
Computational HydraulicsComputational Hydraulics

Prof. Prof. M.S.MohanM.S.Mohan KumarKumar
Department of Civil EngineeringDepartment of Civil Engineering



Introduction to Hydraulics Introduction to Hydraulics 
of Open Channelsof Open Channels

Module 1Module 1
3 lectures3 lectures



Topics to be coveredTopics to be covered
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Basic ConceptsBasic Concepts
Open Channel flows deal with flow of water in open channelsOpen Channel flows deal with flow of water in open channels

Pressure is atmospheric at the  water surface and the Pressure is atmospheric at the  water surface and the 
pressure is equal to the depth of water at any sectionpressure is equal to the depth of water at any section

Pressure head is the ratio of pressure and the specific weight Pressure head is the ratio of pressure and the specific weight 
of waterof water

Elevation head or the datum head is the height of the Elevation head or the datum head is the height of the 
section under consideration above a datumsection under consideration above a datum

Velocity head (=Velocity head (=vv22/2g/2g) is due to the average velocity of flow ) is due to the average velocity of flow 
in that vertical sectionin that vertical section



Basic Concepts ContBasic Concepts Cont……

The flow of water in an open channel is mainly due to head The flow of water in an open channel is mainly due to head 
gradient and gravitygradient and gravity

Open Channels are mainly used to transport water for Open Channels are mainly used to transport water for 
irrigation, industry  and domestic water supplyirrigation, industry  and domestic water supply

Total head =Total head =p/p/γγ + v+ v22/2g + z/2g + z

Pressure head = Pressure head = p/p/γγ

Velocity head =Velocity head =vv22/2g/2g

Datum head = Datum head = zz



Conservation LawsConservation Laws

The main conservation laws used in open channels areThe main conservation laws used in open channels are

Conservation LawsConservation Laws

Conservation of MassConservation of Mass

Conservation of MomentumConservation of Momentum

Conservation of EnergyConservation of Energy



Conservation of MassConservation of Mass

Conservation of MassConservation of Mass
In any control volume consisting of the fluid ( water) under In any control volume consisting of the fluid ( water) under 
consideration, the net change of mass in the control volume consideration, the net change of mass in the control volume 
due to inflow and out flow is equal to the the net rate of due to inflow and out flow is equal to the the net rate of 
change of mass in the control volumechange of mass in the control volume

This leads to the classical continuity equation balancing the This leads to the classical continuity equation balancing the 
inflow, out flow and the storage change in the control inflow, out flow and the storage change in the control 
volume. volume. 

Since we are considering only water which is treated as Since we are considering only water which is treated as 
incompressible, the density effect can be ignoredincompressible, the density effect can be ignored



Conservation of Momentum and energyConservation of Momentum and energy

Conservation of MomentumConservation of Momentum
This law states that the rate of change of momentum in the This law states that the rate of change of momentum in the 
control volume is equal to the net forces acting on the control volume is equal to the net forces acting on the 
control volumecontrol volume

Since the water under consideration is moving, it is acted Since the water under consideration is moving, it is acted 
upon by external forcesupon by external forces

Essentially this leads to the NewtonEssentially this leads to the Newton’’s second law s second law 

Conservation of EnergyConservation of Energy
This law states that neither the energy can be created or This law states that neither the energy can be created or 
destroyed. It only changes its form.destroyed. It only changes its form.



Conservation of EnergyConservation of Energy
Mainly in open channels the energy will be in the form of potentMainly in open channels the energy will be in the form of potential energy ial energy 

and kinetic energyand kinetic energy

Potential energy is due to the elevation of the water parcel whiPotential energy is due to the elevation of the water parcel while the le the 
kinetic energy is due to its movementkinetic energy is due to its movement

In the context of open channel flow the total energy due these fIn the context of open channel flow the total energy due these factors actors 
between any two sections is conservedbetween any two sections is conserved

This conservation of energy principle leads to the classical BerThis conservation of energy principle leads to the classical Bernoullinoulli’’s s 
equationequation
P/P/γγ + v+ v22/2g + z = Constant/2g + z = Constant

When used between two sections this equation  has to account forWhen used between two sections this equation  has to account for the the 
energy loss between the two sections which is due to the resistaenergy loss between the two sections which is due to the resistance to the nce to the 
flow by the bed shear etc.flow by the bed shear etc.



Types of Open Channel FlowsTypes of Open Channel Flows

Depending on the Froude number (FDepending on the Froude number (Frr)) the flow in an open the flow in an open 
channel is classified as channel is classified as Sub criticalSub critical flow, flow, Super CriticalSuper Critical
flow, and flow, and CriticalCritical flow, where flow, where FroudeFroude number can be defined number can be defined 
asas

gy

V
Fr =

Open channel flowOpen channel flow

SubSub--critical flowcritical flow Critical flowCritical flow Super critical flowSuper critical flow

FFrr<1<1 FFrr=1=1 FFrr>1>1



Types of Open Channel Flow Cont...Types of Open Channel Flow Cont...

Open Channel Flow

Unsteady Steady

Varied Uniform Varied

Gradually

Rapidly

Gradually

Rapidly



Types of Open Channel Flow ContTypes of Open Channel Flow Cont……
Steady FlowSteady Flow

Flow is said to be steady when discharge does not Flow is said to be steady when discharge does not 
change along the course of the channel flowchange along the course of the channel flow

Unsteady FlowUnsteady Flow
Flow is said to be unsteady when the discharge Flow is said to be unsteady when the discharge 
changes with timechanges with time

Uniform FlowUniform Flow
Flow is said to be uniform when both the depth and Flow is said to be uniform when both the depth and 
discharge is same at any two sections of the channeldischarge is same at any two sections of the channel



Types of Open Channel ContTypes of Open Channel Cont……
Gradually Varied FlowGradually Varied Flow

Flow is said to be gradually varied when ever the Flow is said to be gradually varied when ever the 
depth changes gradually along the channeldepth changes gradually along the channel

Rapidly varied flowRapidly varied flow
Whenever the flow depth changes rapidly along the Whenever the flow depth changes rapidly along the 
channel the flow is termed rapidly varied flowchannel the flow is termed rapidly varied flow

Spatially varied flowSpatially varied flow
Whenever the depth of flow changes gradually due Whenever the depth of flow changes gradually due 
to change in discharge the flow is termed spatially to change in discharge the flow is termed spatially 
varied flowvaried flow



Types of Open Channel Flow contTypes of Open Channel Flow cont……
Unsteady FlowUnsteady Flow

Whenever the discharge and depth of flow changes Whenever the discharge and depth of flow changes 
with time, the flow is termed unsteady flow with time, the flow is termed unsteady flow 

Types of possibleTypes of possible flowflow

Steady uniform flowSteady uniform flow Steady nonSteady non--uniform flowuniform flow Unsteady  nonUnsteady  non--uniform flowuniform flow

kinematickinematic wavewave diffusion wavediffusion wave dynamic wavedynamic wave



DefinitionsDefinitions
Specific EnergySpecific Energy
It is defined as the energy acquired by the water at a It is defined as the energy acquired by the water at a 
section due to its depth and the velocity with which it section due to its depth and the velocity with which it 
is flowingis flowing

Specific Energy E is given by, Specific Energy E is given by, E = y + vE = y + v22/2g/2g
Where y is the depth of flow at  that section Where y is the depth of flow at  that section 
and v is the average velocity of flowand v is the average velocity of flow

Specific energy is minimum at critical Specific energy is minimum at critical 
conditioncondition



DefinitionsDefinitions
Specific ForceSpecific Force
It is defined as the sum of the momentum of the flow passing It is defined as the sum of the momentum of the flow passing 

through the channel section per unit time per unit weight of through the channel section per unit time per unit weight of 
water and the force per unit weight of waterwater and the force per unit weight of water

F = QF = Q22/gA +/gA +yAyA
The specific forces of two sections are equal The specific forces of two sections are equal 
provided that the external forces and the weight provided that the external forces and the weight 
effect of water in the reach between the two effect of water in the reach between the two 
sections can be ignored.sections can be ignored.

At the critical state of flow the specific force is a At the critical state of flow the specific force is a 
minimum for the given discharge.minimum for the given discharge.



Critical FlowCritical Flow
Flow is critical when the specific energy is minimum. Flow is critical when the specific energy is minimum. 
Also whenever the flow changes from sub critical to Also whenever the flow changes from sub critical to 
super critical or vice versa the flow has to go super critical or vice versa the flow has to go 
through critical conditionthrough critical condition

figure is shown in next slidefigure is shown in next slide

SubSub--criticalcritical flowflow--the depth of flow will be higher the depth of flow will be higher 
whereas the velocity will be lower.whereas the velocity will be lower.

SuperSuper--criticalcritical flowflow--the depth of flow will be lower the depth of flow will be lower 
but the velocity will be higherbut the velocity will be higher

Critical  flowCritical  flow: Flow over a free over: Flow over a free over--fallfall



Specific energy diagramSpecific energy diagram

Specific Energy Curve for a given discharge
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Characteristics of Critical FlowCharacteristics of Critical Flow
Specific Energy (Specific Energy (E = y+QE = y+Q22/2gA/2gA22) is minimum) is minimum

For Specific energy to be a minimum For Specific energy to be a minimum dE/dydE/dy = 0= 0

However, However, dAdA==TdyTdy, , where T is the width of the where T is the width of the 
channel at the water surface, then applying channel at the water surface, then applying dE/dydE/dy = = 
0, will result in following
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Characteristics of Critical FlowCharacteristics of Critical Flow

For a rectangular channel For a rectangular channel AAc c //TTcc==yycc

Following the derivation for a rectangular channel,Following the derivation for a rectangular channel,

The same principle is valid for trapezoidal and other The same principle is valid for trapezoidal and other 
cross sectionscross sections

Critical flow condition defines an unique relationship Critical flow condition defines an unique relationship 
between depth and discharge which is very useful in the between depth and discharge which is very useful in the 
design of flow measurement structures
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Uniform FlowsUniform Flows
This is one of the most important concept in open channel This is one of the most important concept in open channel 

flowsflows

The most important equation for uniform flow is ManningThe most important equation for uniform flow is Manning’’s s 
equation given byequation given by

Where Where RR = the hydraulic radius == the hydraulic radius = A/PA/P
PP = wetted perimeter = = wetted perimeter = f(y, Sf(y, S00))

YY = depth of the channel bed = depth of the channel bed 
SS00 = bed slope (same as the energy slope, = bed slope (same as the energy slope, SSff) ) 
n n = the Manning= the Manning’’s dimensional empirical constant 

2/13/21 SR
n

V =

s dimensional empirical constant 



Uniform FlowsUniform Flows

Energy Grade Line

Steady Uniform Flow in an Open Channel
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Uniform Flow Uniform Flow 
Example : Flow in an open channelExample : Flow in an open channel

This concept is used in most of the open channel flow designThis concept is used in most of the open channel flow design

The uniform flow means that there is no acceleration to the The uniform flow means that there is no acceleration to the 
flow leading to the weight component of the flow being flow leading to the weight component of the flow being 
balanced by the resistance offered by the bed shearbalanced by the resistance offered by the bed shear

In terms of discharge the ManningIn terms of discharge the Manning’’s equation is given bys equation is given by

2/13/21 SAR
n

Q =



Uniform FlowUniform Flow
This is a non linear equation in y the depth of flow for which This is a non linear equation in y the depth of flow for which 

most of the computations will be mademost of the computations will be made

Derivation of uniform flow equation is given below, whereDerivation of uniform flow equation is given below, where

= weight component  of the fluid mass in the = weight component  of the fluid mass in the 
direction of flow direction of flow 

= bed shear stress= bed shear stress

= surface area of the channel= surface area of the channel

θsinW

0τ

xP∆



Uniform FlowUniform Flow

The force balance equation can be written as The force balance equation can be written as 

Or Or 

OrOr

Now Now A/PA/P is the hydraulic radius, is the hydraulic radius, RR, and , and sinsinθθ is is 
the slope of the channel the slope of the channel SS0

0sin 0 =∆− xPW τθ

0sin 0 =∆−∆ xPxA τθγ

θγτ sin0 P
A

=

0



Uniform FlowUniform Flow
The shear stress can be expressed as The shear stress can be expressed as 

Where Where ccff is resistance coefficient, is resistance coefficient, VV is the mean is the mean 
velocity velocity ρρ is the mass densityis the mass density
Therefore the previous equation can be written asTherefore the previous equation can be written as

Or Or 

where where CC is is ChezyChezy’’ss constantconstant
For ManningFor Manning’’s equation s equation 
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Gradually Varied FlowGradually Varied Flow
Flow is said to be gradually varied whenever the depth of Flow is said to be gradually varied whenever the depth of 
flow changed graduallyflow changed gradually

The governing equation for gradually varied flow is given byThe governing equation for gradually varied flow is given by

Where the variation of depth Where the variation of depth y y with the channel distance with the channel distance xx
is shown to be a function of bed slope is shown to be a function of bed slope SS00, Friction Slope , Friction Slope SSff
and the flow Froude number and the flow Froude number FFrr. . 

This is a non linear equation with the depth varying as a This is a non linear equation with the depth varying as a 
non linear function
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Gradually Varied FlowGradually Varied Flow
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Gradually Varied FlowGradually Varied Flow

Derivation of gradually varied flow is as followsDerivation of gradually varied flow is as follows……
The conservation of energy at two sections of a The conservation of energy at two sections of a 
reach of length reach of length ∆∆xx, can be written as, can be written as

Now, let                     andNow, let                     and

Then the above equation becomesThen the above equation becomes

xS
g

VyxS
g

Vy f ∆++=∆++
22

2
2

20

2
1

1

12 yyy −=∆

x
g

V
dx
dxSxSy f ∆⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∆−∆=∆

2

2

0

x
g

V
dx
d

g
V

g
V

∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

222

22
1

2
2



Gradually Varied FlowGradually Varied Flow

Dividing through Dividing through ∆∆xx and taking the limit as and taking the limit as ∆∆xx
approaches zero gives usapproaches zero gives us

After simplification, After simplification, 

Further simplification can be done in terms of Further simplification can be done in terms of 
FroudeFroude numbernumber
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Gradually Varied FlowGradually Varied Flow
After differentiating the right side of the previous After differentiating the right side of the previous 
equation,equation,

But But dA/dydA/dy=T, and A/T=D, =T, and A/T=D, therefore,therefore,

Finally the general differential equation can be Finally the general differential equation can be 
written aswritten as
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Gradually Varied FlowGradually Varied Flow
Numerical integration of the gradually varied flow equation Numerical integration of the gradually varied flow equation 

will give the water surface profile along the channelwill give the water surface profile along the channel

Depending on the depth of flow where it lies when compared Depending on the depth of flow where it lies when compared 
with the normal depth and the critical depth along with the with the normal depth and the critical depth along with the 
bed slope compared with the friction slope different types of bed slope compared with the friction slope different types of 
profiles are formed such as M (mild), C (critical), S (steep) profiles are formed such as M (mild), C (critical), S (steep) 
profiles. All these have real examples.profiles. All these have real examples.

M (mild)M (mild)--If the slope is so small that the normal depth If the slope is so small that the normal depth 
(Uniform flow depth) is greater than critical depth for the (Uniform flow depth) is greater than critical depth for the 
given discharge, then the slope of the channel is given discharge, then the slope of the channel is mildmild..



Gradually Varied FlowGradually Varied Flow

C (critical)C (critical)--if the slopeif the slope’’s normal depth equals its critical s normal depth equals its critical 
depth, then we call it a depth, then we call it a criticalcritical slope, denoted by Cslope, denoted by C

S (steep)S (steep)--if the channel slope is so steep that a normal if the channel slope is so steep that a normal 
depth less than critical is produced, then the channel is depth less than critical is produced, then the channel is 
steepsteep, and water surface profile designated as S, and water surface profile designated as S



Rapidly Varied FlowRapidly Varied Flow
This flow has very pronounced curvature of the streamlinesThis flow has very pronounced curvature of the streamlines
It is such that pressure distribution cannot be assumed to It is such that pressure distribution cannot be assumed to 
be hydrostatic be hydrostatic 
The rapid variation in flow regime often take place in short The rapid variation in flow regime often take place in short 
span span 
When rapidly varied flow occurs in a suddenWhen rapidly varied flow occurs in a sudden--transition transition 
structure, the physical characteristics of the flow are structure, the physical characteristics of the flow are 
basically fixed by the boundary geometry of the structure as basically fixed by the boundary geometry of the structure as 
well as by the state of the flowwell as by the state of the flow

Examples:Examples:
Channel expansion and cannel contractionChannel expansion and cannel contraction
Sharp crested weirsSharp crested weirs
Broad crested weirsBroad crested weirs



Unsteady flowsUnsteady flows
When the flow conditions vary with respect to time, we call When the flow conditions vary with respect to time, we call 
it unsteady flows.it unsteady flows.

Some terminologies used for the analysis of unsteady flows Some terminologies used for the analysis of unsteady flows 
are defined below:are defined below:

WaveWave:: it is defined as a temporal or spatial variation of flow it is defined as a temporal or spatial variation of flow 
depth and rate of discharge.depth and rate of discharge.

Wave lengthWave length: it is the distance between two adjacent wave : it is the distance between two adjacent wave 
crests or trough crests or trough 

AmplitudeAmplitude: it is the height between the maximum water : it is the height between the maximum water 
level and the still water levellevel and the still water level



Unsteady flows definitions Unsteady flows definitions 

Wave celerityWave celerity (c):(c): relative velocity of a wave with respect relative velocity of a wave with respect 
to fluid in which it is flowing with to fluid in which it is flowing with VV

Absolute wave velocity (Absolute wave velocity (VVww): ): velocity with respect to velocity with respect to 
fixed reference as given belowfixed reference as given below

Plus sign if the wave is traveling in the flow direction and Plus sign if the wave is traveling in the flow direction and 
minus for if the wave is traveling in the direction opposite to minus for if the wave is traveling in the direction opposite to 
flowflow

For shallow water waves              where For shallow water waves              where yy00=undisturbed =undisturbed 
flow depth.flow depth.

cVVw ±=

0gyc =



Unsteady flows examplesUnsteady flows examples
Unsteady flows occur due to following reasons:Unsteady flows occur due to following reasons:

1.1. Surges in power canals or tunnels Surges in power canals or tunnels 

2.2. Surges in upstream or downstream channels produced by Surges in upstream or downstream channels produced by 
starting or stopping of pumps and opening and closing of starting or stopping of pumps and opening and closing of 
control gatescontrol gates

3.3. Waves in navigation channels produced by the operation of Waves in navigation channels produced by the operation of 
navigation locksnavigation locks

4.4. Flood waves in streams, rivers, and drainage channels due Flood waves in streams, rivers, and drainage channels due 
to rainstorms and snowmeltto rainstorms and snowmelt

5.5. Tides in estuaries, bays and inletsTides in estuaries, bays and inlets



Unsteady flowsUnsteady flows
Unsteady flow commonly encountered in an open channels Unsteady flow commonly encountered in an open channels 
and deals with and deals with translatorytranslatory waves. waves. TranslatoryTranslatory waves is a waves is a 
gravity wave that propagates in an open channel and gravity wave that propagates in an open channel and 
results in appreciable displacement of the water particles in results in appreciable displacement of the water particles in 
a direction parallel to the flowa direction parallel to the flow

For purpose of analytical discussion, unsteady flow is For purpose of analytical discussion, unsteady flow is 
classified into two types, namely, gradually varied and classified into two types, namely, gradually varied and 
rapidly varied unsteady flowrapidly varied unsteady flow

In gradually varied flow the curvature of the wave profile is In gradually varied flow the curvature of the wave profile is 
mild, and the change in depth is gradualmild, and the change in depth is gradual

In the rapidly varied flow the curvature of the wave profile In the rapidly varied flow the curvature of the wave profile 
is very large and so the surface of the profile may become is very large and so the surface of the profile may become 
virtually discontinuous.virtually discontinuous.



