above equations and
SOIVInG| for da/dx:,

dd 50 — S

2g

dH  d dd d[V2]
—=—+cosl0—+a—| —

dx  cos@+ad(V?/2g)/dd




Equation off gradually’ varied: flow

This is the general differentiall eguation fior
gradually/ varied fiow

[For small 6, cost=1, d'=y, and dd/dx = dy/dx, thus the
aboye equation becomes,

ﬂ: S()—Sf

dx  1+adV?/2g)/dy

Sinee V=0)/A, and dA/dy=1, theivelocity head term may
be expressed as

a0 A4 a0 dd




Equation off gradually’ varied: flow

Since, FERVE

Tihe abeve; may: e Written: as

d[r?)_ a0
dy| 2g o7?

SUpPpoese that a critical flow: of discharge edual te
@ occurs at the; section;

04

Afiter substituting 4 (2 7 2
3z

Z2



Equation o gradually: varied flow

When the Manning's fermulal is Used| the energy
slope Is

B n2V2

Sf

- 020R4/3

When the Chezy fermula is used,




Computation of gradually varied
flews

Tihe analysis ofi continuity, momentum), and! energy.
eguations describe the relationships amongl Various) flow
Variables; such as the flow depth, discharge, anadl flow.
velocity throughout a speciiied chanmnel length

Tihe chanmnel cress section, Manning n, bottom: slepe, and
the rate, off discharge are;usually’ knewn fior these steady-
state-flew: computations.

The rate off chamnge of flow: depth inr gradually: varied filows)is
usually: small, suchithat the assumption off Aydrostatic
pressure distribution Is valid



Computation of gradually varied

flews
e graprical-iategration meLioad.
Used to integrate dynamic equation graphically

Two chiannel sections ane chosen atixy andix;
With' corresponding deptins off low!y; andiys,
then| the distance along the channel flooris

AssUmINg several values o Yy, and computing
the values ol ax/a)y;

A curve of V' against ax/ay/is constructed



Computation of gradually varied
flews

Tihe value of X Is egual to the shaded area fermed by the
Curve, Y-axis, and the ordinates of ax/ay corresponding to

y; and Ys.

IS areal Iss measured and' the value: of X IS determined.

It applies to flow! In prismatic as well'as nen-prismatic
channels of any: shape and slope

his method Is easier and straightiorward te: fiollow:



Computation of gradually varied
flews

Vietiioa orf alrect Integrator

Gradually’varied fiow: cannot be expressed

explicitly’ in terms of V. for all types) off channel
COSS! Section

[Few Speciall cases has been splved by
mathematicall integration



Use off numerical integration for
selving gradually: varied flews

Jjotal head! atial chanmnel section may: be writtenras

aV2

H=z+y+
y 29

Where
/7= elevation| el energy. line; abeyve datum)
Z =elevation of the channel bottom above, the datum;;
y = flow! depth;
l/’="mean flow velocity, and
o, =Velocity-head coefificient:

The rate of variation of flow: depth, Yy, with respect to
distance x Is obtained by differentiating the above equation.



Solution of gradually: varied flows

Consider x-positive; in the, downstream flow
direction

By differentiating| the above energy: equation, we
det the water surfiace profileras

- (@0?B) (gd)

ihe above eguation Is of first oraer ordinary.
diffierential eguation, In WRIChI X s iIndependent:
variable and y/is the dependent variable.



Solution of gradually varied flows

In the aboeve differentialieguation for gradually: varied
flows, the parameters are as given: below:

X = distanceralong the channel (positive in
downward direction)

Sp= lengitudinal slepe ofi the; channel betten
S¢= Slope off the energy. line

5 = tep water strface width

g = accelerationr due; to gravity,

A= flow area

@'= rate, off discharge



Solution of gradually: varied flows

The rightihandl el the above eguation; snows that it
IS al finction' off X:and' ) so assume this function
as /() themwe cani Wiite abeyve eguation as

I WRICH)

So =S¢
1—(aQ*B) [(g4°)

J(x,y)=

We can' integrateraboeyver difiierentiall eguation te
determine the flew depthralong archannel lengthr,
Where /(x,y)Is nonlinear function. Soi the numerical
methoeds are useful for'its integration.



Solution of gradually: varied flows

These methods yields; flow: depthr discretely

o determine the value y~ at distance x2, wWe
Proceed as fellows

%) X9

[dy=[f(x,y)dx

4| X1

ihe above integration yields..

X9

va=y1+ [ f(x,y)dx

X




Solution of gradually: varied! flows

We the yvalues along the downstream iff ax:is
positive and' tpstream Valles iff axIs negative

Wenumerically: evaltiate the integraliterm

Successive application provides the; water surkface
profile in the desired channel length

Tordetermine X2 where the flow depth will'be; yZ,

WE pProceed as! fiollows: ’y

—ZF(.X,_)/)

dy




Solution of gradually varied: flows

I which

1—(aQ*B) /(g4’)

F(x,y)=

So =S¢
Integrating the above differential equation we get,

%)
Xy =x1+ [F(x,y)dy

N

1jo' compute the water surface profile, we begin the
compuUtations at'a lecationfWhere the filow: depth for the
specified discharge: Ist knewn

We start the computation: at the downstream control
section I the flow! Is sub-criticall and proceed in the
upstream direction.



Solution of gradually: varied! flows

IR supercritical fiows, however, we start atian; Upstream
glontrol section and compute; the profile ini the downstream
IFECtIoN

Thisiisi due; te the fact that! the flow: depthris knewn at only,
contrel section, We proceed 1n either the upstream or
downstream direction:

In the previous sections We discussed! how to compute the
|ocations Where arspecified deptawill' oecur

A systematic approachiis needed to: develop: for these
cCompUtations

A procedure called! alrect step. metfiod s discussed: below



Solution of gradually: varied! flows

DIrect; step metiod.
ASSUME the properties of the channellsection| are; known

then,

In addition) the specific energy.

a1V
2g

Ey=y1+

Tihe slope of the energy: grade line is gradually: varied flow
may be computed with negligible error by using| the
corresponding formulas for friction slopes in uniform; flow.