Unsteady flows contUnsteady flows cont……
Continuity equation for unsteady flow in an open Continuity equation for unsteady flow in an open 
channelchannel

For a rectangular channel of infinite width, may be For a rectangular channel of infinite width, may be 
written written 

When the channel is to feed laterally with a When the channel is to feed laterally with a 
supplementary discharge of qsupplementary discharge of q’’ per unit length, for per unit length, for 
instance, into an area that is being flooded over a instance, into an area that is being flooded over a 
dike dike 
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Unsteady flows contUnsteady flows cont……

The equationThe equation

The general dynamic equation for gradually The general dynamic equation for gradually 
varied unsteady flow is given by:
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Review of Hydraulics of Review of Hydraulics of 
Pipe FlowsPipe Flows

Module2 Module2 
3 lectures3 lectures
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General IntroductionGeneral Introduction
Pipe flows are mainly due to pressure difference between Pipe flows are mainly due to pressure difference between 
two sectionstwo sections

Here also the total head is made up of pressure head, datum Here also the total head is made up of pressure head, datum 
head and velocity headhead and velocity head

The principle of continuity, energy, momentum is also used The principle of continuity, energy, momentum is also used 
in this type of flow.in this type of flow.

For example, to design a pipe, we use the continuity and For example, to design a pipe, we use the continuity and 
energy equations to obtain the required pipe diameterenergy equations to obtain the required pipe diameter

Then applying the momentum equation, we get the forces Then applying the momentum equation, we get the forces 
acting on bends for a given dischargeacting on bends for a given discharge



General introductionGeneral introduction
In the design and operation of a pipeline, the main In the design and operation of a pipeline, the main 
considerations are head losses, forces and stresses considerations are head losses, forces and stresses 
acting on the pipe material, and discharge.acting on the pipe material, and discharge.

Head loss for a given discharge relates to flow Head loss for a given discharge relates to flow 
efficiency; i.e an optimum size of pipe will yield the efficiency; i.e an optimum size of pipe will yield the 
least overall cost of installation and operation for least overall cost of installation and operation for 
the desired discharge.the desired discharge.

Choosing a small pipe results in low initial costs, Choosing a small pipe results in low initial costs, 
however, subsequent costs may be excessively however, subsequent costs may be excessively 
large because of high energy cost from large head large because of high energy cost from large head 
losseslosses



Energy equationEnergy equation
The design of conduit should be such that it needs least The design of conduit should be such that it needs least 
cost for a given dischargecost for a given discharge
The hydraulic aspect of the problem require applying the The hydraulic aspect of the problem require applying the 
one dimensional steady flow form of the energy equation:one dimensional steady flow form of the energy equation:

Where     Where     p/p/γγ =pressure head=pressure head
ααVV22/2g/2g =velocity head=velocity head
z z =elevation head=elevation head
hhpp=head supplied by a pump=head supplied by a pump
hht t =head supplied to a turbine=head supplied to a turbine
hhLL =head loss between 1 and 2
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Energy equationEnergy equation

The Schematic representation of the energy equation
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Energy equationEnergy equation

Velocity headVelocity head
In In ααVV22/2g/2g, the velocity , the velocity VV is the mean velocity in the is the mean velocity in the 
conduit at a given section and is obtained by conduit at a given section and is obtained by 
V=Q/AV=Q/A, where , where QQ is the discharge, and is the discharge, and AA is the is the 
crosscross--sectional area of the conduit. sectional area of the conduit. 
The kinetic energy correction factor is given by The kinetic energy correction factor is given by αα, , 
and it is defines as, where and it is defines as, where uu=velocity at any point =velocity at any point 
in the sectionin the section

αα has minimum value of unity when the velocity is has minimum value of unity when the velocity is 
uniform across the sectionuniform across the section

AV

dAu
A
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Energy equation contEnergy equation cont……
Velocity head contVelocity head cont……

αα has values greater than unity depending on the degree of has values greater than unity depending on the degree of 
velocity variation across a sectionvelocity variation across a section
For laminar flow in a pipe, velocity distribution is parabolic For laminar flow in a pipe, velocity distribution is parabolic 
across the section of the pipe, and across the section of the pipe, and αα has value of 2.0has value of 2.0
However, if the flow is turbulent, as is the usual case for However, if the flow is turbulent, as is the usual case for 
water flow through the large conduits, the velocity is fairly water flow through the large conduits, the velocity is fairly 
uniform over most of the conduit section, and uniform over most of the conduit section, and αα has value has value 
near unity (typically: 1.04< near unity (typically: 1.04< αα < 1.06).< 1.06).
Therefore, in hydraulic engineering for ease of application Therefore, in hydraulic engineering for ease of application 
in pipe flow, the value of in pipe flow, the value of αα is usually assumed to be unity, is usually assumed to be unity, 
and the velocity head is then simply and the velocity head is then simply VV22/2g/2g..



Energy equation contEnergy equation cont……
Pump or turbine headPump or turbine head

The head supplied by a pump is directly The head supplied by a pump is directly 
related to the power supplied to the flow as related to the power supplied to the flow as 
given belowgiven below

Likewise if head is supplied to turbine, the Likewise if head is supplied to turbine, the 
power supplied to the turbine will bepower supplied to the turbine will be

These two equations represents the power These two equations represents the power 
supplied directly or power taken out directly  supplied directly or power taken out directly  
from the flowfrom the flow

phQP γ=

thQP γ=



Energy equation contEnergy equation cont……
HeadHead--loss termloss term

The head loss term The head loss term hhLL accounts for the conversion accounts for the conversion 
of mechanical energy to internal energy (heat), of mechanical energy to internal energy (heat), 
when this conversion occurs, the internal energy is when this conversion occurs, the internal energy is 
not readily converted back to useful mechanical not readily converted back to useful mechanical 
energy, therefore it is called energy, therefore it is called head losshead loss

Head loss results from viscous resistance to flow Head loss results from viscous resistance to flow 
(friction) at the conduit wall or from the viscous (friction) at the conduit wall or from the viscous 
dissipation of turbulence usually occurring with dissipation of turbulence usually occurring with 
separated flow, such as in bends, fittings or outlet separated flow, such as in bends, fittings or outlet 
works.works.



Head loss calculationHead loss calculation
Head loss is due to friction between the fluid and Head loss is due to friction between the fluid and 
the pipe wall and turbulence within the fluidthe pipe wall and turbulence within the fluid

The rate of head loss depend on roughness The rate of head loss depend on roughness 
element size apart from velocity and pipe diameterelement size apart from velocity and pipe diameter

Further the head loss also depends on whether the Further the head loss also depends on whether the 
pipe is hydraulically smooth, rough or somewhere pipe is hydraulically smooth, rough or somewhere 
in betweenin between

In water distribution system , head loss is also due In water distribution system , head loss is also due 
to bends, valves and changes in pipe diameterto bends, valves and changes in pipe diameter



Head loss calculationHead loss calculation
Head loss for steady flow through a straight pipe:Head loss for steady flow through a straight pipe:

This is known as DarcyThis is known as Darcy--WeisbachWeisbach equationequation

h/L=Sh/L=S, is slope of the hydraulic and energy grade , is slope of the hydraulic and energy grade 
lines for a pipe of constant diameter
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Head loss calculationHead loss calculation
Head loss in laminar flow:Head loss in laminar flow:

HagenHagen--PoiseuillePoiseuille equation givesequation gives

Combining above with DarcyCombining above with Darcy--WeisbachWeisbach equation, gives fequation, gives f

Also we can write in terms of Reynolds numberAlso we can write in terms of Reynolds number

This relation is valid for This relation is valid for NNrr<1000
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Head loss calculationHead loss calculation

Head loss in turbulent flow:Head loss in turbulent flow:
In turbulent flow, the friction factor is a function of both In turbulent flow, the friction factor is a function of both 
Reynolds number and pipe roughnessReynolds number and pipe roughness

As the roughness size or the velocity increases, flow is As the roughness size or the velocity increases, flow is 
wholly rough and f depends on the relative roughness wholly rough and f depends on the relative roughness 

Where graphical determination of the friction factor is Where graphical determination of the friction factor is 
acceptable, it is possible to use a Moody diagram.acceptable, it is possible to use a Moody diagram.

This diagram gives the friction factor over a wide range of This diagram gives the friction factor over a wide range of 
Reynolds numbers for laminar flow and smooth, transition, Reynolds numbers for laminar flow and smooth, transition, 
and rough turbulent flowand rough turbulent flow



Head loss calculationHead loss calculation
The quantities shown in Moody Diagram are dimensionless The quantities shown in Moody Diagram are dimensionless 
so they can be used with any system of units so they can be used with any system of units 

MoodyMoody’’s diagram can be followed from any reference books diagram can be followed from any reference book

MINOR LOSSESMINOR LOSSES

Energy losses caused by valves, bends and changes in pipe Energy losses caused by valves, bends and changes in pipe 
diameterdiameter

This is smaller than friction losses in straight sections of This is smaller than friction losses in straight sections of 
pipe and for all practical purposes ignoredpipe and for all practical purposes ignored

Minor losses are significant in valves and fittings, which Minor losses are significant in valves and fittings, which 
creates turbulence in excess of that produced in a straight creates turbulence in excess of that produced in a straight 
pipepipe



Head loss calculationHead loss calculation
Minor losses can be expressed in three ways:Minor losses can be expressed in three ways:
1.1. A minor loss coefficient K may be used to give A minor loss coefficient K may be used to give 

head loss as a function of velocity head,head loss as a function of velocity head,

2.2. Minor losses may be expressed in terms of the Minor losses may be expressed in terms of the 
equivalent length of straight pipe, or as pipe equivalent length of straight pipe, or as pipe 
diameters (L/D) which produces the same head diameters (L/D) which produces the same head 
loss.loss.
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Head loss calculationHead loss calculation
1.1. A flow coefficient A flow coefficient CCvv which gives a flow that will which gives a flow that will 

pass through the valve at a pressure drop of pass through the valve at a pressure drop of 
1psi may be specified. Given the flow coefficient 1psi may be specified. Given the flow coefficient 
the head loss can be calculated as the head loss can be calculated as 

The flow coefficient can be related to the minor loss The flow coefficient can be related to the minor loss 
coefficient by coefficient by 
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Energy Equation for Flow in pipesEnergy Equation for Flow in pipes
Energy equation for pipe flowEnergy equation for pipe flow

The The energy equationenergy equation represents elevation, pressure, and velocity forms represents elevation, pressure, and velocity forms 
of energy.of energy. The energy equation for a fluid moving in a closed conduit is The energy equation for a fluid moving in a closed conduit is 
written between two locations at a distance (length) L apart.written between two locations at a distance (length) L apart. Energy Energy 
losses for flow through ducts and pipes consist of major losses losses for flow through ducts and pipes consist of major losses and and 
minor lossesminor losses..

Minor Loss Calculations for Fluid Flow Minor Loss Calculations for Fluid Flow 

Minor losses are due to fittings such as valves and elbows Minor losses are due to fittings such as valves and elbows 
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Major Loss Calculation for Fluid FlowMajor Loss Calculation for Fluid Flow
Using DarcyUsing Darcy--WeisbachWeisbach Friction Loss EquationFriction Loss Equation

Major losses are due to friction between the moving fluid Major losses are due to friction between the moving fluid 
and the inside walls of the duct. and the inside walls of the duct. 
The DarcyThe Darcy--WeisbachWeisbach method is generally considered more method is generally considered more 
accurate than the Hazenaccurate than the Hazen--Williams method. Williams method. Additionally, Additionally, 
the Darcythe Darcy--WeisbachWeisbach method is valid for any liquid or gas. method is valid for any liquid or gas. 
Moody Friction Factor CalculatorMoody Friction Factor Calculator



Major Loss Calculation in pipesMajor Loss Calculation in pipes
Using HazenUsing Hazen--Williams Friction Loss Equation Williams Friction Loss Equation 

HazenHazen--Williams is only valid for water at ordinary Williams is only valid for water at ordinary 
temperatures (40 to 75temperatures (40 to 75ooF).F). The HazenThe Hazen--Williams method is Williams method is 
very popular, especially among civil engineers, since its very popular, especially among civil engineers, since its 
friction coefficient (C) is not a function of velocity or duct friction coefficient (C) is not a function of velocity or duct 
(pipe) diameter.(pipe) diameter. HazenHazen--Williams is simpler than DarcyWilliams is simpler than Darcy--
WeisbachWeisbach for calculations where one can solve for flowfor calculations where one can solve for flow--
rate, velocity, or diameter rate, velocity, or diameter 



Transient flow through long pipesTransient flow through long pipes

Intermediate flow while changing from one Intermediate flow while changing from one 
steady state to another is called transient steady state to another is called transient 
flowflow
This occurs due to design or operating This occurs due to design or operating 
errors or equipment malfunction.errors or equipment malfunction.
This transient state pressure causes lots of This transient state pressure causes lots of 
damage to the network systemdamage to the network system
Pressure rise in a close conduit caused by an Pressure rise in a close conduit caused by an 
instantaneous change in flow velocity instantaneous change in flow velocity 



Transient flow through long pipesTransient flow through long pipes

If the flow velocity at a point does vary with time, the flow If the flow velocity at a point does vary with time, the flow 
is unsteadyis unsteady

When the flow conditions are changed from one steady When the flow conditions are changed from one steady 
state to another, the intermediate stage flow is referred to state to another, the intermediate stage flow is referred to 
as transient flowas transient flow

The terms fluid transients and hydraulic transients are used The terms fluid transients and hydraulic transients are used 
in practicein practice

The different flow conditions in a piping system are The different flow conditions in a piping system are 

discussed as below:discussed as below:



Transient flow through long pipesTransient flow through long pipes

Consider a pipe length of length L Consider a pipe length of length L 

Water is flowing from a constant level upstream reservoir Water is flowing from a constant level upstream reservoir 
to a valve at downstreamto a valve at downstream

Assume valve is instantaneously closed at time Assume valve is instantaneously closed at time t=tt=t00 from from 
the full open position to half open position.the full open position to half open position.

This reduces the flow velocity through the valve, thereby This reduces the flow velocity through the valve, thereby 
increasing the pressure at the valve increasing the pressure at the valve 



Transient flow through long pipesTransient flow through long pipes
The increased pressure will produce a pressure wave that The increased pressure will produce a pressure wave that 
will travel back and forth in the pipeline until it is will travel back and forth in the pipeline until it is 
dissipated because of friction and flow conditions have dissipated because of friction and flow conditions have 
become steady againbecome steady again

This time when the flow conditions have become steady This time when the flow conditions have become steady 
again, let us call it tagain, let us call it t11..

So the flow regimes can be categorized into So the flow regimes can be categorized into 
1.1. Steady flow for t<tSteady flow for t<t00

2.2. Transient flow for tTransient flow for t00<t<t<t<t11

3.3. Steady flow for t>tSteady flow for t>t11



Transient flow through long pipesTransient flow through long pipes
TransientTransient--state pressures are sometimes reduced to the state pressures are sometimes reduced to the 
vapor pressure of a liquid that results in separating the vapor pressure of a liquid that results in separating the 
liquid column at that section; this is referred to as liquidliquid column at that section; this is referred to as liquid--
column separationcolumn separation

If the flow conditions are repeated after a fixed time If the flow conditions are repeated after a fixed time 
interval, the flow is called periodic flow, and the time interval, the flow is called periodic flow, and the time 
interval at which the conditions are repeated is called interval at which the conditions are repeated is called 
periodperiod

The analysis of transient state conditions in closed conduits The analysis of transient state conditions in closed conduits 
may be classified into two categories: lumpedmay be classified into two categories: lumped--system system 
approach and distributed system approach approach and distributed system approach 



Transient flow through long pipesTransient flow through long pipes

In the In the lumped systemlumped system approach the conduit walls approach the conduit walls 
are assumed rigid and the liquid in the conduit is are assumed rigid and the liquid in the conduit is 
assumed incompressible, so that it behaves like a assumed incompressible, so that it behaves like a 
rigid mass, other way flow variables are functions rigid mass, other way flow variables are functions 
of time only.of time only.

In the In the distributed systemdistributed system approach the liquid is approach the liquid is 
assumed slightly compressibleassumed slightly compressible

Therefore flow velocity vary along the length of the Therefore flow velocity vary along the length of the 
conduit in addition to the variation in timeconduit in addition to the variation in time



Transient flow through long pipesTransient flow through long pipes
Flow establishmentFlow establishment

The 1D form of momentum equation for a control volume The 1D form of momentum equation for a control volume 
that is fixed in space and does not change shape may be that is fixed in space and does not change shape may be 
written as  written as  

If the liquid is assumed incompressible and the pipe is rigid, If the liquid is assumed incompressible and the pipe is rigid, 
then at any instant the velocity along the pipe will be same, then at any instant the velocity along the pipe will be same, 

inout AVAVVAdx
dt
dF )()( 22 ρρρ∫ −+∑ =
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Transient flow through long pipesTransient flow through long pipes

Substituting for all the forces acting on the control Substituting for all the forces acting on the control 
volumevolume

WhereWhere
p =p =γγ(h(h--VV22/2g)/2g)
αα=pipe slope=pipe slope
D=pipe diameterD=pipe diameter
L=pipe lengthL=pipe length
γγ =specific weight of fluid=specific weight of fluid
ττ00=shear stress at the pipe wall=shear stress at the pipe wall

)(sin 0 ALV
dt
dDLALpA ρπταγ =−+



Transient flow through long pipesTransient flow through long pipes
Frictional force is replaced by Frictional force is replaced by γγhhffAA, and H, and H00==h+Lsinh+Lsin αα and and hhff
from Darcyfrom Darcy--weisbachweisbach friction equationfriction equation
The resulting equation yields:The resulting equation yields:

When the flow is fully established, When the flow is fully established, dV/dtdV/dt=0.=0.
The final velocity The final velocity VV00 will be such that  will be such that  

We use the above relationship to get the time for flow to We use the above relationship to get the time for flow to 
establishestablish
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Transient flow through long pipesTransient flow through long pipes

Change in pressure due to rapid flow changesChange in pressure due to rapid flow changes

When the flow changes are rapid, the fluid When the flow changes are rapid, the fluid 
compressibility is needed to taken into accountcompressibility is needed to taken into account

Changes are not instantaneous throughout the Changes are not instantaneous throughout the 
system, rather pressure waves move back and system, rather pressure waves move back and 
forth in the piping system.forth in the piping system.