Solution of gradually varied flows

he fellowing appreximations have been  used to
Select representativevalue off Sefior the channel
length between section; 1 and 2

AVerage, firiction slope

Geometric mean friction slope; ErENIEe

Harmonic mean friction slope [
i TR




Solution of gradually: varied' flows

Tihe friction loss may: be written: as

1
hf :E(Sfl +Sf2)(x2 —xl)

From| therenergy: equation we can! Write,

|
Zl+E1=Zz+E2 +E(Sf1 +Sf2)(x2—x1)

Wiriting in terms of: bed slope

Now! firom the above eguation, the location of section| 2. 1S
KNOWN.



Solution of gradually varied: flows

This isinew! used as the starting value for the next
step

Then by sticcessively Increasingl or decreasing the
flow: depth andldetermining Where; these: deptihs will
OCCUr, the water surface profile inithe desired
channell length may: be computed

ihe direction off computations;is autematically taken
care ofi Iff proper sign Is Used fior' the nUmerator and
deneminator



Solution of gradually: varied! flows

e arsaayantages of tils metiea are

ihe flow depthlis not computed: at: predetermined
locations: Therefore, interpolations may: become
necessary, Ifi the flow depthsiare reguired at specified
locations. Similarly, the cross-sectionall infiormation has te
pe; estimated! i such' information Is available only at the
givenilocations. Tihis may net yield accurate; results

Needs additional effort

It I1s cumbersome to apply te: non-prismatic channels



Solution: off gradually: varied flows

Starnaara step. metioa.

When we; require to determine the depth at specified
|0cations; o When the channell cross Sections are available
only: at seme speciiied locations, the direct step methodlis
net suitable enough to apply: and inthese cases standard
step method isfapplied

In this' method the fellowing steps are; fiollowed :

Jiotal head at section 1




Solution of gradually varied: flows

Jiotal head at section 2

H2=H1—hf

Including the expression fer frction 1ess! /¢

|
HZZHI_E(S]‘I + 87 )N(xp —xp)

Supstituting the total' head at 2 i terms of
different heads, we obtain

0!2Q ]

Yo+ +— Sf(xz X)) +zy—Hy+— Sf(xz x1)=0
2845




Solution of gradually varied! flows

lin| the; abeve eguation. A, and Sg are functions of 2, and all
other guantities are either knowni or already: have Been
calculated at section 1.

Thefiew depth 5 Is then: determined by selvingl the
fellowing nenlinéar algebraic equation:

ar0? 1 1

F(yy)=yy + +—=S8Sr(xp—x))+zp-H1+=S87(x2 —x1)=0
2gA22 9) fz 2 fl

e aboeve equation| Isiselved for' 5 by al trialland error
procedure; or by using the Newton or Bisection methods



Solution of gradually: varied flows

Here the Newton method is discussed.
[FOr thisTmethod Weneed  an eEXpression fer ar/dys

2.2
Lix, _xl)L{Q_"J

dy;

23R

Tihe last termi ol the above equations can be
evaluated as

d O*n* | -20°* d4y 4 Q'n*  dR
dyy | C2A3Ry'? | C2A3RS dva 3 CazR]!3 dy

~20%n* dy 4 Q*n?

CIA3Ry'3 dva 3 C243R;"3 Ry dys




Solution of gradually varied flows

IHerergA/dy, s ieplacediby: 55 in the above
eguationrand substituting fiox this expression

BY.USING /=4, ayjax=i{xy V), them the flow aepti
ﬁ , Can be computed! from the equation

*
y2 =y + f (x5, y)(x2 — x1)

DUringl subsequent step;, NoOWeVer may. be
determined by extrapolating the change in filew
depth computed during the preceding step.



Solution of gradually: varied flows

A better estimate fior 5 can be computed from the
eguiation

If IS |ess thania specified tolerance; &, then

*
Y2

IS the flew:deptih 7, at Section| 2; etnerwise,
and repeat the steps until a selution

SEet Y2 =72
IS obtained



Solution: off gradually: varied flows

lrtegration of differential equation

[For the comﬂutation off the, water surface; profile; by
INtegrating the dififerential equation, the ntegration; as to
pe; dene numerically, SInce /(% y/)s a noenlinear function

Diffierent numericali methods have been developeadl to
splve such nenlinear system, efficiently:

Tihe numericall methods) that are in| Use to evaluate the
integral term cam be; divided Into fellowing categories:

Single-step methods
Predictor-corrector methods



Solution: off gradually: varied flows

Iihe single step method Isi similar to) direct step method and
standard step method

The unknewn deptins are expressed in terms of al function
105)), at alneighbering point Where the flow: depth is' either
Initially: known' or calculatedl during the previeus step

In| the predictor-corrector method! the value off the Unknewn
IS first predicted from the previeus step

Tihis predicted value is then refined through! iterative process
during the corrector part till the selution isi reached by the
CONVEKGENCE Criteria



Solution of gradually: varied: flows

Single-step methods

Euler method.
Voafied Euler metiiod.
lmprovead Evler metiod.

FoUrti-oraer Runge-Kutta menioaq.

1. Euler methioa: In this method the rate off Variation ofiy
WIth' respect to X at distance X can be estiniated as




Solution of gradually varied: flows

Iihe rate oft change of depth off flow! In al gradually’ varied
flow’ IS giveni as; below

S, -8
fy)=—

- (2Q?B;) (g4} )

All*the variables are knewni in the; fight hand side; so
derivative off ywith respect to x:can be obtained

AssUmIng that this Variation is constantiin: the interval X to
Xz, then therflow depthi at X7, ; can be computed firom the
eguation

Vi1 =i + (x5, yi)(xi11 — x;)



Solution off gradually: varied floews cont..

2. Voaliiead Euler metod.
We may: alser improve the;accuracy: of the Euler' method by,

using| the;slope of the curve y = p(x) at and

1

. IThen

et us calll this slope  F2HR

Vin =W T yz"+1/2Ax

or

Yier = Vi +f(xi+l/29yi+1/2)Ax

This method, called the modified! Euler method, is second-
order accurate.



Solution of gradually: varied floews cont..

3. Improvead Euler method.
l'et us calll the flow: depth at obtained! by, using Euler

method as AP ,
Al Vi =V T y,Ax
By Using thisivalue, we can compute the slope; of the curve

USe the average valtie off the slopes of the curve at and
. Then we can determine the valueiof kb from the

; Lo . .
eguation yi+1=y,~+5(y,-+y,-+1)Ax . I'his eguation: may: be

1 ;
yi+1 :yi +§[f(xi7yi)+f(xi+13yi+1)]AX

called the improved Euler' method, IS second order accurate.

Written: as . IThis method



Solution of gradually: varied floews cont..

4, Fourtr-oraer Runge Kutta Vietiiod.

kl :f(xiayi)

| |
ky = f(x; + EAX,_)/Z' + Ekle)

1 1
k3= f(x; + EAan’i + Eszx)

kg = f(x; + Ax, y; + k3Ax)

1
Vig1 =Y; + g("l +2ky + 2k3 + kg)Ax




Solution: off gradually: varied flows cont..

Predictor-corrector metnoas

In  thist method we! predict the unknewn flew: depthifirst,
correct this predicted value, and then re-correct this
correctedl value. This iteration isicontinued till therdesired
dCeuracy. Isimet.

In the predictor part, Iet us use the Euler method to
predict the valle oy, I.e

0
,(ﬁ =y + (%, ) Ax
We may. correct usingl the; fiellowing equation

=y —[f(xl,y» P TCIRISU I




Solution oft gradually: varied floews cont..

Now: we may: re-correct Y- again te obtain a better

values:

1
Vinl =2 * L Gy + F it 7D )]AX

(2) _

Thus the jl thriteration is

. 1 .
P =i+ S G+ F Gy T A

[teration until IRGENCSIPM |, WHETE & = Specified
tolerance

Yirli = Vin1 =




Saint=Venant equations

1D gradually: varied unsteady flew:ini an 6pen
channel is given by Saint-Venant equations
ov oy oy

a—+vw—+w—=0
Ox Ox Ot

oV oy Ov
—+g—+—=g5, -5
Vo T8 T 80 mo)

X - distance along the channel, t - time, V- average
velocity, v - depthl of filew, a- cross sectional area, W
- top width, S~ bed slope, S - firiction; slope



Salnt Venant eguations

Eriction slopée

= hydraulic radius, n-Manning's rotghness
coefficient

Twornenlinear eguations: in: tWoruRknowns, V. and:y.
and two; dependent variables x and: t

These twe equations are a set off hyperbolic partial
differentiall eguations



Saint-Venant eguations

Multiplying| 15t eguation by: and adding it
to) 214 equation yields

[2+(Vic)i}vil[3+ (vic)i}y - gls,-5,)

ot Ox ot Ox

ihe abeve equation Is al pair 6 equations; along
characteristics given by,

C

Based on the eguations used, methods are
classifiedl as characteristics' methods and dikect
methods.



ED methods; fior Saint Venant equations

ihe; goeverning equation: in the conservation
formi may’ be: Written In matrix fiorm) as

Ui+ F,+S5=0

va
F= ) 3
v©a+ gay

General fiormulation

I Which




FD methods for Saint Venant equations

Continued...

o e+ 1D -y + A1)
ox Ax Ax

fzéa0£?+ﬁ“%+%ﬂ—axﬁh+ﬁ%

1 ] At 1 ]
UL =2 3 B+ -l - )

¥ At[a(sg”’“ S L (- a)(Sh + S{’)]

n n
=U; +U;



FD methods for Saint VVenant equations

Boundany conaitions:

PDownstream: Dounaary:

Lefit beundary: V=V, = Uio/n 1o depLi
V=V, = UlilioH Velocity

RIGht Bounaany y=y.= Critical liow. depiii
V=V, = Clitical VeIociLy/



ED methods; fior Saint Venant equations

Stability: unconditionally: stable providead
a=>0.5, I.e., the flow variables are weighted
toward the n+1 time level.

Unconditional stability: means that there isino
FEStriCtion; on the size off Ax:and At for
stability.



Solution precedure

The expansion off the eguation...

E{a (va)?:ll — (va)?+1]+ (1- a)[(va)?ﬂ - (va)?]}

At — =
va)f 't + a)til + 25{61 (vVZa+ gay)' - (vFa+ gay)?“ﬂ

i+1 i+l

— gaAt{g[[(SO — Sf);/l_:_ll + (SO - Sf);/H_lB

= gaAt{(l — a)[(so - Sf)?+1 +(s0 — Sf)?]}

2 At) o — 2 =
+(va)i +(va)! | —(1-a) E{( a+gay), — (v a+gay)?}

The above; set off nonlinear algebraic equations
can be solved by Newton-Raphson method



Assignments

1. Prove the following eguation describes the

dradually: varied filew inra channel having variable
Cross| Section| along its length:

dy_SO—Sf+ Vz/gA

dx 1-\BV?*)/(gA)

2. Develop computer programs) o compute; the
Water- surfiace profile in a trapezoidalichamnngel
navingl a firee everiall at the downstreami end. 1o
compute; the profile, use the following metheds:

Eller' method
Modified Euler method
Fourth-order Runge-Kutta method



Assignments

3. Using method! of characteristics, Write'a
computer programs terselver 1D gradually.
Varied unsteady’ fiow: in an open channelfas
given by Saint-Venant equations, assuming
initial’ and beundary cenditions.
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Prelems
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Basic eguations of transients

Tihe flow: andl pressures; in: ar Water
distribution system dor net remain constamt
pUt fluctuate throtughout the day

Wo time scales on Which these fluctiations
OCCUK

L. daily cycles
2. transient fluctuations



Basic eguations of transients

Continuity: eguation: applying the; law: of
CONSENVation| off Mass te the' contrel volume (%
and x;)

T%W)dx HpAV), ~(pAV), =0

By dividing| tarotigheut: by, AX as/ it approach Zero,
the aboeve eguation canfbe Writien; as

0 0
—(pA)+—(pAV)=0
at(p) ax(p )

Expandingiand rearrangingl various; terms, Using

expressions for total derivatives, we, obtain
1 dp+ 1d4 oV _0

Adt ox




Basic eguations off transients

Now we define the bulk moedulus;of elasticity, K, of
d fluidas gl
dp

o,

Tihis can be written as Rl

dt K dt

Area of pipe, ~where R s the radius)of the
pipe. Hence I terms of: strain this

may. be Written as sz 94 %

Now: using hoop stress, we obtain Eae

dt 2eFE dt




Basic eguations off transients

Follewing the abeve equations ene can Write;

2 _ K/p
Letits define; ey eyia, Where alis wave speed

WIth WhIChI pressure waves travel back and fiorth.

Supstituting this expression we get the following continuity:
eguation




Method of characteristics

The dynamic andi continuity’ eguations for flew: through a
Pipe; line Is given 1

00 oH  f
L= e 2DAQ|Q|

Where Q=discharge through the pipe
H=piezometric head
A=area of the pipe
d=accelerationdue ter gravity.
a=Velocity of the wave
D=diameter of the pipe
x=distance along the pipe
t=time



Method of characteristics

These; equations; can: be writien 1N terms of VElocity,

Where,




Method of characteristics

Where k=bulk modults ofi elasticity
p=density ol filid

E=Young's medults of elasticity of
the material

laking a linear combination o L1 and L1E2,
leads to

Assume H=Hxt);0=0(xt)



Method off characteristics

Wiriting tetal derivatives:,

dQ 00 , 00 dx 88 dH _oH  oH dx

or  ox dt dt ot ox dt
Defining the unknown multiplier A as

The above two eguationsiare called characteristic
equations and 279 among them is condition along| the
characteristics



Method off characteristics

[FIgure...

Characteristic lines

Constant: head' resenvoir at x=0, at x=L, valve is
Instantaneously’ closed. Pressure wave travels in the
upstream: direction.



Complex boundary: condition

We, may: develop) the boundary: Conditions By,
SolVing the positive or negative eharacteristic
eguiations simultaneous with: the;conditionr impesed
Py the beundary.

Tihis condition may: be ini the ferm off Specifying
nead, discharge or alrelationshiprvetween; the
nead andl discharge

Example: head IS constant i the case ofi a
constant level reservoir, flow!is always zero) at the
dead end and! the flow through an orifice is related
to the head! loss through the; orifice.



Complex beundary: condition

Coristant-1evel Uupstreani reservolr:

In this case It Is assume that the water levellin the
FEServolr or tank: remains at the same! level
Independent off the flow: conditions in| the pIpeline

This s true for the, large; reserveir volume

[ the pipe at the Upstream: end of the; pipelinge s
1, then where is the elevation

of the water’' level in| the! reservoir above: the
datum.

At the upstream end, we get the negative

Characteristic equation, [eJSTEEIeNEReN M



Complex beundary: condition

Constant-1evel aowinstréani reservolr:

IR this case, the head atithe last nede; of pipe i will
dlways be egual to the height of the, water leveliin
the tank above the datum, H.4:

HPi,n+1 =H,y

At the dewnstream end, We have; the positive
characteristic equation Inking the boundary nede
to the rest of the pipeline. We cani write

QPi,n+1 =Cp—-C,H,y



Complex beundary: condition

PDead end.

Al a dead end lecated at the end oif pipe; I, the
discharge isialWays Zero:

QPi,n+1 =0

At the last node; off pipe I, We have; the positive
characteristicsieguation. We get

CP
Ca

Hpjpi1 =




Complex boundary: condition

Dowinstream valve

IR the previous boundaries, either'the head! or
dischiarge was specified,

IHOWEVErTor a Valve We Specifiy’ a relationship
petweeni the Nead losses through the valve and the
discharge

Deneting| the steady-state; values by subscript 0,
the discharge throtgh a valve Is given: by the
fellowing eguation:

Qo = CyAy04/28H




Complex boundary: condition
Where

C.~COEefficient of aischarde

A j=area of thevalve opening
/9=the dropiin nead

@)= a disciarnge

By assuming that a similar relationship:is validifor
the transient state; conditions, We; get

Opin+1 =(CaAy) p+J28H pi n+1

Where subscript P denotes values off @ and H at
the end of a computationall time interval



Complex boundary: condition

Fromi the above two equations WE Can Write

QPZ n+l = (QOT)

Wihere the efiective valve opening Is

7=(Cyq4,)p/(Cqdy)o

[For: the last section on pIpe I, We, have the positive
characteristic equation

2
QPi,n+1 + CvQPi,n+1 - CpCv =0




Complex boundary: condition

C, =(100)” ((CyHy)

Solving fier: @, and Neglecting the negative
sign withi the radical term), We get

\Where

Opi st = 0.5(-C, +4[CZ +4C,C, )




Pipe network problems

Tihe netwerk designing Is largely: empirical.

Tihe main must be |aid inr every: street along Which
there; are; properties requiring a supply.