Pipe walls to be rigid and the liquid to be slightly Pipe walls to be rigid and the liquid to be slightly 
compressible compressible 



Transient flows through long pipesTransient flows through long pipes
Assume that the flow velocity at the downstream Assume that the flow velocity at the downstream 
end is changed from end is changed from VV to to V+V+∆∆V,V, thereby changing thereby changing 
the pressure from the pressure from pp to to p+p+∆∆pp

The change in pressure will produce a pressure The change in pressure will produce a pressure 
wave that will propagate in the upstream  directionwave that will propagate in the upstream  direction

The speed of the wave be The speed of the wave be a  a  

The unsteady flow situation can be transformed into The unsteady flow situation can be transformed into 
steady flow by assuming the velocity reference steady flow by assuming the velocity reference 
system move with the pressure wave system move with the pressure wave 



Transient flows through long pipesTransient flows through long pipes
Using momentum equation with control volume approach to Using momentum equation with control volume approach to 
solve for solve for ∆∆pp
The system is now steady, the momentum equation now The system is now steady, the momentum equation now 
yieldyield

By simplifying and discarding terms of higher order, this By simplifying and discarding terms of higher order, this 
equation becomes equation becomes 

The general form of the equation for conservation of mass The general form of the equation for conservation of mass 
for onefor one--dimensional flows may be written asdimensional flows may be written as
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Transient flows through long pipesTransient flows through long pipes
For a steady flow first term on the right hand side is zero, theFor a steady flow first term on the right hand side is zero, then we obtainn we obtain

Simplifying this equation, We have Simplifying this equation, We have 

We may approximate We may approximate ((V+aV+a)) as a, because V<<aas a, because V<<a

Since                        we can write asSince                        we can write as

Note: change in pressure head due to an instantaneous change in Note: change in pressure head due to an instantaneous change in flow flow 
velocity is approximately 100 times the change in the flow velocvelocity is approximately 100 times the change in the flow velocityity
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Introduction to Numerical Introduction to Numerical 
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What is computational hydraulics?What is computational hydraulics?

It is one of the many fields of science in which the It is one of the many fields of science in which the 
application of computers gives rise to a new way application of computers gives rise to a new way 
of working, which is intermediate between purely of working, which is intermediate between purely 
theoretical and experimental.theoretical and experimental.

The hydraulics that is reformulated to suit digital The hydraulics that is reformulated to suit digital 
machine processes, is called computational machine processes, is called computational 
hydraulicshydraulics

It is concerned with simulation of the flow of It is concerned with simulation of the flow of 
water, together with its consequences, using water, together with its consequences, using 
numerical methods on computersnumerical methods on computers



What is computational hydraulics?What is computational hydraulics?

There is not a great deal of difference with There is not a great deal of difference with 
computational hydrodynamics or computational computational hydrodynamics or computational 
fluid dynamics, but these terms are too much fluid dynamics, but these terms are too much 
restricted to the fluid as such.restricted to the fluid as such.

It seems to be typical of practical problems in It seems to be typical of practical problems in 
hydraulics that they are rarely directed to the flow hydraulics that they are rarely directed to the flow 
by itself, but rather to some consequences of it, by itself, but rather to some consequences of it, 
such as forces on obstacles, transport of heat, such as forces on obstacles, transport of heat, 
sedimentation of a channel or decay of a pollutant.sedimentation of a channel or decay of a pollutant.



Why numerical computingWhy numerical computing

The higher mathematics can be treated by this method The higher mathematics can be treated by this method 
When there is no analytical solution, numerical analysis When there is no analytical solution, numerical analysis 
can deal such physical problemscan deal such physical problems
Example: Example: y = sin (x),y = sin (x), has no closed form solution.has no closed form solution.
The following integral gives the length of one arch of the The following integral gives the length of one arch of the 
above curveabove curve

Numerical analysis can compute the length of this curve by Numerical analysis can compute the length of this curve by 
standard methods that apply to essentially any integrandstandard methods that apply to essentially any integrand
Numerical computing helps in finding effective and efficient Numerical computing helps in finding effective and efficient 
approximations of functionsapproximations of functions
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Why Numerical computing?Why Numerical computing?

linearization of non linear equationslinearization of non linear equations
Solves for a large system of linear equationsSolves for a large system of linear equations
Deals the ordinary differential equations of any Deals the ordinary differential equations of any 
order and complexityorder and complexity
Numerical solution of Partial differential Numerical solution of Partial differential 
equations are of great importance in solving equations are of great importance in solving 
physical world problemsphysical world problems
Solution of initial and boundary value problems Solution of initial and boundary value problems 
and estimates the eigen values and and estimates the eigen values and 
eigenvectors.eigenvectors.
Fit curves to data by a variety of methodsFit curves to data by a variety of methods



Computer arithmeticComputer arithmetic
Numerical method is tedious and repetitive arithmetic, Numerical method is tedious and repetitive arithmetic, 
which is not possible to solve without the help of computer. which is not possible to solve without the help of computer. 
On the other hand Numerical analysis is an approximation, On the other hand Numerical analysis is an approximation, 
which leads towards some degree of errorswhich leads towards some degree of errors
The errors caused by Numerical treatment are defined in The errors caused by Numerical treatment are defined in 
terms of following: terms of following: 

Truncation error Truncation error : the e: the exx can be approximated through can be approximated through 
cubic polynomial as shown below cubic polynomial as shown below 

eexx is an infinitely long series as given below and the error is is an infinitely long series as given below and the error is 
due to the truncation of the series
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Computer arithmeticComputer arithmetic
•• RoundRound--off error off error : digital computers always use floating point : digital computers always use floating point 

numbers of fixed word length; the true values are not expressed numbers of fixed word length; the true values are not expressed 
exactly by such representations. Such error due to this computerexactly by such representations. Such error due to this computer
imperfection is roundimperfection is round--off error.off error.

•• Error in original data Error in original data : any physical problem is represented : any physical problem is represented 
through mathematical expressions which have some coefficients ththrough mathematical expressions which have some coefficients that at 
are imperfectly known.are imperfectly known.

•• BlundersBlunders : computing machines make mistakes very infrequently, : computing machines make mistakes very infrequently, 
but since humans are involved in programming, operation, input but since humans are involved in programming, operation, input 
preparation, and output interpretation, blunders or gross errorspreparation, and output interpretation, blunders or gross errors do do 
occur more frequently than we like to admit.occur more frequently than we like to admit.

•• Propagated errorPropagated error : propagated error is the error caused in the : propagated error is the error caused in the 
succeeding steps due to the occurrence of error in the earlier ssucceeding steps due to the occurrence of error in the earlier step, tep, 
such error is in addition to the local errors. If the errors magsuch error is in addition to the local errors. If the errors magnified nified 
continuously as the method continues, eventually they will continuously as the method continues, eventually they will 
overshadow the true value, destroying its validity, we call suchovershadow the true value, destroying its validity, we call such a a 
method method unstableunstable. For . For stablestable method (which is desired)method (which is desired)–– errors made errors made 
at early points die out as the method continues.at early points die out as the method continues.



Parallel processingParallel processing

It is a computing method that can only be It is a computing method that can only be 
performed on systems containing two or more performed on systems containing two or more 
processors operating simultaneously. Parallel processors operating simultaneously. Parallel 
processing uses several processors, all working on processing uses several processors, all working on 
different aspects of the same program at the same different aspects of the same program at the same 
time, in order to share the computational load time, in order to share the computational load 

For extremely large scale problems (short term For extremely large scale problems (short term 
weather forecasting, simulation to predict weather forecasting, simulation to predict 
aerodynamics performance, image processing, aerodynamics performance, image processing, 
artificial intelligence, multiphase flow in ground artificial intelligence, multiphase flow in ground 
water regime etc), this speeds up the computation water regime etc), this speeds up the computation 
adequately.adequately.



Parallel processingParallel processing
Most Most computerscomputers have just one CPU, but have just one CPU, but 
some models have several. There are even some models have several. There are even 
computerscomputers with thousands of CPUs. With with thousands of CPUs. With 
singlesingle--CPU computers, it is possible to CPU computers, it is possible to 
perform parallel processing by connecting perform parallel processing by connecting 
the computers in a the computers in a networknetwork. However, this . However, this 
type of parallel processing requires very type of parallel processing requires very 
sophisticated sophisticated softwaresoftware called called distributed distributed 
processingprocessing software. software. 
Note that parallel processing differs from Note that parallel processing differs from 
multitaskingmultitasking, in which a single CPU executes , in which a single CPU executes 
several programs at once. several programs at once. 



Parallel processingParallel processing

Types of parallel processing job: In general there are three Types of parallel processing job: In general there are three 
types of parallel computing jobs types of parallel computing jobs 
Parallel taskParallel task
Parametric sweepParametric sweep
Task flowTask flow

Parallel taskParallel task
A parallel task can take a number of forms, depending on the 

application and the software that supports it. For a 
Message Passing Interface (MPI) application, a parallel task 
usually consists of a single executable running concurrently 
on multiple processors, with communication between the 
processes. 



Parallel processingParallel processing

Parametric SweepParametric Sweep
A parametric sweep consists of multiple instances of the 

same program, usually serial, running concurrently, with 
input supplied by an input file and output directed to an 
output file. There is no communication or interdependency 
among the tasks. Typically, the parallelization is performed 
exclusively (or almost exclusively) by the scheduler, based 
on the fact that all the tasks are in the same job.

Task flowTask flow
A task flow job is one in which a set of unlike tasks are 
executed in a prescribed order, usually because one task 
depends on the result of another task.



Introduction to numerical analysisIntroduction to numerical analysis

Any physical problem in hydraulics is represented Any physical problem in hydraulics is represented 
through a set of differential equations. through a set of differential equations. 

These equations describe the very fundamental These equations describe the very fundamental 
laws of conservation of mass and momentum in laws of conservation of mass and momentum in 
terms of the partial derivatives of dependent terms of the partial derivatives of dependent 
variables.variables.

For any practical purpose we need to know the For any practical purpose we need to know the 
values of these variables instead of the values of values of these variables instead of the values of 
their derivatives.their derivatives.



Introduction to numerical analysisIntroduction to numerical analysis

These variables are obtained from integrating those These variables are obtained from integrating those 
ODEs/PDEsODEs/PDEs..

Because of the presence of nonlinear terms a closed form Because of the presence of nonlinear terms a closed form 
solution of these equations is not obtainable, except for solution of these equations is not obtainable, except for 
some very simplified casessome very simplified cases

Therefore they need to be analyzed  numerically, for which Therefore they need to be analyzed  numerically, for which 
several numerical methods are availableseveral numerical methods are available

Generally the Generally the PDEsPDEs we deal in the computational hydraulics we deal in the computational hydraulics 
is categorized as elliptic, parabolic and hyperbolic equationsis categorized as elliptic, parabolic and hyperbolic equations



Introduction to numerical analysisIntroduction to numerical analysis

The following methods have been used for The following methods have been used for 
numerical integration of the numerical integration of the ODEsODEs

Euler methodEuler method
Modified Euler methodModified Euler method
RungeRunge--KuttaKutta methodmethod
PredictorPredictor--Corrector methodCorrector method



Introduction to numerical analysisIntroduction to numerical analysis

The following methods have been used for The following methods have been used for 
numerical integration of the numerical integration of the PDEsPDEs

Characteristics methodCharacteristics method
Finite difference methodFinite difference method
Finite element methodFinite element method
Finite volume methodFinite volume method
Spectral methodSpectral method
Boundary element methodBoundary element method



Problems needing numerical treatmentProblems needing numerical treatment

Computation of normal depthComputation of normal depth
Computation of waterComputation of water--surface profilessurface profiles
Contaminant transport in streams through Contaminant transport in streams through 
an advectionan advection--dispersion processdispersion process
Steady state Ground water flow systemSteady state Ground water flow system
Unsteady state ground water flow systemUnsteady state ground water flow system
Flows in pipe networkFlows in pipe network
Computation of Computation of kinematickinematic and dynamic  and dynamic  
wave equationswave equations



Solution of System of Solution of System of 
Linear and Non Linear Linear and Non Linear 

EquationsEquations
Module 4Module 4

(4 lectures) (4 lectures) 



Contents Contents 
Set of linear equationsSet of linear equations
Matrix notationMatrix notation
Method of Method of 
solution:direct and solution:direct and 
iterativeiterative
Pathology of linear Pathology of linear 
systemssystems
Solution of nonlinear Solution of nonlinear 
systems :systems :PicardPicard and and 
Newton techniques Newton techniques 



Sets of linear equationsSets of linear equations
Real world problems are presented through a set of Real world problems are presented through a set of 
simultaneous equationssimultaneous equations

Solving a set of simultaneous linear equations needs Solving a set of simultaneous linear equations needs 
several efficient techniquesseveral efficient techniques
We need to represent the set of equations through matrix We need to represent the set of equations through matrix 
algebraalgebra
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Matrix notationMatrix notation

MatrixMatrix : a rectangular array (n x m) of numbers: a rectangular array (n x m) of numbers

Matrix Addition:Matrix Addition:
C = A+B = [C = A+B = [aaijij+ + bbijij] = [] = [ccijij],  where ],  where 

Matrix Multiplication:Matrix Multiplication:
AB = C = [AB = C = [aaijij][b][bijij] = [] = [ccijij], where ], where 
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Matrix notation contMatrix notation cont……

*AB*AB ≠≠ BABA
kAkA = C= C, where, where

A general relation for Ax = b isA general relation for Ax = b is
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Matrix notation contMatrix notation cont……
Matrix multiplication gives set of linear equations as:Matrix multiplication gives set of linear equations as:
aa1111xx11+ a+ a1212xx22++……++ aa1n1nxxnn = b= b11, , 
aa2121xx11+ a+ a2222xx22++……++ aa2n2nxxnn = b= b22,,
.. .. ..
.. .. ..
.. .. ..
aan1n1xx11+ a+ an2n2xx22++……++ aannnnxxnn = = bbnn,,

In simple matrix notation we can write:In simple matrix notation we can write:
Ax = b, whereAx = b, where
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Matrix notation contMatrix notation cont……

Diagonal matrix ( only diagonal elements of a Diagonal matrix ( only diagonal elements of a 
square matrix are nonzero and all offsquare matrix are nonzero and all off--diagonal diagonal 
elements are zero)elements are zero)
Identity matrix ( diagonal matrix with all Identity matrix ( diagonal matrix with all 
diagonal elements unity and all offdiagonal elements unity and all off--diagonal diagonal 
elements are zero)elements are zero)
The order 4 identity matrix is shown belowThe order 4 identity matrix is shown below
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Matrix notation contMatrix notation cont……
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00Lower triangular matrixLower triangular matrix: : 
if all the elements above the if all the elements above the 
diagonal are zerodiagonal are zero

Upper triangular matrixUpper triangular matrix: : 
if all the elements below the if all the elements below the 
diagonal are zerodiagonal are zero

TriTri--diagonal matrixdiagonal matrix: if : if 
nonzero elements only on nonzero elements only on 
the diagonal and in the the diagonal and in the 
position adjacent to the position adjacent to the 
diagonal
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Matrix notation contMatrix notation cont……

Examples Examples Transpose of a matrix A Transpose of a matrix A 
(A(ATT): Rows are written as ): Rows are written as 
columns or columns or visvis a versa.a versa.

Determinant of a square Determinant of a square 
matrix A is given by: ⎥
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Matrix notation contMatrix notation cont……

Characteristic polynomial Characteristic polynomial ppAA((λλ)) and and eigenvalueseigenvalues
λλ of a matrix:of a matrix:
Note: Note: eigenvalueseigenvalues are most important in applied are most important in applied 
mathematicsmathematics
For a square matrix A: we define For a square matrix A: we define ppAA((λλ) as) as

ppAA((λλ) = ) = ⏐⏐A A -- λλII⏐⏐ = = det(Adet(A -- λλI).I).
If we set If we set ppAA((λλ) = 0, solve for the roots, we get ) = 0, solve for the roots, we get 
eigenvalueseigenvalues of Aof A
If A is n x n, then If A is n x n, then ppAA((λλ) is polynomial of degree ) is polynomial of degree 
nn
EigenvectorEigenvector w is a nonzero vector such that w is a nonzero vector such that 
Aw= Aw= λλww, i.e., , i.e., (A (A -- λλI)w=0I)w=0



Methods of solution of set of equationsMethods of solution of set of equations
Direct methods are those that provide the solution in a finite and pre-

determinable number of operations using an algorithm that is often 
relatively complicated. These methods are useful in linear system of 
equations.

Direct methods of solutionDirect methods of solution
Gaussian elimination methodGaussian elimination method

Step1Step1: Using Matrix notation we can represent the set of equations as: Using Matrix notation we can represent the set of equations as
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Methods of solution contMethods of solution cont……
Step2: The Augmented coefficient matrix with the rightStep2: The Augmented coefficient matrix with the right--hand side hand side 
vectorvector

Step3: Transform the augmented matrix into Upper triangular formStep3: Transform the augmented matrix into Upper triangular form

Step4:Step4: The array in the upper triangular matrix represents the The array in the upper triangular matrix represents the 
equations which after Backequations which after Back--substitution gives the solution the values substitution gives the solution the values 
of xof x11,x,x22,x,x33
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Method of solution contMethod of solution cont……

During the During the triangularizationtriangularization step, if a zero is step, if a zero is 
encountered on the diagonal, we can not use encountered on the diagonal, we can not use 
that row to eliminate coefficients below that that row to eliminate coefficients below that 
zero element, in that case we perform the zero element, in that case we perform the 
elementary row operationselementary row operations
we begin with the previous augmented we begin with the previous augmented 

matrixmatrix
in a large set of equations multiplications in a large set of equations multiplications 

will give very large and unwieldy numbers to will give very large and unwieldy numbers to 
overflow the computers register memory, we overflow the computers register memory, we 
will therefore eliminate awill therefore eliminate ai1i1/a/a11 11 times the first times the first 
equation from the i equation from the i thth equationequation



Method of solution contMethod of solution cont……
to guard against the zero in diagonal elements, to guard against the zero in diagonal elements, 
rearrange the equations so as to put the rearrange the equations so as to put the 
coefficient of largest magnitude on the diagonal at coefficient of largest magnitude on the diagonal at 
each step. This is called each step. This is called PivotingPivoting. The diagonal . The diagonal 
elements resulted are called pivot elements. elements resulted are called pivot elements. 
Partial pivoting , which places a coefficient of Partial pivoting , which places a coefficient of 
larger magnitude on the diagonal by row larger magnitude on the diagonal by row 
interchanges only, will guarantee a nonzero divisor interchanges only, will guarantee a nonzero divisor 
if there is a solution of the set of equations.if there is a solution of the set of equations.

The roundThe round--off error (chopping as well as rounding) off error (chopping as well as rounding) 
may cause large effects. In certain cases the may cause large effects. In certain cases the 
coefficients sensitive to round off error, are called coefficients sensitive to round off error, are called 
illill--conditioned matrixconditioned matrix..