Mains; most: frequently: used for this are; 100 or
150mm digmeter

Tihe nedes are poeints of junction; o mains or' Where
dl main Chianges diameter.

ihe demands alongl each main have to; be
estimated andiare themn appoertioned to the nedes;at
eachiend [N a ratio; Which appreximated



Pipe network problems

fhere are a umper o1 /imitations and. aiiiicU/ties
WL FESPECL 10) COmPULEr drialy/sIs: Of IELWOI K
HOWS,, WIHICH. Gre ientioned DEIow:

Tihe; limitation with respect to the number of
Malnst it IS econoemic toranalyze means that
mains off 150" mm diameter andiless; are usually;
not Included! in the analysisiof large systems, so
their flow: capacity’isi ignered

It IS excessively time consuming to werk eut the
nodall demands; fior' a large; system



Pipe network problems

Tihe noedall demandsf are; estimates; and may: not represent
actual demands

lLosses;, which commonly’ range frem 25% to 35% ofi the
total supply, have: to be apportioned terthe nodal
demands in Some arbitrary. fashion.

NG diversification fiactor can be;applied te the: peak hourly.
demands representing reduced peaking| on' the larger
Mains since the total nedal’ demands must equal the Input
to the system

ihe firiction; coefficients; have to) be estimated.

NG account Is taken off the Influence; off pressure at a nede
on the demand at that node, I.erunder high ox lew.
pressure the demand Is assumed to be constant.



Governing Equation; for
Analysis

Network

EVery: network has) o) satishy the! fiellowing; equations:

1. Node continuity, equations— the; node continuity,
eguations state that the algebraicisum off allfthe
flows entering and' Ieaving a Nede IS/ ZEro.

2.0(p)+2 0(p)+C(j) =0,

Where NJiis the number off nedes, Q(

D) ISithe flow: in

element p (m?>/s), €(j) is the consumption at node; |

(m?/5s), refers to the set of e
connected to node j.

EMENLS



Network Analysis

2. Energy consenvation equationsi— the energy: conservation
eguationsi state that the energy less along a pathn equals
the diffierence inhead at the starting node and end node
of the path.

> (E)(p)+ X (EN(p)~[H (s(1) — H (e(1))]= 0

Where h(p) is the head loss in element p(m)), s(l) s the
startingl node off pathi |, e(l) Is therend off path: 1, NLIs the
number of loops) and NPATHH IS the number ol pathsi other
tham loops and refers to the pipes belonging te path
. leep! IS al speciall case of path;, Wherein, the starting nede
and end node are the same, making the head less areund
a loop zero, that Is,

> (E0(p)+ Y (£h(p) =0




Network Analysis

3. Element characteristics — theeguations defining the
element characteristics relate; the flow: threugh! the element

to the head loss!in the element. For a pipe element;, n(p):is

SN /. ) - R(p)0(p)"

Where R(p) Is therresistance off pipe prand! e IS the, exponent
N the headioss equation. Iif Hazen-Williams eguation:is

used, where e=1.852
10.78L(p)

' i) i ()

Where L(p) Is the length’ of pipe p(m), D(p) Is the diameter: of
pipe p(m), and CHW (p) Is the Hazen-Williams coefficient

for pipe; p.



Network Analysis

[For ar pump: element, h(p)is negative asihead Is gained: in the
element, The characteristics of the pump: element are defined
by the: head=dischargesrelation of the pump: IS relationship
may’ be expressediby a polynomiallor in an alternate; form: In
this study, the; fellowingleguation Is Used.

C3(m)
h(p) = —HR(m)[Cl(m) — C2(m),[ o(p) } }

OR(m)

Where, HR(m)! is the rated head off the, m-th pum Sm) QR(m)) Is
the rated discharge of m-th pump: (m3js), C1(m), C2(m) and
C3(m) are empiricallconstants for the m-th pump: obtained
from! the pump. charateristics: Here pirefiers to the element
corresponding| to the m-th pump: If the actual pum
characteristicsiare available, the constants €1, €2, C3fmay. be
evaluated. C1 is determinedl from the shutoef?head as

HO(m)
HR(m)

Cl(m) =




Network Analysis

Where HO(m) Is the; shutofi: head of the m-th pump: As
n(p)=-HR(m) for ratedfiow,

Cl(m)—C2(m) =1

From which C2(m)isi determined. €3 (im) IS ebtained by
fitting| thereguation te theractuall pump) characteristics.

[For a pipe; element,

(17e) ) .
O(p) = {h(p)} H(@)-H()) _

Rp)|  Rp)"H@G-HG

[For’ Hazen-Williams edquation, theraboeve eguation Decomes
HG)-H(j
O(p) = ()-H())

0.46

R(p)"*|H (i)~ H(j)



Network Analysis

Similarly: fox a pump; element:

1

H(j)=H @) ||
HR(m)

1
C2(m)

{Cl(m) +

O(p)= (i)QR(M){

Where outside the parenthesis;, + sign Is used I flow’ Is
towards nede j and —sign IS Useadl i filow: IS away. fifom Nede |
and, inside the parenthesis, the + signiis used, ifi I'is the
node downstream of the pump; and the — sign IS, used! ifi j IS

the node downstream: of the pump.



Network Analysis

The network analysis problem reduces to one of selving| a set off non-
linear algebraic equations. Tiree types of formulation' are used — the
nedal, the pathrand the node and path fiormulation:

Each fiermulation; andimethod off analysisthas itsiown advantages and
imitations: In general path formulation with Newton-Raphsenfmethod
gives the fastest convergence with minimum computer storage
requirements.

Jihe node formulation;is conceptually’ simple with a very: convenient
data base, but it has not been faveoured earlier, because in
conjunction with Newton-Raphson; method, the convergence to the
finall selution was found to depend critically: onithe quality. of the initial
guess solutioen.

Tihe node andlpath foermulation can have a selfi starting procedure
without the need for a guessi solution, but this formulation needs the
maximum computer sterage.



Node based models

Iihe nede (H) equations

The numBbEer off eguations te: be selved can be reduced from
L+J-1"t0 J by combining the energy: equation fior each pIpe
WIth! continuity: eguation.

Jihe head less eguation fer a single pipe can' be Writtenas

Where H.=head at iith' nede; It
Ks= head loss| coefficient for pipe from! node i to

Q= flow in pipe from node i'to node j, L°/t
n;=exponent inihead loss equation; for pipe firom i-]



Node based models

Tihe double subscript shows the nedes that:are comnect by
a PIpe

Since the head 16ss s positive In the direction ofi filew, sgn
Q;=sgn (Hi-H;), and we solve for'Q as

1/n;
Oy =sgn(H; — H ;)(H; _Hj‘/Kij) ’

he continuity,equation: at nede I can: be Writtenras

Where Q=flow!inte node I from nede k; L=/
Ui=consumptive:use at node;i, L3/T
m.=nUumber of pipes connected tonode I.



Node based models

Combining energy and continuity equations for each flow in
the continuity’ equation: gives

Jihe above;is a nede H equation, there isfone suchreguation
for eachi nede, and one Unknown I 10r éachi eguation

Iihese eguations are all nonlinear

Tihe node (H) eguations are very convenient fox systems
containing pressure; controlled devices I.e. check valves,
pressure reducing valves, since it is easy: to fix the pressure
at the downstream end of such a valve and reduce the
value If the upstream pressure is not sufficient te: maintain
downstream pressure



loop based models

The Leop (AQ) equations

One approach is to setting up IooEed system preblems is to
Wit the energy’ equations in such a way' that, for aniinitial
selution, the continuity: willl be; satisfied

Tihen| correct the; filow! infeach 1oop: In such a Way: that the
continuity’ eguatiens are not vielated.

This Is done by addingl a correction: tor the flow: terevery pipe
In the looep! .

Iiftherelis negligibly: small head 10ss; flow! s added around
the loop), Iff there isflarge 1oss, filow s reduced

Thus the problem turns into finding the correction factor AQ
suchi that each loopr energy: equation; is satisfied



Loop based models

he loop energy: equations may. be Written

F(AQ) = ;ZIK,- [sen(0i; + A0p)0i; + AQ)[" = diy B B

Where
@/ = initiall estimate off the fow: in: /th pipe;, L7/7:
AQ/ =i correction to flow: in'l'thileep, /7

/= "nNuUmber of pipes;in | thileep
[ = number of loops



Loop based models

el @ terms are fixed for each pipe amnd do net chande
from one; iteration to the next.

The A0'terms refer to the loop: in which the pipe; fialls

e flew inral pIpe;is thererore @) + A0er a pipe: that lies 1in
only. one loop:

oK al pipel that lies;ini several loopsi(say: ,ai b, and c) the
flow might be

Qi +AQ, —AQp + A,



.oop based models

Iihe negative sign in| firont off b term) is included
merely to iliustrate that a given: pIpe may: be
Situated! in pesitive direction; in one loep and in
negative direction in'anetherieop:

When the loop approach Is Used, a total off L=
eguiationss are reguired as there are | Unknewns,
ONE; fior eachiloep



Solution of pipe network problems
through Newton-Raphsen method

Newton-Raphsen method Is applicable for the problems
thati can be;expressed as /F(x)=0, Where the selutioni s the

value ofix that will force F torbe zero
Tihe derivative of F canibe; a expressed: by

dF  F(x+Ax) - F(x)

dx Ax
Given anl initial estimate of X, the selution to the problemyris
the value off x+4x that ferces F tor0. Setting fA(x+4x%)to

ZEro and solving for Ax gives

o P

F (x)




Solution of pipe network problems
through Newton-Raphsen method

INew! value; off x-Ax DECOMES X fior the nexti iteration. Iihis
Process; IS continued until F Is sufficiently: close toizero

[F0r a pIpe network problem, thisimethod can be applied to
the N-1=k, H-eguations

Tihe head (H) equations for eachinede (1 threugh k), It 1S
pPossible te write as:

l/ny-
m; ‘H]—Hl
F(H;)= % |sgn(H; - H;) ~U; =0

K -

j=1 Ji

Wheren .= nUmDber off pIPES) connected ternode |
U= consumptive use at node i, L>/T
E() andl E(1#1) Is the value of F at ith and! (i4-1)th iteration,

b dF = F(i +1)— F(i)




Solution of pipe network problems
through Newton-Raphsen method

This chamnge can also be approximated by total
derivative

Where A/7= changde in H between thelthrand
(IF1)thriterations, L

Finding| the values off A Whichiforees F(i+1)=0.

Setting apove twer equations equall, results ina
system of k linear eguations with' k unknowns (A4/7)
which can be; selved! by the any: linear methods



Solution of pipe network problems
through Newton-Raphsen method

Initial guess fior H
Calculate partial derivatives; off eéach FwWith respect to each H

Solvingl the resulting system of linear equations to, find' H,
and repeating until allfei the F's are sufficiently clese tor0

Tihe derivative off the terms! in the previous: eguation:is
given: by




Solution of pipe network problems
through Hardy-Cress method

Tihe linear theory method and the Newton-Raphsen
Method cani converge to the correct: splution: rapialy:

Manual selution: or selutien: en: smallfcomputers: may: ot
e, possible with these methods

IHowever, the Hardy-cross method, Which dates back to
1936, can be; tsed for such calculations, Inf essence, the
IHardy-Cross method Is similar'ter applying therNewton-
Raphsen Methed to: one eguation at ajtime

IHardy: cress method is appliedi torAQ eguations although it
can be appliedtor the nede eguiations and' even the; filow.
eguations.