Method of solution contMethod of solution cont……
LU decompositionLU decomposition of Aof A

if the coefficient matrix A can be decomposed if the coefficient matrix A can be decomposed 
into lower and upper triangular matrix then we into lower and upper triangular matrix then we 
write: A=L*U, usually we get L*U=Awrite: A=L*U, usually we get L*U=A’’, where A, where A’’ is is 
the permutation of the rows of A due to row the permutation of the rows of A due to row 
interchange from pivotinginterchange from pivoting
Now we get Now we get det(Ldet(L*U)= *U)= det(Ldet(L)*)*det(Udet(U)=)=det(Udet(U))
Then Then det(Adet(A)=)=det(Udet(U))

GaussGauss--Jordan methodJordan method
In this method, the elements above the diagonal In this method, the elements above the diagonal 
are made zero at the same time zeros are are made zero at the same time zeros are 
created below the diagonalcreated below the diagonal



Method of solution contMethod of solution cont……

Usually diagonal elements are made unity, Usually diagonal elements are made unity, 
at the same time reduction is performed, at the same time reduction is performed, 
this transforms the coefficient matrix into this transforms the coefficient matrix into 
an identity matrix and the column of the an identity matrix and the column of the 
right hand side transforms to solution right hand side transforms to solution 
vectorvector

Pivoting is normally employed to preserve Pivoting is normally employed to preserve 
the arithmetic accuracythe arithmetic accuracy



Method of solution contMethod of solution cont……

Example:GaussExample:Gauss--Jordan methodJordan method
Consider the augmented matrix asConsider the augmented matrix as

Step1: Interchanging rows one and four, dividing the first Step1: Interchanging rows one and four, dividing the first 
row by 6, and reducing the first column gives
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Method of solution contMethod of solution cont……

Step2: Interchanging rows 2 and 3, dividing the Step2: Interchanging rows 2 and 3, dividing the 
22ndnd row by row by ––3.6667, and reducing the second 3.6667, and reducing the second 
column givescolumn gives

Step3: We divide the 3Step3: We divide the 3rdrd row by 15.000 and row by 15.000 and 
make the other elements in the third column make the other elements in the third column 
into zeros
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Method of solution contMethod of solution cont……
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Step4: now divide the 4Step4: now divide the 4thth row by 1.5599 and create zeros row by 1.5599 and create zeros 
above the diagonal in the fourth columnabove the diagonal in the fourth column
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Method of solution contMethod of solution cont……

Other direct methods of solutionOther direct methods of solution
CholeskyCholesky reductionreduction (Doolittle(Doolittle’’s method)s method)

Transforms the coefficient matrix,A, into the Transforms the coefficient matrix,A, into the 
product of two matrices, L and U, where U has product of two matrices, L and U, where U has 
ones on its main diagonal.Then ones on its main diagonal.Then LU=ALU=A can be can be 
written aswritten as
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Method of solution contMethod of solution cont……

The general formula for getting the The general formula for getting the 
elements of L and U corresponding to the elements of L and U corresponding to the 
coefficient matrix for n simultaneous coefficient matrix for n simultaneous 
equation can be written  asequation can be written  as
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Method of solution contMethod of solution cont……
Iterative methods consists of repeated application 

of an algorithm that is usually relatively simple
Iterative method of solutionIterative method of solution

coefficient matrix is sparse matrix ( has many coefficient matrix is sparse matrix ( has many 
zeros), this method is rapid and preferred over zeros), this method is rapid and preferred over 
direct methods, direct methods, 

applicable to sets of nonlinear equationsapplicable to sets of nonlinear equations

Reduces computer memory requirementsReduces computer memory requirements

Reduces roundReduces round--off error in the solutions off error in the solutions 
computed by direct methodscomputed by direct methods



Method of solution contMethod of solution cont……

Two types of iterative methods: These methods are Two types of iterative methods: These methods are 
mainly useful in nonlinear system of equations.mainly useful in nonlinear system of equations.

Iterative MethodsIterative Methods

Point iterative methodPoint iterative method Block iterative methodBlock iterative method

JacobiJacobi methodmethod GaussGauss--SiedelSiedel MethodMethod Successive overSuccessive over--relaxation methodrelaxation method



Methods of solution contMethods of solution cont……
JacobiJacobi methodmethod

Rearrange the set of equations to solve for the variable Rearrange the set of equations to solve for the variable 
with the largest coefficientwith the largest coefficient

Example:Example:

Some initial guess to the values of the variablesSome initial guess to the values of the variables
Get the new set of values of the variables
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Methods of solution contMethods of solution cont……

JacobiJacobi method contmethod cont……
The new set of values are substituted in the right The new set of values are substituted in the right 
hand sides of the set of equations to get the next hand sides of the set of equations to get the next 
approximation and the process is repeated till the approximation and the process is repeated till the 
convergence is reachedconvergence is reached

Thus the set of equations can be written asThus the set of equations can be written as
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Methods of solution contMethods of solution cont……
GaussGauss--SiedelSiedel methodmethod

Rearrange the equations such that each diagonal entry is Rearrange the equations such that each diagonal entry is 
larger in magnitude than the sum of the magnitudes of larger in magnitude than the sum of the magnitudes of 
the other coefficients in that row (the other coefficients in that row (diagonally dominantdiagonally dominant))

Make initial guess of all unknowns Make initial guess of all unknowns 

Then Solve each equation for unknown, the iteration will Then Solve each equation for unknown, the iteration will 
converge for any starting guess valuesconverge for any starting guess values

Repeat the process till the convergence is reachedRepeat the process till the convergence is reached



Methods of solution contMethods of solution cont……

GaussGauss--Siedel method contSiedel method cont……
For any equation For any equation Ax=cAx=c we can write we can write 

In this method the latest value of the In this method the latest value of the xxii are are 
used in the calculation of further used in the calculation of further xxi
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Methods of solution contMethods of solution cont……
Successive overSuccessive over--relaxation methodrelaxation method

This method rate of convergence can be This method rate of convergence can be 
improved by providing acceleratorsimproved by providing accelerators

For any equation For any equation Ax=cAx=c we can writewe can write
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Methods of solution contMethods of solution cont……

Successive overSuccessive over--relaxation method contrelaxation method cont……
Where        determined using standard Where        determined using standard 
GaussGauss--Siedel algorithmSiedel algorithm

k=iteration level, k=iteration level, 
w=acceleration parameter (>1)w=acceleration parameter (>1)

Another formAnother form
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Methods of solution contMethods of solution cont……

Successive overSuccessive over--relaxation method cont..relaxation method cont..
Where 1<w<2:     SOR methodWhere 1<w<2:     SOR method

0<w<1:     weighted average Gauss 0<w<1:     weighted average Gauss 
Siedel method Siedel method 
Previous value may be needed in nonlinear Previous value may be needed in nonlinear 
problemsproblems
It is difficult to estimate wIt is difficult to estimate w



Matrix InversionMatrix Inversion
Sometimes the problem of solving the linear Sometimes the problem of solving the linear 
algebraic system is loosely referred to as matrix algebraic system is loosely referred to as matrix 
inversioninversion

Matrix inversion means, given a square matrix [A] Matrix inversion means, given a square matrix [A] 
with nonzero determinant, finding a second with nonzero determinant, finding a second 
matrix [Amatrix [A--11] having the property that [A] having the property that [A--11][A]=[I], ][A]=[I], 
[I] is the identity matrix[I] is the identity matrix

[[A]xA]x=c=c
x= [Ax= [A--11]c]c
[A[A--11][A]=[I]=[A][A][A]=[I]=[A][A--11]]



Pathology of linear systemsPathology of linear systems
Any physical problem modeled by a set of linear Any physical problem modeled by a set of linear 
equationsequations

RoundRound--off errors give imperfect prediction of off errors give imperfect prediction of 
physical quantities, but assures the existence of physical quantities, but assures the existence of 
solutionsolution

Arbitrary set of equations may not assure unique Arbitrary set of equations may not assure unique 
solution, such situation termed as solution, such situation termed as ““pathologicalpathological””

Number of related equations less than the number Number of related equations less than the number 
of unknowns, no unique solution, otherwise unique of unknowns, no unique solution, otherwise unique 
solutionsolution



Pathology of linear systems contPathology of linear systems cont……
Redundant equations (infinity of values of Redundant equations (infinity of values of 

unknowns)unknowns)
x + y = 3,x + y = 3, 2x + 2y = 62x + 2y = 6

Inconsistent equations (no solution) Inconsistent equations (no solution) 
x + y = 3,x + y = 3, 2x + 2y = 72x + 2y = 7

Singular matrixSingular matrix (n x n system, no unique solution)(n x n system, no unique solution)
Nonsingular matrixNonsingular matrix, coefficient matrix can be , coefficient matrix can be 

triangularizedtriangularized without having zeros on the diagonal without having zeros on the diagonal 

Checking inconsistency, redundancy and singularity of Checking inconsistency, redundancy and singularity of 
set of equations:set of equations:
Rank of coefficient matrix (rank less than n gives Rank of coefficient matrix (rank less than n gives 

inconsistent, redundant and singular system)inconsistent, redundant and singular system)



Solution of nonlinear systemsSolution of nonlinear systems
Most of the real world systems are nonlinear and the Most of the real world systems are nonlinear and the 
representative system of algebraic equation are also representative system of algebraic equation are also 
nonlinearnonlinear
Theoretically many efficient solution methods are available Theoretically many efficient solution methods are available 
for linear equations, consequently the efforts are put to for linear equations, consequently the efforts are put to 
first transform any nonlinear system into linear systemfirst transform any nonlinear system into linear system
There are various methods available for linearizationThere are various methods available for linearization

Method of iterationMethod of iteration
Nonlinear system, exampleNonlinear system, example::
Assume Assume x=f(x,y),  y=g(x,y)x=f(x,y),  y=g(x,y)
Initial guess for both x and yInitial guess for both x and y
Unknowns on the left hand side are computed   iteratively. Unknowns on the left hand side are computed   iteratively. 
Most recently computed values are used in evaluating right Most recently computed values are used in evaluating right 
hand side

1;422 =+=+ yeyx x

hand side



Solution of nonlinear systemsSolution of nonlinear systems

Sufficient condition for convergence of this Sufficient condition for convergence of this 
procedure isprocedure is

In an interval about the root that includes the initial In an interval about the root that includes the initial 
guessguess
This method depends on the arrangement of x and This method depends on the arrangement of x and 
y i.e how y i.e how x=f(x,y),x=f(x,y), and and y=g(x,y)y=g(x,y) are writtenare written
Depending on this arrangement, the method may Depending on this arrangement, the method may 
converge or diverge
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Solution of nonlinear systemsSolution of nonlinear systems
The method of iteration can be generalized to n The method of iteration can be generalized to n 
nonlinear equations with n unknowns. In this case, nonlinear equations with n unknowns. In this case, 
the equations are arranged as the equations are arranged as 

A sufficient condition for the iterative process to A sufficient condition for the iterative process to 
converge is converge is 

),...,,(

.

.

.

),...,,(

),...,,(

21

2122

2111

nnn

n

n

xxxfx

xxxfx

xxxfx

=

=

=

,1
1

<∑
∂
∂

=

n

j j

i
x
f



Newton technique of linearization Newton technique of linearization 
Linear approximation of the function using a tangent to the Linear approximation of the function using a tangent to the 
curvecurve
Initial estimate Initial estimate xx00 not too far from the rootnot too far from the root
Move along the tangent to its intersection with xMove along the tangent to its intersection with x--axis, and axis, and 
take that as the next approximationtake that as the next approximation
Continue till xContinue till x--values are sufficiently close or function value values are sufficiently close or function value 
is sufficiently near to zerois sufficiently near to zero
NewtonNewton’’s algorithm is widely used because, at least in the s algorithm is widely used because, at least in the 
near neighborhood of a root, it is more rapidly convergent near neighborhood of a root, it is more rapidly convergent 
than any of the other methods.than any of the other methods.
Method is Method is quadraticallyquadratically convergent, error of each step convergent, error of each step 
approaches a constant K times the square of the error of approaches a constant K times the square of the error of 
the  previous step.the  previous step.



Newton technique of linearization Newton technique of linearization 
The number of decimal places of accuracy doubles at each The number of decimal places of accuracy doubles at each 
iterationiteration
Problem with this method is that of finding of Problem with this method is that of finding of ff’’(x(x).).
First derivative First derivative ff’’(x(x) can be written as) can be written as

We continue the calculation by computingWe continue the calculation by computing

In more general form,
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NewtonNewton--RaphsonRaphson methodmethod
F(x,y)=0, G(x,y)=0F(x,y)=0, G(x,y)=0
Expand the equation, using Taylor series about Expand the equation, using Taylor series about xxnn andand yynn

Solving for h and kSolving for h and k

Assume initial guess for Assume initial guess for xxnn,y,ynn
Compute functions, derivatives and Compute functions, derivatives and xxnn,y,ynn, h and k, Repeat procedure
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NewtonNewton--RaphsonRaphson methodmethod
For n nonlinear equationFor n nonlinear equation
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PicardPicard’’ss technique of linearizationtechnique of linearization

Nonlinear equation is linearized through:Nonlinear equation is linearized through:
PicardPicard’’ss technique of linearizationtechnique of linearization
Newton technique of linearizationNewton technique of linearization
The The Picard'sPicard's method is one of the most commonly method is one of the most commonly 
used scheme to solve the set of nonlinear used scheme to solve the set of nonlinear 
differential equations. differential equations. 
The The Picard'sPicard's method usually provide rapid method usually provide rapid 
convergence.convergence.
A distinct advantage of the A distinct advantage of the Picard'sPicard's scheme is the scheme is the 
simplicity and less computational effort per iteration simplicity and less computational effort per iteration 
than more sophisticated methods like Newtonthan more sophisticated methods like Newton--
RaphsonRaphson method.method.



PicardPicard’’ss technique of linearizationtechnique of linearization

The general (parabolic type) equation for flow in a The general (parabolic type) equation for flow in a 
two dimensional, anisotropic nontwo dimensional, anisotropic non--homogeneous homogeneous 
aquifer system is given by the following equationaquifer system is given by the following equation

Using the finite difference approximation at a Using the finite difference approximation at a 
typical interior node, the above ground water typical interior node, the above ground water 
equation reduces to 
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PicardPicard’’ss technique of linearizationtechnique of linearization

WhereWhere
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PicardPicard’’ss technique of linearizationtechnique of linearization
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Solution of ManningSolution of Manning’’s equation by Newtons equation by Newton’’s s 
techniquetechnique

Channel flow is given by the following equationChannel flow is given by the following equation

There is no general analytical solution to ManningThere is no general analytical solution to Manning’’s equation s equation 
for determining the flow depth, given the flow rate as the for determining the flow depth, given the flow rate as the 
flow area A and hydraulic radius R may be complicated flow area A and hydraulic radius R may be complicated 
functions of the flow depth itself..functions of the flow depth itself..
NewtonNewton’’s technique can be iteratively used to give the s technique can be iteratively used to give the 
numerical solution numerical solution 
Assume at iteration j the flow depth Assume at iteration j the flow depth yyjj is selected and the is selected and the 
flow rate flow rate QQjj is computed from above equation, using the is computed from above equation, using the 
area and hydraulic radius corresponding to  area and hydraulic radius corresponding to  yyjj
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ManningManning’’s equation by Newtons equation by Newton’’s techniques technique

This This QQjj is compared with the actual flow Qis compared with the actual flow Q
The selection of y is done, so that the error The selection of y is done, so that the error 

Is negligibly smallIs negligibly small
The gradient of f The gradient of f w.r.tw.r.t y isy is

Q is a constant
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ManningManning’’s equation by Newtons equation by Newton’’s techniques technique

Assuming ManningAssuming Manning’’s n constants n constant

The subscript j outside the parenthesis indicates that the conteThe subscript j outside the parenthesis indicates that the contents are nts are 
evaluated for y=evaluated for y=yyj
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ManningManning’’s equation by Newtons equation by Newton’’s techniques technique

Now the NewtonNow the Newton’’s method is as followss method is as follows

Iterations are continued until there is no significant change Iterations are continued until there is no significant change 
in y, and this will happen when the error f(y) is very close to in y, and this will happen when the error f(y) is very close to 
zero
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ManningManning’’s equation by Newtons equation by Newton’’s techniques technique

NewtonNewton’’s method equation for solving Mannings method equation for solving Manning’’s equation:s equation:

For a rectangular channel A=For a rectangular channel A=BBwwyy, R=B, R=Bwwy/(By/(Bww+2y) where +2y) where BBww
is the channel width, after the manipulation, the above is the channel width, after the manipulation, the above 
equation can be written as 
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AssignmentsAssignments
1. Solve the following  set of equations by Gauss elimination: 1. Solve the following  set of equations by Gauss elimination: 

Is row interchange necessary for the above equations?Is row interchange necessary for the above equations?

2. Solve the system2. Solve the system

a. Using the Gaussa. Using the Gauss--JacobiJacobi methodmethod
b. Using the Gaussb. Using the Gauss--SiedelSiedel method. How much faster is the method. How much faster is the 

convergence than in part (a).?convergence than in part (a).?
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AssignmentsAssignments
3. Solve the following system by Newton3. Solve the following system by Newton’’s method s method 

to obtain the solution near (2.5,0.2,1.6) to obtain the solution near (2.5,0.2,1.6) 

4. Beginning with (0,0,0), use relaxation to solve 4. Beginning with (0,0,0), use relaxation to solve 
the system the system 
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AssignmentsAssignments
5. Find the roots of the equation to 4 significant 5. Find the roots of the equation to 4 significant 

digits using Newtondigits using Newton--RaphsonRaphson methodmethod

6. Solve the following simultaneous nonlinear 6. Solve the following simultaneous nonlinear 
equations using Newtonequations using Newton--RaphsonRaphson method. Use method. Use 
starting valuesstarting values
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Numerical Differentiation Numerical Differentiation 
and Numerical Integrationand Numerical Integration

Module 5Module 5
3 lectures3 lectures



ContentsContents
Derivatives and integralsDerivatives and integrals

Integration formulasIntegration formulas

Trapezoidal ruleTrapezoidal rule

SimpsonSimpson’’s rules rule

NewtonNewton’’s Coats formulas Coats formula

GaussianGaussian--QuadratureQuadrature

Multiple integralsMultiple integrals



Derivatives Derivatives 
Derivatives from difference tablesDerivatives from difference tables

We use the divided difference table to estimate values for We use the divided difference table to estimate values for 
derivatives. Interpolating polynomial of degree n that fits at derivatives. Interpolating polynomial of degree n that fits at 
points ppoints p00,p,p11,,……,,ppnn in terms of divided differences,in terms of divided differences,

Now we should get a polynomial that approximates the Now we should get a polynomial that approximates the 
derivative,fderivative,f’’(x), by differentiating it
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Derivatives continuedDerivatives continued

To get the error term for the above approximation, we To get the error term for the above approximation, we 
have to differentiate the error term for have to differentiate the error term for PPnn(x(x), the error term ), the error term 
for for PPnn(x(x):):

Error of the approximation to fError of the approximation to f’’(x), when x=x(x), when x=xii, is, is

ξξ in [x,xin [x,x00,x,xnn].].

Error is not zero even when x is a tabulated value, in fact Error is not zero even when x is a tabulated value, in fact 
the error of the derivative is less at some xthe error of the derivative is less at some x--values between values between 
the pointsthe points
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Derivatives continuedDerivatives continued
Evenly spaced dataEvenly spaced data

When the data are evenly spaced, we can use a table of When the data are evenly spaced, we can use a table of 
function differences to construct the interpolating function differences to construct the interpolating 
polynomial. polynomial. 

We use in terms of:We use in terms of:

ξξ in [x,xin [x,x00,x,xnn].].
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Derivatives continuedDerivatives continued

The derivative of The derivative of PPnn(s(s) should approximate ) should approximate ff’’(x)(x)

Where Where 

When x=xWhen x=xii, s=0                                     , s=0                                     ξξ in [in [xx11,,……, , xxnn].].
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Derivatives continuedDerivatives continued
Simpler formulasSimpler formulas
Forward difference approximationForward difference approximation

For an estimate of For an estimate of ff’’(x(xii), we get), we get

With one term, linearly interpolating, using a polynomial of With one term, linearly interpolating, using a polynomial of 
degree 1, we have (error is O(h))degree 1, we have (error is O(h))

With two terms, using a polynomial of degree 2, we have With two terms, using a polynomial of degree 2, we have 
(error is O(h(error is O(h22))
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Derivatives contDerivatives cont……
Central difference approximationCentral difference approximation

Assume we use a second degree polynomial that matches Assume we use a second degree polynomial that matches 
the difference table at xthe difference table at xii,x,xi+1i+1 and xand xi+2i+2 but evaluate it for but evaluate it for 
ff’’(x(xi+1i+1), using s=1, then), using s=1, then

Or in terms of the f Or in terms of the f -- values we can writevalues we can write
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Derivatives contDerivatives cont……

HigherHigher--Order DerivativesOrder Derivatives
We can develop formulas for derivatives of higher order We can develop formulas for derivatives of higher order 
based on evenly spaced databased on evenly spaced data
Difference operator:Difference operator:
Stepping operator   :Stepping operator   :
Or                           :Or                           :
Relation between E and Relation between E and ∆∆: E=1+ : E=1+ ∆∆
Differentiation operator:Differentiation operator:
Let us start with                      where  Let us start with                      where  
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Derivatives contDerivatives cont……

If s=0, we get If s=0, we get 

By expanding for ln(1+By expanding for ln(1+∆∆), we get ), we get ff’’ii and fand f””ii

Divided differencesDivided differences
CentralCentral--difference formuladifference formula
Extrapolation techniquesExtrapolation techniques
SecondSecond--derivative computationsderivative computations
Richardson extrapolations
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Integration formulasIntegration formulas
The strategy for developing integration formula is The strategy for developing integration formula is 
similar to that for numerical differentiationsimilar to that for numerical differentiation
Polynomial is passed through the points defined by Polynomial is passed through the points defined by 
the functionthe function
Then integrate this polynomial approximation to the Then integrate this polynomial approximation to the 
function.function.
This allows to integrate a function at known valuesThis allows to integrate a function at known values

NewtonNewton--Cotes integrationCotes integration

The polynomial approximation of f(x) leads to an error The polynomial approximation of f(x) leads to an error 
given as:given as:
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NewtonNewton--Cotes integration formulasCotes integration formulas

To develop the NewtonTo develop the Newton--Cotes formulas, change the Cotes formulas, change the 
variable of integration from x to s. Also variable of integration from x to s. Also 
For any f(x), assume a polynomial For any f(x), assume a polynomial PPnn(x(xss) of degree 1 i.e ) of degree 1 i.e 
n=1n=1
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NewtonNewton--Cotes integration formula Cotes integration formula 
cont...cont...

Error in the above integration can be given asError in the above integration can be given as

Higher degree leads complexity
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NewtonNewton--Cotes integration formula Cotes integration formula 
cont...cont...

The basic NewtonThe basic Newton--Cotes formula for n=1,2,3 i.e for Cotes formula for n=1,2,3 i.e for 
linear, quadratic and cubic polynomial linear, quadratic and cubic polynomial 
approximations respectively are given below:approximations respectively are given below:
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Trapezoidal and SimpsonTrapezoidal and Simpson’’s rules rule

Trapezoidal ruleTrapezoidal rule--a composite formulaa composite formula
Approximating Approximating f(x)f(x) on on (x(x00,x,x11)) by a straight lineby a straight line

Romberg integrationRomberg integration
Improve accuracy of trapezoidal rule Improve accuracy of trapezoidal rule 

SimpsonSimpson’’s rules rule
NewtonNewton--Cotes formulas based on quadratic and Cotes formulas based on quadratic and 
cubic interpolating polynomials are Simpsoncubic interpolating polynomials are Simpson’’s ruless rules
QuadraticQuadratic-- SimpsonSimpson’’s    rules    rule
CubicCubic-- SimpsonSimpson’’s    rules    rule

3
1
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3



Trapezoidal and SimpsonTrapezoidal and Simpson’’s rule conts rule cont……

Trapezoidal ruleTrapezoidal rule--a composite formulaa composite formula
The first of the NewtonThe first of the Newton--Cotes formulas, based on Cotes formulas, based on 
approximating approximating f(x)f(x) on on (x(x00,x,x11)) by a straight line, is by a straight line, is 
trapezoidal ruletrapezoidal rule

For [a,b] subdivided into n subintervals of size h,
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Trapezoidal and SimpsonTrapezoidal and Simpson’’s rule conts rule cont……

x1 = a xn+1 = bx2 x3 x4 x5 x

f(x)

Trapezoidal Rule



Trapezoidal and SimpsonTrapezoidal and Simpson’’s rule conts rule cont……

Trapezoidal ruleTrapezoidal rule--a composite formula conta composite formula cont……

Local errorLocal error

Global errorGlobal error

If we assume that fIf we assume that f””(x) is continuous on (a,b), there is (x) is continuous on (a,b), there is 
some value of x in (a,b), say x=some value of x in (a,b), say x=ξξ, at which the value of the , at which the value of the 
sum in above equation is equal to n.fsum in above equation is equal to n.f””((ξξ), since ), since nhnh=b=b--a, the a, the 
global error becomesglobal error becomes
Global errorGlobal error

The error is of 2The error is of 2ndnd order in this case
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Romberg IntegrationRomberg Integration

We can improve the accuracy of trapezoidal rule We can improve the accuracy of trapezoidal rule 
integral by a technique that is similar to integral by a technique that is similar to 
Richardson extrapolation, this technique is known Richardson extrapolation, this technique is known 
as Romberg integrationas Romberg integration

Trapezoidal method has an error of Trapezoidal method has an error of O(hO(h22),), we can we can 
combine two estimate of the integral that have hcombine two estimate of the integral that have h--
values in a 2:1 ratio byvalues in a 2:1 ratio by

Better estimate=more accurate +       (more Better estimate=more accurate +       (more 
accurateaccurate--less accurate)less accurate)
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Trapezoidal and SimpsonTrapezoidal and Simpson’’s rules rule

SimpsonSimpson’’s rules rule
The composite NewtonThe composite Newton--Cotes formulas based on Cotes formulas based on 
quadratic and cubic interpolating polynomials are quadratic and cubic interpolating polynomials are 
known as Simpsonknown as Simpson’’s rules rule

QuadraticQuadratic-- SimpsonSimpson’’s    rules    rule
The second degree NewtonThe second degree Newton--Cotes formula Cotes formula 
integrates a quadratic over two intervals of equal integrates a quadratic over two intervals of equal 
width, hwidth, h

This formula has a local error of O(hThis formula has a local error of O(h55):):
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Trapezoidal and SimpsonTrapezoidal and Simpson’’s rules rule

QuadraticQuadratic-- SimpsonSimpson’’s    rule conts    rule cont……
For [a,b] subdivided into n (even) subintervals of For [a,b] subdivided into n (even) subintervals of 
size h,size h,

With an error ofWith an error of

We can see that the error is of 4 We can see that the error is of 4 thth orderorder
The denominator changes to 180, because we The denominator changes to 180, because we 
integrate over pairs of panels, meaning that the integrate over pairs of panels, meaning that the 
local rule is applied n/2 timeslocal rule is applied n/2 times
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Trapezoidal and SimpsonTrapezoidal and Simpson’’s rules rule

CubicCubic-- SimpsonSimpson’’s    rules    rule
The composite rule based on fitting four points The composite rule based on fitting four points 
with a cubic leads to Simpsonwith a cubic leads to Simpson’’s    rules    rule
For n=3 from NewtonFor n=3 from Newton’’s Cotes formula we gets Cotes formula we get

The local order of error is same as 1/3 rd rule, The local order of error is same as 1/3 rd rule, 
except the coefficient is largerexcept the coefficient is larger
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Trapezoidal and SimpsonTrapezoidal and Simpson’’s rules rule

CubicCubic-- SimpsonSimpson’’s    rule conts    rule cont……

To get the composite rule for [a,b] subdivided into To get the composite rule for [a,b] subdivided into 
n (n divisible by 3) subintervals of size h,n (n divisible by 3) subintervals of size h,

With an error ofWith an error of
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Extension of SimpsonExtension of Simpson’’s rule to Unequally s rule to Unequally 
spaced pointsspaced points

When When f(xf(x) is a constant, a straight line, or a ) is a constant, a straight line, or a 
second degree polynomial second degree polynomial 

The functions The functions f(xf(x)=1, )=1, f(xf(x)=x, )=x, f(xf(x)=x)=x22, are used to , are used to 
establish establish ww11, w, w22, w, w3
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Gaussian Gaussian quadraturequadrature
Other formulas based on predetermined evenly spaced  x  Other formulas based on predetermined evenly spaced  x  
valuesvalues
Now unknowns: 3 xNow unknowns: 3 x--values and 3 weights; total 6 values and 3 weights; total 6 
unknowns unknowns 
For this a polynomial of degree 5 is needed to interpolateFor this a polynomial of degree 5 is needed to interpolate
These formulas are GaussianThese formulas are Gaussian--quadraturequadrature formulasformulas
Applied when Applied when f(xf(x) is explicitly known) is explicitly known
Example: a simple case of a two term formula containing Example: a simple case of a two term formula containing 
four unknown parametersfour unknown parameters

If we let                         so that                      If we let                         so that                      thenthen
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Multiple integralsMultiple integrals
Weighted sum of certain functional values with one variable Weighted sum of certain functional values with one variable 
held constantheld constant
Add the weighted sum of these sumsAdd the weighted sum of these sums
If function known at the nodes of a rectangular  grid, we If function known at the nodes of a rectangular  grid, we 
use these valuesuse these values

NewtonNewton--Cotes formulas are a convenient
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Multiple integralsMultiple integrals
Double integration by numerical means Double integration by numerical means 
reduces to a double summation of weighted reduces to a double summation of weighted 
function valuesfunction values
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AssignmentsAssignments
1. Use the Taylor series method to derive expressions for  1. Use the Taylor series method to derive expressions for  ff‘‘(x(x))

and and ff ‘‘‘‘(x)(x) and their error terms using fand their error terms using f--values that values that 
precede precede ff00. ( These are called backward. ( These are called backward--difference difference 
formulas.)formulas.)

2. Evaluate the following integrals by2. Evaluate the following integrals by
(i)(i) Gauss method with 6 pointsGauss method with 6 points
(ii)(ii) Trapezoidal rule with 20 pointsTrapezoidal rule with 20 points
(iii)(iii) SimpsonSimpson’’s rule with 10 pointss rule with 10 points
Compare the results. Is it preferable to integrate backwards or Compare the results. Is it preferable to integrate backwards or 

forwards?forwards?

(a)                             (b)(a)                             (b)dxe x∫ −
5

0

2 dxex x∫ −
1

0

13



AssignmentsAssignments
3. 3. Compute the integral of Compute the integral of f(xf(x)=)=sin(x)/xsin(x)/x between between x=0x=0 and and x=1x=1 using using 

SimpsonSimpson’’s 1/3 rule with h=0.5 and then with h=0.25. from these two s 1/3 rule with h=0.5 and then with h=0.25. from these two 
results, extrapolate to get a better result. What is the order oresults, extrapolate to get a better result. What is the order of the f the 
error after the extrapolation? Compare your answer with the trueerror after the extrapolation? Compare your answer with the true
answer.answer.

4. Integrate the following over the region defined by the portio4. Integrate the following over the region defined by the portion of a unit n of a unit 
circle that lies in the first quadrant. Integrate first with rescircle that lies in the first quadrant. Integrate first with respect to pect to xx
holding holding yy constant, using constant, using h=0.25h=0.25. subdivide the vertical lines into . subdivide the vertical lines into 
four panels.four panels.

a.a. Use the trapezoidal ruleUse the trapezoidal rule
b.b. Use SimpsonUse Simpson’’s 1/3 rules 1/3 rule

∫∫ dxdyyx )2sin()cos(



AssignmentsAssignments
5. Integrate with varying values of 5. Integrate with varying values of ∆∆xx and and ∆∆y y using the using the 

trapezoidal rule in both directions, and show that the error trapezoidal rule in both directions, and show that the error 
decreases about in proportion to decreases about in proportion to hh22::

6. Since Simpson6. Since Simpson’’s 1/3 rule is exact when s 1/3 rule is exact when f(xf(x)) is a cubic, is a cubic, 
evaluation of the following triple integral should be exact. evaluation of the following triple integral should be exact. 
Confirm by evaluating both numerically and analytically.
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Numerical Solution of Numerical Solution of 
Ordinary Differential Ordinary Differential 

EquationsEquations

Module 6Module 6
(6 lectures)(6 lectures)



Contents Contents 
Taylor series methodTaylor series method

Euler and modified Euler Euler and modified Euler 
methodsmethods

Rungekutta method and MultiRungekutta method and Multi--
step methodstep method

Application to higher order Application to higher order 
equationsequations

Example through open channel Example through open channel 
and pipe flow problemsand pipe flow problems



Introduction Introduction 

Numerical solution of ordinary differential Numerical solution of ordinary differential 
equations is an important tool for solving a number equations is an important tool for solving a number 
of physical real world problems which are of physical real world problems which are 
mathematically represented in terms of ordinary mathematically represented in terms of ordinary 
differential equations.differential equations.

Such as springSuch as spring--mass system, bending of beams, mass system, bending of beams, 
open channel flows, pipe flows etc.open channel flows, pipe flows etc.

The most of the scientific laws are represented in The most of the scientific laws are represented in 
terms of ordinary differential equations, so to solve terms of ordinary differential equations, so to solve 
such systems we need efficient tools such systems we need efficient tools 



IntroductionIntroduction

If the differential equation contains derivatives of If the differential equation contains derivatives of 
nth order, its called nth order differential equation.nth order, its called nth order differential equation.

The solution of any differential equation should be The solution of any differential equation should be 
such that it satisfies the differential equation along such that it satisfies the differential equation along 
with certain initial conditions on the function.with certain initial conditions on the function.

For the nth order equation, n independent initial For the nth order equation, n independent initial 
conditions must be specified.conditions must be specified.



IntroductionIntroduction
These equations can be solved analytically also, but These equations can be solved analytically also, but 
those are limited to certain special forms of those are limited to certain special forms of 
equations equations 

These equations can be linear or nonlinear.These equations can be linear or nonlinear.

When the coefficients of these equations are When the coefficients of these equations are 
constants, these are linear differential equationsconstants, these are linear differential equations

When the coefficients itself are functions of When the coefficients itself are functions of 
dependent variables, these are nonlinear dependent variables, these are nonlinear 
differential equationsdifferential equations



IntroductionIntroduction
Numerical methods are not limited to such standard cases, Numerical methods are not limited to such standard cases, 
it can be used to solve any physical situations.it can be used to solve any physical situations.

In numerical methods we get solution as a tabulation of In numerical methods we get solution as a tabulation of 
values of the function at various values of the independent values of the function at various values of the independent 
variable and data can be fit to some functional relationship, variable and data can be fit to some functional relationship, 
instead of exact functional relationship as in the analytical instead of exact functional relationship as in the analytical 
methods.methods.

The disadvantage of this method is that we have to reThe disadvantage of this method is that we have to re--
compute the entire table if the initial conditions are compute the entire table if the initial conditions are 
changedchanged



IntroductionIntroduction
An equation of the form An equation of the form dy/dxdy/dx==f(xf(x),), with with f(xf(x) given and ) given and 
with suitable initial conditions, say with suitable initial conditions, say y(ay(a), also given can be ), also given can be 
integrated analytically or numerically by the methods integrated analytically or numerically by the methods 
discussed in the previous section, such as Simpsondiscussed in the previous section, such as Simpson’’s 1/3 s 1/3 
rule.rule.

If If f(tf(t)) cannot be integrated analytically a numerical cannot be integrated analytically a numerical 
procedure can then be employed.procedure can then be employed.

The more general problem is nonlinear and of the form The more general problem is nonlinear and of the form 
dy/dxdy/dx==f(x,yf(x,y),), f and f and y(ay(a)) given, the problem is to find given, the problem is to find y(xy(x) ) 
for x>afor x>a

∫+=
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a
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TaylorTaylor--series methodseries method
Taylor series in which we expand y about the point Taylor series in which we expand y about the point 
x=xx=x00 is is 

If we assumeIf we assume
Since         is initial condition, first term is knownSince         is initial condition, first term is known

Error  term of the Taylor series after the hError  term of the Taylor series after the h4 4 term can term can 
be written as be written as 

where where 0<0<ξξ<h<h

...)(
!3

)()(
!2

)())(()()( 3
0

0
'''

2
0

0
''

00
'

0 +−+−+−+= xxxyxxxyxxxyxyxy

hxx =− 0

...
!3

)(
!2

)()()()( 30
'''

20
''

0
'

0 ++++= hxyhxyhxyxyxy

)( 0xy

,
!5

)( 5
)(

hyError
v ξ

=



Euler and modified Euler methodsEuler and modified Euler methods

If derivative is complicated, Taylor series is not If derivative is complicated, Taylor series is not 
comfortable to use,error is difficult to determinecomfortable to use,error is difficult to determine

Euler method uses first two terms of Taylor series, Euler method uses first two terms of Taylor series, 
choosing h small enough to truncate the series after the choosing h small enough to truncate the series after the 
first derivative term, thenfirst derivative term, then
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Euler and modified Euler methods Euler and modified Euler methods 
contcont……

Problem is lack of accuracy, requiring an extremely small Problem is lack of accuracy, requiring an extremely small 
step sizestep size
If we use the arithmetic mean of the slopes at the If we use the arithmetic mean of the slopes at the 
beginning and end of the interval to compute ybeginning and end of the interval to compute yn+1n+1::

This assumption gives us an improved estimate for y at This assumption gives us an improved estimate for y at 
xxn+1n+1..
yy’’

n+1n+1 can not be evaluated till the true value of ycan not be evaluated till the true value of yn+1n+1 is is 
known
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Euler and modified Euler methodsEuler and modified Euler methods

Modified Euler method predicts a value of  yModified Euler method predicts a value of  yn+1n+1 by by 
simple Euler relation. It then uses this value to simple Euler relation. It then uses this value to 
estimate yestimate y’’

n+1n+1 giving an improved estimate of ygiving an improved estimate of yn+1n+1

We need to reWe need to re--correct ycorrect yn+1n+1 value till it makes the value till it makes the 
difference negligibledifference negligible

We can find out the error in the modified Euler We can find out the error in the modified Euler 
method by comparing with the Taylor seriesmethod by comparing with the Taylor series

y



Euler and modified Euler methods contEuler and modified Euler methods cont……

This method is called Euler predictorThis method is called Euler predictor--corrector methodcorrector method

Approximating yApproximating y”” by forward difference, which has the error by forward difference, which has the error 
of O(h):of O(h):
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RungeRunge--KuttaKutta methodsmethods

Fourth and fifth order Fourth and fifth order RungeRunge--KuttaKutta methodsmethods
Increment to the y is a weighted average of two estimates Increment to the y is a weighted average of two estimates 
of the increment which can be taken as kof the increment which can be taken as k11 and kand k22. . 
Thus for the equation Thus for the equation dy/dxdy/dx=f(x,y)=f(x,y)

We can think of the values We can think of the values kk11 and and kk22 as estimates of the as estimates of the 
change in y when x advances by h, because they are the change in y when x advances by h, because they are the 
product of the change in x and a value for the slope of the product of the change in x and a value for the slope of the 
curve, curve, dy/dxdy/dx.
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RungeRunge--KuttaKutta methods contmethods cont……

Uses Euler estimate of the first estimate of Uses Euler estimate of the first estimate of ∆∆yy, the , the 
other estimate is taken with other estimate is taken with xx and and yy stepped up by stepped up by 
the fractions the fractions αα and and ββ of of hh and of the earlier and of the earlier 
estimate of estimate of ∆∆y, ky, k11

Our problem is to devise a scheme of choosing the Our problem is to devise a scheme of choosing the 
four parameters four parameters a, b,a, b,αα,,ββ. We do so by making . We do so by making 
EquationsEquations……

An equivalent form, since An equivalent form, since 
df/dxdf/dx==ffxx+f+fyydy/dxdy/dx====ffxx+f+fyyff, is, is
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RungeRunge--KuttaKutta methods contmethods cont……

Fourth order Fourth order RungeRunge--KuttaKutta methods are most methods are most 
widely used and are derived in similar fashionwidely used and are derived in similar fashion

The local error term for the 4 The local error term for the 4 thth order order RungeRunge--KuttaKutta
method is method is O(hO(h55)) ; the global error would be ; the global error would be O(hO(h44).).