TThe method, when applied to the AQ eguations, reguires
an initial selution which: satisfies the; continuity: eguation



Solution of pipe network problems
through Hardy-Cross method

INevertheless it 1s still widely: usedlespecially for manual
solutionsiand smallfcomputers or and calculaters and
produces adeguate; results for most problems

[For the lithrloop in a pipe network the AQ! eguation can be
Written as foellows

F(AQ)) = ;’IKZ- [sen(0i; + A0)))0i; + AQ)[" — diy =0

Where
AQ,=correction to)l'th loop terachieve convergence, L2/

Q =initial’ estimates) of flew In| I thi pIpe; (satisfies
continuity), /T

m=number of pipesiin loop |



Solution of pipe network problems
through Hardy-Cress method

Applying the Newten-Raphson method fior'a single eguation
gIves

‘n—l

> Ki(0; +A0|0; +AQ,

AO(k +1)=AQ — =L

"y . n—1
> K;ni|Qi; + AQ)|
i=1

Where the k+1 refers to the values off AQ In the (k+1) th
iteration, and all other values refier to the k thiterations and
are omitied frem the equation fier ease off reading

Iihe above eduation: isiequivalent to...

AQ(k +1) = AQ(k) — F(k)/ F (k)

Sign on the @ terms depend on hew: that pipe;is situated in
the leop under consideration.



Assignments

1. How many AQ equations must: be set Up for a network
with' L 1oops (and pseudo-loeps), N nedes, and P pipes?
How: many: H-eguatiens; must; be set up?

2. What are; the; primary. differences between the Hardy-
Croess and Newton-Raphsen methoed for solving the AQ
Eequations?

3. fFor two pipes in: parallel, withr Ky >K5, What 1s the
relationship between Ky, K5 and K., the K fior the
equivalent pipe replacing| 1 andl 2 (h KQ")?

d. K > K> K
b. K;>K.>K,
c. K.>K{>K,



Assignments

4, Derive the fellowing momentum: equation: by applying
COnservation off momentum; for a control Velume for

transient: flow’ threughi a pIpe

5. Develop: the system| oif eguations fox the follewing network
(consists off 8'nedes and 9 elements; out of which 8f are
PIpe elementsiandi the otheris a pump: element) toi find the
values|ofi the specified unknewns. Also Write'ar computer

pProgram tersolve the; system off equations.



Assignments continued

O - Node with H unknown & C known

A - Node with H known & C known
D - Node with H known & C unknown

< - Node with R unknown

H[2], H[4], H[5]
R[4], RI[5]
Clel, C[7], C[8]




Contaminant Transpert in
Open Channels and PIpes

Module 11
5 lectures
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Contaminant; transport

Contaminant tramnsport modelingl studies are; usually
Concerned with the mevement within an aguifer system of a
splute;

Tihese studies have become Increasingly’ Important with the
current interest on water pollution.

IHeat transport medelsiare usually fecused onl developing
deothermall energy. resources.

Pollltant transpert Is an ebVvieus Concern relative tor Water:
guality: management and the develepment off water
protection programs



Definition of terms

rermaelogles related to, contaniipant
Lranspor

Dyffusion:: It rerers o) randoi scatterng ol
DEItICIES 7 a oW, O tUIDUIERL TioHoI

DIspersion.: Tss the scatterirg or
PaItiCIES DY COMPIMAET. ENfECt Of SHear and.
transverse aiiusion

Advection: The davective tiansport system
/S transport by, the mposed VEIOCity, Systeri



Intreduction te: ADE eguation

Iihe one dimensional formulation off conservative tracer
mass balance fer advective-dispersive tiansport PrOCESS
IS

WSl = o dvection of tracer with! fluid

Ox

o%C

Wi = melecular diffitision; +FHydredynamic
y dispersion

aa—f — time rate; off change oi Concentration
at a peint

= reaction term depends on reaction rate and
concentration (chemicall or bielogical, net considered in
the present study)



Few: simple; selutions

Bear discussed! several analytical selutions to relatively:
simple, one-dimensional solute transpert preblems:
IHowever, even simplersolutions tend to get everwhelmed
WIth advanced mathematics:

As aniexample, consider the one-dimensional flow: 6 a
splute threughn the seilfcolumn, the boundary: Conditions
represented by the stepsfiunction| Input are, described
mathematically: ask

\Y

V

\Y




Few: simple solutions

[For these, boundary: conditions; the; solution to ADE
eguation for a satlrated hemegeneous Porous
medium Is:

eric represents the complimentary: error function; |
IS the distance along the flew: path; and Viis the
averade water velocity.

oI conditions InfWhich  the dispersivity: £, of the
pPorous medium Is large or wheni 1 or't Is large; the
second term on the right-hand' side; of eguation IS

negligible.



Few: simple; selutions

This eguation can be used! torcompute the shapes of the
preakthrough’ curves and concentration profiles

Analytical medels represent an attractive alternative torboth
physical and numerical models In: terms off decreased
complexity: and Input datal reguirements.

Analytical' models areé often enly: easiblerwhen based on
significant simplifying assumptions, and these assumptions
may’ not: allow! the model teraccurately reflect the conditions
Of Interest:

Additionally, even the simplest analytical models tend! to
Involve, complex mathematics



Solution off ADE through FD methods

Using implicit finite central diffierence method




Solution of ADE through FD methods

Continued...

llhe above; equation can: be, Written IR matirix
fOrm! ask

I, For internalinodes

AACi—l + BBCZ + CCCi+1 = DD



Solution off ADE through FD methods

Z» FOr RIGHAL DoURdary: conaition.