Computationally more efficient than the modified Computationally more efficient than the modified 
Euler method, because while four evaluation of the Euler method, because while four evaluation of the 
function are required rather than two, the steps function are required rather than two, the steps 
can be many fold larger for the same accuracy.can be many fold larger for the same accuracy.



RungeRunge--KuttaKutta methods contmethods cont……

The most commonly used set of values leads to The most commonly used set of values leads to 
the algorithmthe algorithm
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MultiMulti--step methodsstep methods
RungeRunge--kuttakutta type methods are called single step methodtype methods are called single step method

When only initial conditions are available, ability to perform When only initial conditions are available, ability to perform 
the next step with a different step sizethe next step with a different step size

Uses past values of y and yUses past values of y and y’’ to construct a polynomial that to construct a polynomial that 
approximates the derivative function, and extrapolate this approximates the derivative function, and extrapolate this 
into the next intervalinto the next interval

The number of past points that are used sets the degree of The number of past points that are used sets the degree of 
the polynomial and is therefore responsible for the the polynomial and is therefore responsible for the 
truncation error. truncation error. 

The order of the method is equal to the power of h in the The order of the method is equal to the power of h in the 
global error term of the formula, which is also equal to one global error term of the formula, which is also equal to one 
more than the degree of the polynomial.  more than the degree of the polynomial.  



MultiMulti--step methodsstep methods
Adams method, we write the differential equation Adams method, we write the differential equation dy/dxdy/dx=f(x,y) =f(x,y) in the in the 
form form dydy==f(x,y)dxf(x,y)dx, , and we integrate between and we integrate between xxnn and xand xn+1n+1::

We approximate f(x,y) as a polynomial in x, deriving this by makWe approximate f(x,y) as a polynomial in x, deriving this by making it ing it 
fit at several past pointsfit at several past points

Using 3 past points, approximate polynomial is quadratic, and foUsing 3 past points, approximate polynomial is quadratic, and for 4 r 4 
points the polynomial is cubicpoints the polynomial is cubic

More the past points, better the accuracy, until roundMore the past points, better the accuracy, until round--off error is off error is 

negligible
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MultiMulti--step methodsstep methods
Suppose that we fit a second degree polynomial through Suppose that we fit a second degree polynomial through 
the last three points (the last three points (xxnn,y,ynn),(),(xxnn--11,y,ynn--11) and () and (xxnn--22,y,ynn--22), we get ), we get 
a quadratic approximation to the derivative function:a quadratic approximation to the derivative function:

Now we integrate between Now we integrate between xxnn and xand xn+1n+1. The result is a . The result is a 
formula for the increment in y formula for the increment in y 
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MultiMulti--step methodsstep methods

We have the formula to advance y:We have the formula to advance y:

This formula resembles the single step formulas, This formula resembles the single step formulas, 
in that the increment to y is a weighted sum of in that the increment to y is a weighted sum of 
the derivatives times the step size, but differs in the derivatives times the step size, but differs in 
that past values are used rather than estimates in that past values are used rather than estimates in 
the forward direction.the forward direction.

We can reduce the error by using more past We can reduce the error by using more past 
points for fitting a polynomial 
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MultiMulti--step methodsstep methods

In fact, when the derivation is done for four In fact, when the derivation is done for four 
points to get a cubic approximation to points to get a cubic approximation to 
f(x,y)f(x,y), the following is obtained, the following is obtained
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MultiMulti--step methodsstep methods

MilneMilne’’s method first predict a value for ys method first predict a value for yn+1n+1 by by 
extrapolating the values for the derivative, extrapolating the values for the derivative, 

Differs from AdamDiffers from Adam’’s method, as it integrates over more s method, as it integrates over more 
than one intervalthan one interval

The required past values computed by The required past values computed by RungeRunge--KuttaKutta or or 
TaylorTaylor’’s series method.s series method.

In this method, the four In this method, the four equiequi--spaced starting values of y spaced starting values of y 
are known, at the points are known, at the points xxnn,  x,  xnn--11,, xxnn--2 2 andand xxnn--33

We may apply We may apply quadraturequadrature formula to integrate as followsformula to integrate as follows



MultiMulti--step methodsstep methods

MilneMilne’’s methods method

Where 
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MultiMulti--step methodsstep methods

The above predictor formula can be corrected by The above predictor formula can be corrected by 
the following the following 

Where
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MultiMulti--step methodsstep methods

AdamAdam--Moulton Method, more stable than and as Moulton Method, more stable than and as 
efficient as Milne method .efficient as Milne method .
AdamAdam--Moulton predictor formula:Moulton predictor formula:

AdamAdam--Moulton corrector formula:Moulton corrector formula:

The efficiency of this method is about twice that The efficiency of this method is about twice that 
of of RungeRunge--KuttaKutta and and RungeRunge--kuttakutta FehlbergFehlberg
methods

)(
720
251]9375955[

24 1
5

3211 ξv
nnnnnn yhffffhyy +−+−+= −−−+

)(
720
19]5199[

24 2
5

2111 ξv
nnnnnn yhffffhyy −+−++= −−++

methods



Application to systems of equations Application to systems of equations 
and higherand higher--order equationsorder equations

Generally any physical problems deals with a set of higher Generally any physical problems deals with a set of higher 
order differential equations. For example, the following order differential equations. For example, the following 
equation represents a vibrating system in which a linear equation represents a vibrating system in which a linear 
spring with spring constant k restores a displaced mass of spring with spring constant k restores a displaced mass of 
weight w against a resisting force whose resistance is b weight w against a resisting force whose resistance is b 
times the velocity. The times the velocity. The f(x,t)f(x,t) is an external forcing function is an external forcing function 

acting on the mass.acting on the mass.
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System of equations and higherSystem of equations and higher--order order 
equationsequations

Reduce to a system of simultaneous first order equationsReduce to a system of simultaneous first order equations

For a second order equations the initial value of the For a second order equations the initial value of the 
function and its derivative are known i.e the n values of function and its derivative are known i.e the n values of 
the variables or its derivatives are known, where n is the the variables or its derivatives are known, where n is the 
order of the system. order of the system. 

When some of the conditions are specified at the When some of the conditions are specified at the 
boundaries of the specified interval,  we call it a boundary boundaries of the specified interval,  we call it a boundary 
value problemvalue problem



Systems of equations and higherSystems of equations and higher--order order 
equationsequations

By solving for second derivative, we can normally express By solving for second derivative, we can normally express 
second order equation assecond order equation as

The initial value of the function The initial value of the function xx and its derivatives are and its derivatives are 
specified specified 

We convert to 1We convert to 1stst order equation asorder equation as
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Systems of equations and higherSystems of equations and higher--order order 
equationsequations

Then we can writeThen we can write

This pair of equations is equivalent to the original 2This pair of equations is equivalent to the original 2ndnd order equationorder equation

For even higher orders, each of the lower derivatives is definedFor even higher orders, each of the lower derivatives is defined as a as a 
new function, giving a set of n firstnew function, giving a set of n first--order equations that correspond to order equations that correspond to 
an nth order differential equation.an nth order differential equation.

For a system of higher order equations, each is similarly converFor a system of higher order equations, each is similarly converted, so ted, so 
that a larger set of first order equations results.
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that a larger set of first order equations results.



Systems of equations and higherSystems of equations and higher--order order 
equationsequations

Thus the nth order differential equationThus the nth order differential equation
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Systems of equations and higherSystems of equations and higher--order order 
equationsequations

Can be converted into a system of n firstCan be converted into a system of n first--order order 
differential equations by letting differential equations by letting yy11=y=y andand
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Systems of equations and higherSystems of equations and higher--order order 
equationsequations

With initial conditionsWith initial conditions

Now the TaylorNow the Taylor--Series method, Euler PredictorSeries method, Euler Predictor--Corrector method, Corrector method, 
RungeRunge--KuttaKutta method, method, RungeRunge--KuttaKutta FehlbergFehlberg method, Adamsmethod, Adams--Moulton Moulton 
and Milne methods can be used to derive the various derivatives and Milne methods can be used to derive the various derivatives of the of the 
function
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Examples of Open Channel ProblemsExamples of Open Channel Problems
Steady flow through open channelSteady flow through open channel

Where Where p p = pressure intensity= pressure intensity
Steady, uniform flow through open channelSteady, uniform flow through open channel

The equation describing the variation of the flow The equation describing the variation of the flow 
depth for any variation in the bottom elevation is depth for any variation in the bottom elevation is 
given bygiven by
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Examples of Open Channel ProblemsExamples of Open Channel Problems

For gradually varied flow, variation of y with xFor gradually varied flow, variation of y with x

Or Gradually varied flow can be written asOr Gradually varied flow can be written as

For a very wide rectangular channel, For a very wide rectangular channel, RR≈≈yy
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Examples of Pipe Flow ProblemsExamples of Pipe Flow Problems

Laminar flow, velocity distributionLaminar flow, velocity distribution

Time for flow establishment in a pipeTime for flow establishment in a pipe

Surge tank waterSurge tank water--level Oscillations, the dynamic level Oscillations, the dynamic 
equation isequation is
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AssignmentsAssignments

1. Use the simple Euler method to solve for 1. Use the simple Euler method to solve for y(0.1)y(0.1)
fromfrom

With With h=0.01h=0.01. Repeat this exercise with the modified . Repeat this exercise with the modified 
Euler method with Euler method with h=0.025h=0.025. Compare the results.. Compare the results.

2. Determine 2. Determine yy at at x=0.2(0.2)0.6x=0.2(0.2)0.6 by the by the RungeRunge--KuttaKutta
technique, given thattechnique, given that

xyyx
dx
dy

++= 1)0( =y

yxdx
dy

+
=

1
2)0( =y



AssignmentsAssignments
3. Solve the following simultaneous differential equations by 3. Solve the following simultaneous differential equations by 

using using 
(i)(i) A fourth order A fourth order RungeRunge--KuttaKutta methodmethod
(ii)(ii) A fourth order Milne predictorA fourth order Milne predictor--corrector algorithm corrector algorithm 

ForFor

4. Express the third order equation 4. Express the third order equation 

a set of first order equations and solve at a set of first order equations and solve at t =0.2,0.4,0.6t =0.2,0.4,0.6 by by 
the the RungeRunge--KuttaKutta method (method (h=0.2h=0.2). 
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AssignmentsAssignments
55. Find y at . Find y at x=0.6x=0.6, given that, given that

Begin the solution by the TaylorBegin the solution by the Taylor--series method, getting series method, getting 
y(0.1),y(0.2),y(0.3).y(0.1),y(0.2),y(0.3). The advance to The advance to x=0.6x=0.6 employing the employing the 
AdamsAdams--Moulton technique with Moulton technique with h=0.1h=0.1 on the equivalent set on the equivalent set 
of firstof first--order equations.order equations.

6. Solve the pair of simultaneous equations by the modified 6. Solve the pair of simultaneous equations by the modified 
Euler method for Euler method for t=0.2(0.2)0.6t=0.2(0.2)0.6. . RecorrectRecorrect until reproduced until reproduced 
to three decimals.

1)0(',1)0(,''' −=== yyyyy

to three decimals.
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ContentsContents
Types of finite difference Types of finite difference 
techniques techniques 

Explicit and implicit Explicit and implicit 
techniquestechniques

Methods of solutionMethods of solution

Application of  FD Application of  FD 
techniques to steady  and techniques to steady  and 
unsteady flows in open unsteady flows in open 
channelschannels



Types of FD techniquesTypes of FD techniques
Most of the physical situation is represented by Most of the physical situation is represented by 
nonlinear partial differential equations for which a nonlinear partial differential equations for which a 
closed form solution is not available except in few closed form solution is not available except in few 
simplified casessimplified cases

Several numerical methods are available for the Several numerical methods are available for the 
integration of such systems. Among these integration of such systems. Among these 
methods, finite difference methods have been methods, finite difference methods have been 
utilized very extensively utilized very extensively 

Derivative of a function can be approximated by Derivative of a function can be approximated by 
FD quotients.FD quotients.



Types of FD techniquesTypes of FD techniques

Differential equation is converted into the difference Differential equation is converted into the difference 
equationequation

Solution of difference equation is an approximate solution Solution of difference equation is an approximate solution 
of the differential equation.of the differential equation.

Example: Example: f(xf(x)) be a function of one independent variable x. be a function of one independent variable x. 
assume at xassume at x00, function be , function be f(xf(x00)) , then by using Taylor , then by using Taylor 
series expansion, the function series expansion, the function f(xf(x00++∆∆x)x) may be written as may be written as 
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Types of FD techniquesTypes of FD techniques

ff’’(x(x00)=)=dy/dxdy/dx at at x=xx=x00

O(O(∆∆x)x)33: terms of third order or higher order of : terms of third order or higher order of ∆∆xx
Similarly Similarly f(xf(x00-- ∆∆x)x) may be expressed asmay be expressed as

Equation may be written as Equation may be written as 

From this equation
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Types of FD techniquesTypes of FD techniques

f(x)

x

y=f(x)

A

B

Q

x0-∆x    x0    x0+∆x

   Finite Difference Approximation



Types of FD techniquesTypes of FD techniques
SimilarlySimilarly

Neglecting O(Neglecting O(∆∆x) terms in above equation we getx) terms in above equation we get
Forward difference formula as given belowForward difference formula as given below

Backward difference formula as shown belowBackward difference formula as shown below

Both forward and backward difference approximation are Both forward and backward difference approximation are 
first order accurate
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Types of FD techniques contTypes of FD techniques cont……

Subtracting the forward Taylor series From Subtracting the forward Taylor series From 
backward Taylor series, rearrange the backward Taylor series, rearrange the 
terms, and divide by terms, and divide by ∆∆xx

Neglecting the last term
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Types of FD techniques contTypes of FD techniques cont……

This approximation is referred to as central finite difference This approximation is referred to as central finite difference 
approximationapproximation

Error term is of order Error term is of order O(O(∆∆x)x)22, known as second order , known as second order 
accurateaccurate

CentralCentral--difference approximations to derivates are more difference approximations to derivates are more 
accurate than forward or backward approximations [accurate than forward or backward approximations [O(hO(h22))
verses verses O(hO(h))]]

Consider FD approximation for partial derivativeConsider FD approximation for partial derivative



Types of FD techniques contTypes of FD techniques cont……
Function Function f(x,tf(x,t)) has two independent variables, has two independent variables, xx
and and tt
Assume uniform grid size of Assume uniform grid size of ∆∆xx and and ∆∆tt

t

x

x

t

k-1
k
k+1

Finite Difference Grid Approximation
i-1   i   i+1



Explicit and implicit techniquesExplicit and implicit techniques
There are several possibilities for approximating the partial There are several possibilities for approximating the partial 
derivativesderivatives

The spatial partial derivatives replaced in terms of the The spatial partial derivatives replaced in terms of the 
variables at the known time level are referred to as thevariables at the known time level are referred to as the
explicitexplicit finite differencefinite difference

The spatial partial derivatives replaced in terms of the The spatial partial derivatives replaced in terms of the 
variables at the unknown time level are called variables at the unknown time level are called implicitimplicit finite finite 
differencedifference

k is known time level and k+1 is the unknown time level. k is known time level and k+1 is the unknown time level. 
Then FD approximation for the spatial partial derivative , Then FD approximation for the spatial partial derivative , 
∂∂f/f/∂∂xx, at the grid point (i,k) are as follows:, at the grid point (i,k) are as follows:



Explicit and implicit techniquesExplicit and implicit techniques

Explicit finite differencesExplicit finite differences
BackwardBackward::

ForwardForward::

CentralCentral:
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Explicit and implicit techniquesExplicit and implicit techniques

Implicit finite differencesImplicit finite differences

BackwardBackward::
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Explicit and implicit techniquesExplicit and implicit techniques

By the known time level we mean that the By the known time level we mean that the 
values of different dependent variables are values of different dependent variables are 
known at this time known at this time 

We want to compute their values at the We want to compute their values at the 
unknown time levelunknown time level

The known conditions may be the values The known conditions may be the values 
specified as the initial conditions or they specified as the initial conditions or they 
may have been computed during previous may have been computed during previous 
time steptime step



Explicit finite difference schemesExplicit finite difference schemes
For the solution of hyperbolic partial differential For the solution of hyperbolic partial differential 
equations, several explicit finite difference equations, several explicit finite difference 
schemes have been proposedschemes have been proposed

In the following section a number of typical In the following section a number of typical 
schemes have been discussed which has its high schemes have been discussed which has its high 
relevance in hydraulic engineeringrelevance in hydraulic engineering

Unstable schemeUnstable scheme

For any unsteady situation, we can select the For any unsteady situation, we can select the 
following finitefollowing finite--difference approximations:difference approximations:



Explicit finite difference schemesExplicit finite difference schemes

ApproximationsApproximations

In the above In the above f f refers to dependent variablesrefers to dependent variables

Generally the finite difference scheme is inherently Generally the finite difference scheme is inherently 
unstable; i.e., computation become unstable irrespective of unstable; i.e., computation become unstable irrespective of 
the size of grid spacing, so the stability check is an the size of grid spacing, so the stability check is an 
important part of the numerical methods.

x
ff

x
f k

i
k

i
∆

−
=

∂
∂ −+

2
11

t
ff

t
f k

i
k

i
∆
−

=
∂
∂ +1

important part of the numerical methods.



Explicit finite difference schemesExplicit finite difference schemes
Diffusive schemeDiffusive scheme

This scheme is slightly varying than the unstable scheme This scheme is slightly varying than the unstable scheme 

This method is easier to program and yields satisfactory This method is easier to program and yields satisfactory 
results for typical hydraulic engineering applications. In results for typical hydraulic engineering applications. In 
this method the partial derivatives and other variables are this method the partial derivatives and other variables are 
approximated as follows:approximated as follows:
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Explicit finite difference schemesExplicit finite difference schemes

wherewhere

These approximations are applied to the These approximations are applied to the 
conservation and nonconservation and non--conservation forms of the conservation forms of the 
governing equations of the physical situations.
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Explicit finite difference schemesExplicit finite difference schemes

MacCormackMacCormack SchemeScheme

This method is an explicit, twoThis method is an explicit, two--step predictorstep predictor--corrector corrector 
scheme that is a second order accurate both in space and scheme that is a second order accurate both in space and 
time and is capable of capturing the shocks without time and is capable of capturing the shocks without 
isolating themisolating them

This method has been applied for analyzing oneThis method has been applied for analyzing one--
dimensional, unsteady, open channel flows by various dimensional, unsteady, open channel flows by various 
hydraulic engineers hydraulic engineers 

The general formulation for the scheme has been discussed The general formulation for the scheme has been discussed 
asas



Explicit finite difference schemesExplicit finite difference schemes
MacCormackMacCormack Scheme contScheme cont……

Two alternative formulations for this scheme are Two alternative formulations for this scheme are 
possible. In the first alternative, backward FD are possible. In the first alternative, backward FD are 
used to approximate the spatial partial derivatives in used to approximate the spatial partial derivatives in 
the predictor part and forward FD are utilized in the the predictor part and forward FD are utilized in the 
corrector part.corrector part.