Using| forward finite; diffierence iormationtin
the right botndary, filtx can be Written as
fellowsias

AAG_1+BBG +CAC + fluXAx))=DD
AAG_1 +(BB+ COC = DD—CCfluxAx)




Solution of ADE through FD methods

5 [FOr LEIt DounRdary. cornaition:

At the left boundary, initial condition and Dirchlet
condition’ are used WRIChIIS given below:

Using backward finite difference formation in the
AIgAt beundary, fltxcan be written as)fiollows




Solution off ADE through FD methods

Continued

(44+ BB)C, + CCC.,, = DD + AA( fluxAx)

Ferapeve three eguationss are selvediior € at allithe
nedes for the mesh. TThomas Algorthm: can be; used
to solve the setiofi equations.



Problems linked with selution methods

Tihe contaminant transpoert in open chanmnels and pIpeS are
splved threughivarious computer models.

Because ofi thelr Increased pepularity:and wide availability, it
IS necessary. tornete the limitations off these models

Iihe first limitation' is the requirement: of: significant; data
Some; available data may: net be usefiul

Tihe second limitation; asseciated! withicomputer models|is
their reguired boundary: conditieons



Problems linked with solution methods

Computer models cam be very: precise in thelr predictions, but
these, predictionsare net alwaysi accurate

Tihe accuracy. of the model dependsi on the accuracy: of the
INpUL data

Some; models may’ exnibit diffictlty, inthandling areas of
dynamic; flow! sUeh’ as they: 6ccur very near wells

Anoether problem asseciated with some computer medels Is
that they cani be quite complicated fromi a mathematical

PErSPEective



Problems linked with solution methods

These computer modeling| are alse time consuming

This is usually’ fiound ter be; true i sufificient datal IS not
available

Uncertainty: relative to the model assumption: and: tsability
must be; recognizead

Tihe computer moedell hias been some; time misused), as for
example the model has beeniapplied te the cases Where itiis
not eveniapplicable.



Demonstration of methods for open
channell flows

Mass tiansport in streans) or long epen: chamnnelsiis
typically: descrined by a one-dimensional

AdVection Jdispersion equation, In which the lengitudinal
dispersion’ co-efficient IS the combination of Various
Section-averaged hydrodynamic mixing efifects.

Tihe classicallwork of Taylor (1953, 1954) established the
fact that the, primary: cause oif diSpersion! in; shear flow:is
the combined action off Iateral difftsion and differential
longitudinal advection.



Demonstration of methods for open
channell flows

Tihe transport off selutes in streams; Is affiected by’ al suite of
physical, chemical'and biologicall processes, wWithi the
relative iImportance of each depending on the geor-
envirenmentallf setting and properties off the selutes.

[EOK many. species, chemical analbielogical reactions are
just: as infiuential as the physical processes off advection

and dispersioniin contrelling thelr mevement in an aguatic
system like; ai stream.



Demonstration of methods for open
channell flows

Tihough chemicall reactions! and phase exchange
MEChanIsms Nave Now: Been Incorporated: inte seme
applied transport models.

Iiheoretical studies into these chemicall effiects on the
physical tiansport ave; been veny limited.

Tihere lacks, for example, a systematic understanding of
the effiects off serption kineticsion the longitudinal
dispersion: dispersion! is conventionally’ considered to be
affected by physical andl hydrodynamic processes only.



Demonstration of methods for pipe
flows

AR IMportant cCompPonent of a Water supply. systems Isithe
distribution system: WhICh conveys Water to) the consumer:
from the sources.

Drinking water transported threugh! suchi distrbution
Systems can| Underger a variety: off water guality: changes In
terms of physical, chemical, and biolegical degradation.

Water guality: variation: duringl tramnspostation inrdistrHbution
systems may: be attributed to two, main aspects’ off reasons.
One is internal degradation, andl the other is external
Intrusion.



Demonstration of methods for pipe
flows

Jihe internall factors including physical, chemical, and
pielegical reaction with: pipe Wallfmaterial that degrades
water guality.

ElUrthermore, recent evidence hasi demonstrated! that
external contaminant intrusion: into water distribution
systems may be more freguent and! o al great Impertance
than: previeusly: suspected.

In conventional (continueus) water distribution systems,
contaminant may: enter inte Water supply’ pipe: through
cracks where: low: or negative pressure occurs due to
transient event.



Demonstration of methods for pipe
flows

ihe sources off contaminant intrusion INto; Water
distribution; systems are many: and various. But leaky sewer
Pipes) faecal Water bodies, and! pelilted canals may: be the
Primary sources fior Water distrbution; systems
contamination:

Both continuous andl intermittent water distribution
systems might suffier firom: the contaminant Intrusion
problem,, and the intermittent systemsi were found mere

viulnerable of contaminant intrusion.



Demonstration of methods for pipe
flows

Chilerination N pIpe flow:is reguired to; contrel the
piclogical growtn, Which on: the other hamnai results i Water
guality, deterieration.

Pipe conditioni assessment component simulates
contaminant Ingress! potential off Water pipe.

Contaminantiseepade will beithe major component off the
model. Its objective will'be tor simulate the flow and
transport off contaminant in the seill from| leaky: sewers and

other pollution seurces to water distribution: pipes.



Demonstration of methods for pipe
flows

Tihe eguations te be applied te simulate contaminant filew.
throughithe pipes are similar to open; channgel
contaminant transport.

Tihe process involved during the contaminants transport:
Incltidesi advection, dispersion and reaction, etc., WhICh
resultsiint varying concentration off the contaminants
during Its/ transpertation:.



Assignments

1. Considering the ene-dimensional flow! ofi a selute; through
the soil column, write ai computer program for selving the
given contaminant transport equation: by finite; difference
technigue: Tiherbetindary: conditions represented by the
step function Inputiare described mathematically, as:
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Compare and discuss the: results with: the analytical
method.

2. Write' thergoverning equation for transport of
contaminant in'a pipe, neglecting advection and dispersion
terms; and solve to get analytical solution of the same.