The values of the variables determined during the The values of the variables determined during the 
predictor part are used during the corrector partpredictor part are used during the corrector part

In the second alternative  forward In the second alternative  forward FDsFDs are used in are used in 
the predictor and backward FD are used in the the predictor and backward FD are used in the 
corrector partcorrector part



Explicit finite difference schemesExplicit finite difference schemes

MacCormackMacCormack Scheme contScheme cont……
Generally it is recommended to alternate the Generally it is recommended to alternate the 
direction of differencing from one time step to the direction of differencing from one time step to the 
nextnext

The FD approximations for the first alternative of The FD approximations for the first alternative of 
this scheme is given as follows. The this scheme is given as follows. The predictorpredictor
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Explicit finite difference schemesExplicit finite difference schemes

MacCormackMacCormack Scheme contScheme cont……
The subscript * refers to variables computed during The subscript * refers to variables computed during 
the predictor partthe predictor part
The The correctorcorrector

the value of the value of ffii at the unknown time level k+1 is at the unknown time level k+1 is 
given by given by 

t
ff

t
f k

ii
∆
−

=
∂
∂ **

x
ff

x
f ii

∆
−

=
∂
∂ +

**
1

)(
2
1 ***1

ii
k

i fff +=+



Explicit finite difference schemesExplicit finite difference schemes
Lambda schemeLambda scheme

In this scheme, the governing are is first transformed into In this scheme, the governing are is first transformed into 
λλ--form and then form and then discretizediscretize them according to the sign of them according to the sign of 
the characteristic directions, thereby enforcing the correct the characteristic directions, thereby enforcing the correct 
signal direction.signal direction.

In an open channel flow, this allows analysis of flows In an open channel flow, this allows analysis of flows 
having subhaving sub-- and supercritical flows.and supercritical flows.

This scheme was proposed by This scheme was proposed by MorettiMoretti (1979) and has been (1979) and has been 
used for the analysis of unsteady open channel flow by used for the analysis of unsteady open channel flow by 
FennemaFennema and and ChoudhryChoudhry (1986)(1986)



Explicit finite difference schemesExplicit finite difference schemes

Lambda scheme contLambda scheme cont……
Predictor Predictor 

Corrector 
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Explicit finite difference schemesExplicit finite difference schemes

By using the above FD s andBy using the above FD s and

and using the values of different variables and using the values of different variables 
computed during the predictor part, we obtain the computed during the predictor part, we obtain the 
equations for unknown variables.   equations for unknown variables.   

The values at k+1 time step may be determined The values at k+1 time step may be determined 
from the following equations:
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Explicit finite difference schemesExplicit finite difference schemes
GabuttiGabutti schemescheme

This is an extension of the Lambda scheme. This allows This is an extension of the Lambda scheme. This allows 
analysis of sub and super critical flows and has been used analysis of sub and super critical flows and has been used 
for such analysis by for such analysis by FennemaFennema and and ChaudhryChaudhry (1987)(1987)

The general formulation for this scheme is comprised of The general formulation for this scheme is comprised of 
predictor and corrector parts and the predictor part is predictor and corrector parts and the predictor part is 
subdivided into two partssubdivided into two parts

The The λλ--form of the equations are used the partial derivatives form of the equations are used the partial derivatives 
are replaced as follows:are replaced as follows:



Explicit finite difference schemesExplicit finite difference schemes

GabuttiGabutti scheme contscheme cont……
Taking into consideration the correct signal Taking into consideration the correct signal 
directiondirection

Predictor: Predictor: 
Step1: Step1: spatial derivatives are approximated as spatial derivatives are approximated as 

follows:follows:
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Explicit finite difference schemesExplicit finite difference schemes

GabuttiGabutti scheme contscheme cont……
By substitutingBy substituting

Step2: in this part of the predictor part we use the Step2: in this part of the predictor part we use the 
following finitefollowing finite--difference approximations:
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Explicit finite difference schemesExplicit finite difference schemes
GabuttiGabutti scheme contscheme cont……
Corrector:Corrector: in this part the predicted values are used in this part the predicted values are used 

and the corresponding values of coefficients and and the corresponding values of coefficients and 
approximate the spatial derivatives by the following approximate the spatial derivatives by the following 
finite differences:finite differences:

The values at k+1 time step may be determined The values at k+1 time step may be determined 
from the following equations:
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Implicit finite difference schemesImplicit finite difference schemes

In this scheme of implicit finite difference, the spatial In this scheme of implicit finite difference, the spatial 
partial derivatives and/or the coefficients are replaced in partial derivatives and/or the coefficients are replaced in 
terms of the values at the unknown time levelterms of the values at the unknown time level

The unknown variables are implicitly expressed in the The unknown variables are implicitly expressed in the 
algebraic equations, this methods are called implicit algebraic equations, this methods are called implicit 
methods.methods.

Several implicit schemes have been used for the analysis of Several implicit schemes have been used for the analysis of 
unsteady open channel flows. The schemes are discussed unsteady open channel flows. The schemes are discussed 
one by one.one by one.



Implicit finite difference schemesImplicit finite difference schemes

PreissmannPreissmann SchemeScheme

This method has been widely used This method has been widely used 

The advantage of this method is that the variable spatial The advantage of this method is that the variable spatial 
grid may be used grid may be used 

Steep wave fronts may be properly simulated by varying the Steep wave fronts may be properly simulated by varying the 
weighting coefficientweighting coefficient

This scheme also yields an exact solution of the linearized This scheme also yields an exact solution of the linearized 
form of the governing equations for a particular value of form of the governing equations for a particular value of ∆∆xx
and and ∆∆t.t.



Implicit finite difference schemesImplicit finite difference schemes

PreissmannPreissmann Scheme contScheme cont……
General formulation of the partial derivatives and General formulation of the partial derivatives and 
other coefficients are approximated as follows:other coefficients are approximated as follows:
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Implicit finite difference schemesImplicit finite difference schemes

PreissmannPreissmann Scheme Scheme 

Where Where αα is a weighting coefficient and f refers to unknown is a weighting coefficient and f refers to unknown 
variables and coefficients.variables and coefficients.

By selecting a suitable value for By selecting a suitable value for αα, the scheme may be , the scheme may be 
made totally explicit (made totally explicit (αα=0) or implicit (=0) or implicit (αα=0)=0)

The scheme is stable if 0.55< The scheme is stable if 0.55< αα≤≤11



AssignmentsAssignments
1.  1.  A large flat steel plate is 2 cm thick. If the initial A large flat steel plate is 2 cm thick. If the initial 

temperature within the plate are given, as a function of temperature within the plate are given, as a function of 
the distance from one face, by the equations the distance from one face, by the equations 

forfor

for for 
Find the temperatures as a function of x and t if both Find the temperatures as a function of x and t if both 
faces are maintained at 0 degree centigrade. The one faces are maintained at 0 degree centigrade. The one 
dimensional heat flow equation is given as followsdimensional heat flow equation is given as follows

Take Take k=0.37 ck=0.37 cρρ=0.433. =0.433. 
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AssignmentsAssignments
2. Solve for the temperature at 2. Solve for the temperature at t=2.06t=2.06 sec in the 2sec in the 2--cm thick cm thick 

steel slab of problem (1) if the initial temperatures are steel slab of problem (1) if the initial temperatures are 
given by given by 

Use the explicit method with Use the explicit method with ∆∆x=0.25x=0.25 cm. compare to the cm. compare to the 
analytical solution:analytical solution:

3. Using Crank3. Using Crank--NicolsonNicolson method, solve the following equation method, solve the following equation 

Solve this when                         subject to conditions Solve this when                         subject to conditions 

Take Take ∆∆x=0.2, k=0.37 cx=0.2, k=0.37 cρρ=0.433. =0.433. solve for five time steps.solve for five time steps.
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Numerical Solution of Partial Numerical Solution of Partial 
Differential EquationsDifferential Equations

Module 8Module 8
6 lectures6 lectures
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IntroductionIntroduction

In applied mathematics, partial differential equation In applied mathematics, partial differential equation 
is a subject of great significanceis a subject of great significance

These type of equations generally involves two or These type of equations generally involves two or 
more independent variables that determine the more independent variables that determine the 
behavior of the dependent variable.behavior of the dependent variable.

The partial differential equations are the The partial differential equations are the 
representative equations in the fields of heat flow, representative equations in the fields of heat flow, 
fluid flow, electrical potential distribution, fluid flow, electrical potential distribution, 
electrostatics, diffusion of matter etc.electrostatics, diffusion of matter etc.



Classification of Classification of PDEsPDEs

Many physical phenomenon are a function of more Many physical phenomenon are a function of more 
than one independent variable and must be than one independent variable and must be 
represented by a partial represented by a partial –– differential equation, differential equation, 
usually of second or higher order.usually of second or higher order.

We can write any second order equation (in two We can write any second order equation (in two 
independent variable) as:independent variable) as:
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Classification of Classification of PDEsPDEs contcont……
The above partial differential equation can be classified The above partial differential equation can be classified 
depending on the value of depending on the value of BB2 2 -- 4AC4AC,,

Elliptic, if Elliptic, if BB2 2 -- 4AC<0;4AC<0;
parabolic, if parabolic, if BB2 2 -- 4AC=0;4AC=0;
hyperbolic, if hyperbolic, if BB2 2 -- 4AC>0.4AC>0.

If If A,B,CA,B,C are functions of x,y,and/or u,the equation may are functions of x,y,and/or u,the equation may 
change from one classification to another at various points change from one classification to another at various points 
in the domainin the domain

For For LaplaceLaplace’’ss and Poissonand Poisson’’s equation, s equation, B=0, A=C=1B=0, A=C=1, so , so 
these are always elliptic these are always elliptic PDEsPDEs
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Classification of Classification of PDEsPDEs contcont……
1D 1D advectiveadvective--dispersive transport process is dispersive transport process is 
represented through parabolic equation, where represented through parabolic equation, where 
B=0, C=0B=0, C=0, so , so BB2 2 -- 4AC=04AC=0

1D wave equation is represented through 1D wave equation is represented through 
hyperbolic equation, where hyperbolic equation, where B=0, A=1 B=0, A=1 and and C=C=--
Tg/wTg/w, , so so BB2 2 -- 4AC>0
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FD Approximation of FD Approximation of PDEsPDEs

One method of solution is to replace the derivatives by One method of solution is to replace the derivatives by 
difference quotientsdifference quotients

Difference equation is written for each node of the meshDifference equation is written for each node of the mesh

Solving these equations gives values of the function at Solving these equations gives values of the function at 
each node of the grid networkeach node of the grid network

Let Let h=h=∆∆x=x= spacing of grid work in xspacing of grid work in x--directiondirection

Assume Assume f(xf(x)) has continuous fourth derivative has continuous fourth derivative w.r.tw.r.t xx and and yy..



FD Approximation of FD Approximation of PDEsPDEs

When f is a function of both x and y, we get the 2When f is a function of both x and y, we get the 2ndnd

partial derivative w.r.t x, partial derivative w.r.t x, ∂∂22u/ u/ ∂∂xx22, by holding y , by holding y 
constant and evaluating the function at three points constant and evaluating the function at three points 
where x equals where x equals xxnn, , xxnn+h+h and and xxnn--hh. the partial . the partial 
derivative derivative ∂∂22u/ u/ ∂∂yy2 2 is similarly computed, holding x is similarly computed, holding x 
constant.constant.

To solve the Laplace equation on a region in the To solve the Laplace equation on a region in the xx--
yy plane, subdivide the region with plane, subdivide the region with equiequi--spaced lines spaced lines 
parallel to xparallel to x--y axesy axes



FD Approximation of FD Approximation of PDEsPDEs
To solve Laplace equation on a To solve Laplace equation on a xyxy plane, consider a region plane, consider a region 
near (near (xxii,y,yii), we approximate), we approximate

Replacing the derivatives by difference quotients that Replacing the derivatives by difference quotients that 
approximate the derivatives at the point (approximate the derivatives at the point (xxii,y,yii), we get
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FD Approximation of FD Approximation of PDEsPDEs

It is convenient to use double subscript on u to It is convenient to use double subscript on u to 
indicate the xindicate the x-- and yand y-- values:values:

For the sake of simplification, it is usual to take For the sake of simplification, it is usual to take 
∆∆x= x= ∆∆y=hy=h

We can notice that five points are involved in the We can notice that five points are involved in the 
above relation, known as five point star formulaabove relation, known as five point star formula
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FD Approximation of FD Approximation of PDEsPDEs

Linear combination of Linear combination of uu’’ss is represented symbolically as is represented symbolically as 
belowbelow

This approximation has error of order This approximation has error of order O(hO(h22)),provided u is ,provided u is 
sufficiently smooth enoughsufficiently smooth enough
We can also derive nine point formula for We can also derive nine point formula for LaplaceLaplace’’ss
equation by similar methods to getequation by similar methods to get

In this case of approximation the error is of order In this case of approximation the error is of order O(hO(h66)), , 
provided u is sufficiently smooth enoughprovided u is sufficiently smooth enough
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Methods of solutionMethods of solution
approximation through FD at a set of grid points (approximation through FD at a set of grid points (xxii,y,yii), a ), a 
set of simultaneous linear equations results which needs to set of simultaneous linear equations results which needs to 
be solved by be solved by Iterative methodsIterative methods

LiebmannLiebmann’’ss MethodMethod

Rearrange the FD form of Rearrange the FD form of LaplaceLaplace’’ss equation to give a equation to give a 
diagonally dominant systemdiagonally dominant system
This system is then solved by This system is then solved by JacobiJacobi or or GuassGuass--Seidel Seidel 
iterative methoditerative method
The major drawback of this method is the slow The major drawback of this method is the slow 
convergence which is acute when there are a large system convergence which is acute when there are a large system 
of points, because then each iteration is lengthy and more of points, because then each iteration is lengthy and more 
iterations are required to meet a given tolerance.iterations are required to meet a given tolerance.



SOR method of solutionSOR method of solution
S.O.R method S.O.R method –– Accelerating ConvergenceAccelerating Convergence

Relaxation method of Relaxation method of SouthwellSouthwell, is a way of , is a way of 
attaining faster convergence in the iterative attaining faster convergence in the iterative 
method.method.
Relaxation is not adapted to computer solution of Relaxation is not adapted to computer solution of 
sets of equationssets of equations
Based on Based on SouthwellSouthwell’’ss technique, the use of an technique, the use of an 
overrelaxationoverrelaxation factor can give significantly faster factor can give significantly faster 
convergence convergence 
Since we handle each equation in a standard and Since we handle each equation in a standard and 
repetitive order, this method is called repetitive order, this method is called successive successive 
overrelaxationoverrelaxation (S.O.R)(S.O.R)



SOR method of solution contSOR method of solution cont……
Applying SOR method to Applying SOR method to LaplaceLaplace’’ss equation as given equation as given 
below:below:

The above equation leads to The above equation leads to 

We now both add and subtract  We now both add and subtract  uuijij
(k(k)) on the right hand on the right hand 

side, getting side, getting 
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SOR method of solution contSOR method of solution cont……
The numerator term will be zero when final values, after The numerator term will be zero when final values, after 
convergence, are used, term in bracket calledconvergence, are used, term in bracket called””residualresidual””, , 
which is which is ““relaxedrelaxed”” to zeroto zero

We can consider the bracketed term in the equation to be We can consider the bracketed term in the equation to be 
an adjustment to the old value an adjustment to the old value uuijij

(k(k)), to give the new and , to give the new and 
improved value uimproved value uijij

(k+1)(k+1)

If instead of adding the bracketed term, we add a larger If instead of adding the bracketed term, we add a larger 
value (thus value (thus ““overrelaxingoverrelaxing””), we get a faster convergence.), we get a faster convergence.

We modify the above equation by including an We modify the above equation by including an 
overrelaxationoverrelaxation factor factor ωω to get the new iterating relation.to get the new iterating relation.



SOR method of solution contSOR method of solution cont……
The new iterating relation after The new iterating relation after overrelaxationoverrelaxation ωω is as:is as:

Maximum acceleration is obtained for some optimum value Maximum acceleration is obtained for some optimum value 
of of ωω which will always lie in between 1.0 to 2.0 for which will always lie in between 1.0 to 2.0 for 

LaplaceLaplace’’ss equation
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ADI method of solutionADI method of solution
Coefficient matrix is sparse matrix, when an Coefficient matrix is sparse matrix, when an 
elliptical PDE is solved by FD methodelliptical PDE is solved by FD method

Especially in the 3D case, the number of nonzero Especially in the 3D case, the number of nonzero 
coefficients is a small fraction of the total, this is coefficients is a small fraction of the total, this is 
called sparsenesscalled sparseness

The relative sparseness increases as the number The relative sparseness increases as the number 
of equations increasesof equations increases

Iterative methods are preferred for sparse matrix, Iterative methods are preferred for sparse matrix, 
until they have a until they have a tridiagonaltridiagonal structure structure 



ADI method of solutionADI method of solution

Mere elimination does not preserve the sparseness Mere elimination does not preserve the sparseness 
until the matrix itself is until the matrix itself is tridiagonaltridiagonal

Frequently the coefficient matrix has a band Frequently the coefficient matrix has a band 
structurestructure

There is a special regularity for the nonzero There is a special regularity for the nonzero 
elementselements

The elimination does not introduce nonzero terms The elimination does not introduce nonzero terms 
outside of the limits defined by the original bandsoutside of the limits defined by the original bands



ADI method of solutionADI method of solution

Zeros in the gaps between the parallel lines Zeros in the gaps between the parallel lines 
are not preserved, though, so the tightest are not preserved, though, so the tightest 
possible possible bandednessbandedness is preferredis preferred

Sometimes it is possible to order the points Sometimes it is possible to order the points 
so that a so that a pentadiagonalpentadiagonal matrix resultsmatrix results

The best of the band structure is The best of the band structure is tridiagonaltridiagonal, , 
with corresponding economy of storage and with corresponding economy of storage and 
speed of solution.speed of solution.



ADI method of solution contADI method of solution cont……
A method for the steady state heat equation, called the alternatA method for the steady state heat equation, called the alternatinging--
directiondirection--implicit (A.D.I) method, results in implicit (A.D.I) method, results in tridiagonaltridiagonal matrices and is matrices and is 
of growing popularity.of growing popularity.

A.D.I is particularly useful in 3D problems, but the method is mA.D.I is particularly useful in 3D problems, but the method is more ore 
easily explained in two dimensions.easily explained in two dimensions.

When we use A.D.I in 2D, we write When we use A.D.I in 2D, we write LaplaceLaplace’’ss equation asequation as

Where the subscripts L,R,A, and B indicate nodes left, right, abWhere the subscripts L,R,A, and B indicate nodes left, right, above, and ove, and 
below the central node 0. If below the central node 0. If ∆∆x= x= ∆∆yy, we can rearrange to the iterative , we can rearrange to the iterative 
form
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ADI method of solutionADI method of solution
Iterative form is as:Iterative form is as:

Using above equation, we proceed through the nodes by Using above equation, we proceed through the nodes by 
rows, solving a set of equations (trirows, solving a set of equations (tri--diagonal) that consider diagonal) that consider 
the values at nodes above and below as fixed quantities the values at nodes above and below as fixed quantities 
that are put into the RHS of the equations that are put into the RHS of the equations 

After the rowAfter the row--wise traverse, we then do a similar set of wise traverse, we then do a similar set of 
computations but traverse the nodes columncomputations but traverse the nodes column--wise:wise:
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ADI method of solutionADI method of solution
This removes the bias that would be present if we use only This removes the bias that would be present if we use only 
the rowthe row--wise traversewise traverse
The name ADI comes from the fact that we alternate the The name ADI comes from the fact that we alternate the 
direction after each traversedirection after each traverse
It is implicit, because we do not get uIt is implicit, because we do not get u00 values directly but values directly but 
only through solving a set of equationsonly through solving a set of equations
As in other iterative methods, we can accelerate As in other iterative methods, we can accelerate 
convergence. We introduce an acceleration factor, convergence. We introduce an acceleration factor, ρρ, by , by 
rewriting equationsrewriting equations
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ADI method of solutionADI method of solution

Rearranging further to give the triRearranging further to give the tri--diagonal diagonal 
systems, we getsystems, we get
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CGHS methodCGHS method
The conjugate Gradient (CG) method was The conjugate Gradient (CG) method was 
originally proposed by originally proposed by HestensHestens and and StiefelStiefel (1952).(1952).

The gradient method solves N x N nonsingular The gradient method solves N x N nonsingular 
system of simultaneous linear equations by system of simultaneous linear equations by 
iteration process. There are various forms of iteration process. There are various forms of 
conjugate gradient methodconjugate gradient method

The finite difference approximation of the ground The finite difference approximation of the ground 
water flow governing equation at all the I.J nodes water flow governing equation at all the I.J nodes 
in a rectangular flow region (J rows and I in a rectangular flow region (J rows and I 
columns) will lead to a set of I.J linear equations columns) will lead to a set of I.J linear equations 
and as many unknowns,and as many unknowns,



CGHS methodCGHS method

The I.J equations can be written in the matrix The I.J equations can be written in the matrix 
notations as notations as 

Where A = banded coefficient matrix,Where A = banded coefficient matrix,
H= the column vector of unknownsH= the column vector of unknowns
Y= column vector of known quantitiesY= column vector of known quantities
Giving an initial guess HGiving an initial guess Hii for the solution vector H,  for the solution vector H,  
we can write as followwe can write as follow

YHA =

iii dHH +=+1



CGHS methodCGHS method

Where Where ddii is a direction vector, His a direction vector, Hii is the is the 
approximation to the solution vector H at approximation to the solution vector H at 
the i the i thth iterative step.iterative step.
A CG method chooses A CG method chooses ddii such that at each such that at each 
iteration the B norm of the error vector is iteration the B norm of the error vector is 
minimized, which is defined as minimized, which is defined as 

where

5.0
111 , >+++ =< iiBi eeBe

where
iiii deHHe −=−= ++ 11



CGHS methodCGHS method

In which eIn which ei+1i+1 is the error at the (i+1)th iteration. In is the error at the (i+1)th iteration. In 
the above equation angle bracket denotes the the above equation angle bracket denotes the 
Euclidean inner product, which is defined asEuclidean inner product, which is defined as

In the previous equation B is a symmetric positive In the previous equation B is a symmetric positive 
definite (definite (spdspd) inner product matrix. In the case of ) inner product matrix. In the case of 
symmetric positive definite matrix A, such as that symmetric positive definite matrix A, such as that 
arising from the finite difference approximation  of arising from the finite difference approximation  of 
the ground water flow equation, the usual choice the ground water flow equation, the usual choice 
for the inner product matrix is  for the inner product matrix is  B=A
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CGHS methodCGHS method
A symmetric matrix A is said to be positive A symmetric matrix A is said to be positive 
definite if definite if xxTTAxAx>0 whenever x>0 whenever x≠≠0 where x is 0 where x is 
any column vector. So the resulting any column vector. So the resulting 
conjugate gradient method minimizes the A conjugate gradient method minimizes the A 
norm of the error vector (i.e.norm of the error vector (i.e. ).).
The convergence of conjugate gradient The convergence of conjugate gradient 
method depend upon the distribution of method depend upon the distribution of 
eigenvalueseigenvalues of matrix A and to a lesser of matrix A and to a lesser 
extend upon the condition number [k(A)] of extend upon the condition number [k(A)] of 
the matrix. The condition number of a the matrix. The condition number of a 
symmetric positive definite matrix is defined symmetric positive definite matrix is defined 
asas

Aie 1+

minmax /)( λλ=Ak



CGHS methodCGHS method

Where Where λλmax max and and λλminmin are the largest and smallest are the largest and smallest 
eigenvalueseigenvalues of A respectively. When k(A) is large, of A respectively. When k(A) is large, 
the matrix is said to be illthe matrix is said to be ill--conditioned, in this case conditioned, in this case 
conjugate gradient method may converge slowly.conjugate gradient method may converge slowly.

The condition number may be reduced by The condition number may be reduced by 
multiplying the system by a premultiplying the system by a pre--conditioning matrix conditioning matrix 
KK--1. Then the system of linear equation given by 1. Then the system of linear equation given by 
the equationthe equation…… can be modified as can be modified as 

YKHAK 11 −− =



CGHS methodCGHS method

Different conjugate methods are classified Different conjugate methods are classified 
depending upon the various choices of the predepending upon the various choices of the pre--
conditioning matrix.conditioning matrix.

The choice of K matrix should be such that only The choice of K matrix should be such that only 
few calculations and not much memory storage few calculations and not much memory storage 
are required in each iteration to achieve this. With are required in each iteration to achieve this. With 
a proper choice of prea proper choice of pre--conditioning matrix, the conditioning matrix, the 
resulting  preconditioned conjugate gradient resulting  preconditioned conjugate gradient 
method can be quite efficient.method can be quite efficient.

A general algorithm for the conjugate gradient A general algorithm for the conjugate gradient 
method is given as follow:method is given as follow:



CGHS methodCGHS method

InitializeInitialize

Do while till the stopping criteria is not satisfied
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CGHS methodCGHS method
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CGHS methodCGHS method
Where rWhere r00 is the initial residue vector, sis the initial residue vector, s00 is a is a 
vector, pvector, p00 is initial conjugate direction is initial conjugate direction 
vector, rvector, ri+1i+1,s,si+1i+1 and pand pi+1i+1 are the are the 
corresponding vectors at (i+1)th iterative corresponding vectors at (i+1)th iterative 
step, kstep, k--1 is the preconditioning matrix and A 1 is the preconditioning matrix and A 
is the given coefficient matrix. This is the given coefficient matrix. This 
conjugate algorithm has following two conjugate algorithm has following two 
theoretical properties:theoretical properties:
(a) the value {H(a) the value {Hii}i>0 converges to the }i>0 converges to the 
solution H within n iterationssolution H within n iterations
(b) the CG method minimizes (b) the CG method minimizes for all for all 
the values of ithe values of i

HHi −



CGHS methodCGHS method
There are three types of operations that are There are three types of operations that are 
performed by the CG method: inner performed by the CG method: inner 
products, linear combination of vectors and products, linear combination of vectors and 
matrix vector multiplications. matrix vector multiplications. 

The computational characteristics of these The computational characteristics of these 
operations have an impact on the different operations have an impact on the different 
conjugate gradient methods.conjugate gradient methods.



AssignmentsAssignments
1. The equation 1. The equation 

is an elliptic equation. Solve it on the unit square, subject tois an elliptic equation. Solve it on the unit square, subject to u=0 on u=0 on 
the boundaries. Approximate the first derivative by a centralthe boundaries. Approximate the first derivative by a central--
difference approximation. Investigate the effect of size of difference approximation. Investigate the effect of size of ∆∆x on x on 
the results, to determine at what size reducing it does not havethe results, to determine at what size reducing it does not have
further effect.further effect.

2. Write and run a program for 2. Write and run a program for poissonpoisson’’ss equation. Use it to solve equation. Use it to solve 

On the region                                   with u=0 on all On the region                                   with u=0 on all 
boundaries except for y=0, where u=1.0.boundaries except for y=0, where u=1.0.
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AssignmentsAssignments
3. 3. Repeat the exercise 2, using A.D.I method. Provide the Repeat the exercise 2, using A.D.I method. Provide the 

Poisson equation as well as the boundary conditions as Poisson equation as well as the boundary conditions as 
given in the exercise 2.given in the exercise 2.

4. The system of equations given here (as an augmented 4. The system of equations given here (as an augmented 
matrix) can be speeded by applying overmatrix) can be speeded by applying over--relaxation. Make relaxation. Make 
trials with varying values of the factor to find the optimum trials with varying values of the factor to find the optimum 
value. (In this case you will probably find this to be less value. (In this case you will probably find this to be less 
than unity, meaning it is underthan unity, meaning it is under--relaxed.)relaxed.)
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Introduction Introduction 
For most of the practical implications, the flow For most of the practical implications, the flow 
conditions in a gradually varied flow are required to conditions in a gradually varied flow are required to 
calculate. calculate. 
These calculations are performed to determine the These calculations are performed to determine the 
water surface elevations required for the planning, water surface elevations required for the planning, 
design, and operation of open channels so that the design, and operation of open channels so that the 
effects of the addition of engineering works and the effects of the addition of engineering works and the 
channel modifications on water levels may be channel modifications on water levels may be 
assessedassessed
Also steady state flow conditions are needed to Also steady state flow conditions are needed to 
specify proper initial conditions for the computation specify proper initial conditions for the computation 
of unsteady flows        of unsteady flows        



IntroductionIntroduction
Improper initial conditions introduce false Improper initial conditions introduce false 
transients into the simulation, which may lead to transients into the simulation, which may lead to 
incorrect resultsincorrect results

It is possible to use unsteady flow algorithms It is possible to use unsteady flow algorithms 
directly to determine the initial conditions by directly to determine the initial conditions by 
computing for long simulation timecomputing for long simulation time

However, such a procedure is computationally However, such a procedure is computationally 
inefficient and may not converge to the proper inefficient and may not converge to the proper 
steady state solution if the finitesteady state solution if the finite--difference scheme difference scheme 
is not consistent is not consistent 



IntroductionIntroduction

Various methods to compute gradually varied flows Various methods to compute gradually varied flows 
are required to developare required to develop

Methods, which are suitable for a computer Methods, which are suitable for a computer 
solution, are adoptedsolution, are adopted

Traditionally there are two methodsTraditionally there are two methods--direct and direct and 
standard step methodsstandard step methods

Higher order accurate methods to numerically Higher order accurate methods to numerically 
integrate the governing differential equation are integrate the governing differential equation are 
requiredrequired



Equation of gradually varied flowEquation of gradually varied flow
Consider the profile of gradually varied flow in the elementary Consider the profile of gradually varied flow in the elementary length length 
dxdx of an open channel. of an open channel. 
The total head above the datum at the upstream section  isThe total head above the datum at the upstream section  is

H= total headH= total head
z = vertical distance of the channel bottom above the datumz = vertical distance of the channel bottom above the datum
d= depth of flow section d= depth of flow section 
θθ= bottom slope angle= bottom slope angle
αα= energy coefficient= energy coefficient
V= mean velocity of flow through the section

g
VdzH
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αθ ++=

V= mean velocity of flow through the section



Equation of gradually varied flowEquation of gradually varied flow
DifferentiatingDifferentiating

The energy slope,The energy slope,
The slope of the channel bottom, The slope of the channel bottom, 
Substituting these slopes in above equations and Substituting these slopes in above equations and 
solving for solving for dd/dxdd/dx ,,
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Equation of gradually varied flowEquation of gradually varied flow

This is the general differential equation for This is the general differential equation for 
gradually varied flow gradually varied flow 
For small For small θθ, , coscosθθ≈≈11, , d d ≈≈ yy, and , and dd/dxdd/dx ≈≈ dy/dxdy/dx, thus the , thus the 
above equation becomes,above equation becomes,

Since Since V=Q/AV=Q/A, and , and dA/dydA/dy=T=T, the velocity head term may , the velocity head term may 
be expressed as
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Equation of gradually varied flowEquation of gradually varied flow

Since,Since,
The above may be written as  The above may be written as  

Suppose that a critical flow of discharge equal to Suppose that a critical flow of discharge equal to 
Q occurs at the section;Q occurs at the section;

After substituting After substituting 
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Equation of gradually varied flowEquation of gradually varied flow
When the ManningWhen the Manning’’s formula is used, the energy s formula is used, the energy 
slope is slope is 

When the When the ChezyChezy formula is used, formula is used, 

In general form,In general form,
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Computation of gradually varied Computation of gradually varied 
flowsflows

The analysis of continuity, momentum, and energy The analysis of continuity, momentum, and energy 
equations describe the relationships among various flow equations describe the relationships among various flow 
variables, such as the flow depth, discharge, and flow variables, such as the flow depth, discharge, and flow 
velocity throughout a specified channel lengthvelocity throughout a specified channel length

The channel cross section, Manning n, bottom slope, and The channel cross section, Manning n, bottom slope, and 
the rate of discharge are usually known for these steadythe rate of discharge are usually known for these steady--
statestate--flow computations.flow computations.

The rate of change of flow depth in gradually varied flows is The rate of change of flow depth in gradually varied flows is 
usually small, such that the assumption of hydrostatic usually small, such that the assumption of hydrostatic 
pressure distribution is validpressure distribution is valid



Computation of gradually varied Computation of gradually varied 
flowsflows

The graphicalThe graphical--integration method:integration method:
Used to integrate dynamic equation graphicallyUsed to integrate dynamic equation graphically
Two channel sections are chosen at xTwo channel sections are chosen at x11 and xand x2 2 
with corresponding depths of flow ywith corresponding depths of flow y11 and yand y22, , 
then the distance along the channel floor isthen the distance along the channel floor is

Assuming several values of y, and computing Assuming several values of y, and computing 
the values of the values of dx/dydx/dy
A curve of y against A curve of y against dx/dydx/dy is constructedis constructed
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Computation of gradually varied Computation of gradually varied 
flowsflows

The value of x is equal to the shaded area formed by the The value of x is equal to the shaded area formed by the 
curve, ycurve, y--axis, and the ordinates of axis, and the ordinates of dx/dydx/dy corresponding to corresponding to 
yy11 and yand y22..

This area is measured and the value of x is determined.This area is measured and the value of x is determined.
It applies to flow in prismatic as well as nonIt applies to flow in prismatic as well as non--prismatic prismatic 
channels of any shape and slopechannels of any shape and slope

This method is easier and straightforward to follow.This method is easier and straightforward to follow.



Computation of gradually varied Computation of gradually varied 
flowsflows

Method of direct integrationMethod of direct integration

Gradually varied flow cannot be expressed Gradually varied flow cannot be expressed 
explicitly in terms of y for all types of channel explicitly in terms of y for all types of channel 
cross section cross section 

Few special cases has been solved by Few special cases has been solved by 
mathematical integration mathematical integration 



Use of numerical integration for Use of numerical integration for 
solving gradually varied flowssolving gradually varied flows

Total head at a channel section may be written asTotal head at a channel section may be written as

WhereWhere
H H = elevation of energy line above datum; = elevation of energy line above datum; 
z z =elevation of the channel bottom above the datum; =elevation of the channel bottom above the datum; 
y y = flow depth; = flow depth; 
V V = mean flow velocity, and = mean flow velocity, and 
αα =velocity=velocity--head coefficienthead coefficient
The rate of variation of flow depth, y, with respect to The rate of variation of flow depth, y, with respect to 
distance x is obtained by differentiating the above equationdistance x is obtained by differentiating the above equation.
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Solution of gradually varied flowsSolution of gradually varied flows

Consider Consider xx positive in the downstream flow positive in the downstream flow 
directiondirection

By differentiating the above energy equation, we By differentiating the above energy equation, we 
get the water surface profile asget the water surface profile as

The above equation is of first order ordinary The above equation is of first order ordinary 
differential equation, in which differential equation, in which xx is independent is independent 
variable and variable and yy is the dependent variable.
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Solution of gradually varied flowsSolution of gradually varied flows

In the above differential equation for gradually varied In the above differential equation for gradually varied 
flows, the parameters are as given below: flows, the parameters are as given below: 

x x = distance along the channel (positive in = distance along the channel (positive in 
downward direction)downward direction)

SS0 0 = longitudinal slope of the channel bottom= longitudinal slope of the channel bottom
SSff = slope of the energy line= slope of the energy line
B B = top water surface width= top water surface width
g g = acceleration due to gravity= acceleration due to gravity
A A = flow area= flow area
Q Q = rate of discharge= rate of discharge



Solution of gradually varied flowsSolution of gradually varied flows

The right hand of the above equation shows that it The right hand of the above equation shows that it 
is a function of is a function of xx and and yy, so assume this function  , so assume this function  
as as f(x,y)f(x,y), then we can write above equation as, then we can write above equation as

In which, In which, 

We can integrate above differential equation to We can integrate above differential equation to 
determine the flow depth along a channel length , determine the flow depth along a channel length , 
where where f(x,y)f(x,y) is nonlinear function. So the numerical is nonlinear function. So the numerical 
methods are useful for its integration.
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Solution of gradually varied flowsSolution of gradually varied flows

These methods yields flow depth discretelyThese methods yields flow depth discretely
To determine the value To determine the value yy22 at distance at distance xx22, we , we 
proceed as followsproceed as follows

The above integration yields..
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Solution of gradually varied flowsSolution of gradually varied flows

We the We the yy values along the downstream if values along the downstream if dxdx is is 
positive and upstream values if positive and upstream values if dxdx is negativeis negative

We numerically evaluate the integral termWe numerically evaluate the integral term

Successive  application  provides the water surface Successive  application  provides the water surface 
profile in the desired channel lengthprofile in the desired channel length

To determine To determine xx22 where the flow depth will be where the flow depth will be yy22, , 
we proceed as follows:we proceed as follows:
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Solution of gradually varied flowsSolution of gradually varied flows
In whichIn which

Integrating the above differential equation we get,Integrating the above differential equation we get,

To compute the water surface profile, we begin the To compute the water surface profile, we begin the 
computations at a location where the flow depth for the computations at a location where the flow depth for the 
specified discharge is knownspecified discharge is known

We start the computation at the downstream control We start the computation at the downstream control 
section if the flow is subsection if the flow is sub--critical and proceed in the critical and proceed in the 
upstream direction.
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Solution of gradually varied flowsSolution of gradually varied flows

In supercritical flows, however, we start at an upstream In supercritical flows, however, we start at an upstream 
control section and compute the profile in the downstream control section and compute the profile in the downstream 
directiondirection

This is due to the fact that the flow depth is known at only This is due to the fact that the flow depth is known at only 
control section, we proceed in either the upstream or control section, we proceed in either the upstream or 
downstream direction.downstream direction.

In the previous sections we discussed how to compute the In the previous sections we discussed how to compute the 
locations where a specified depth will occurlocations where a specified depth will occur

A systematic approach is needed to develop for these A systematic approach is needed to develop for these 
computationscomputations

A procedure called A procedure called direct step methoddirect step method is discussed below is discussed below 



Solution of gradually varied flowsSolution of gradually varied flows

Direct step methodDirect step method
Assume the properties of the channel section are known Assume the properties of the channel section are known 
then,then,

In addition, the specific energyIn addition, the specific energy

The slope of the energy grade line is gradually varied flow The slope of the energy grade line is gradually varied flow 
may be computed with negligible error by using the may be computed with negligible error by using the 
corresponding formulas for friction slopes in uniform flow.corresponding formulas for friction slopes in uniform flow.
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Solution of gradually varied flowsSolution of gradually varied flows

The following approximations have been used to The following approximations have been used to 
select representative value of select representative value of SSff for the channel for the channel 
length between section 1 and 2length between section 1 and 2
Average friction slopeAverage friction slope

Geometric mean friction slopeGeometric mean friction slope

Harmonic mean friction slope
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Solution of gradually varied flowsSolution of gradually varied flows

The friction loss may be written as The friction loss may be written as 

From the energy equation we can write,From the energy equation we can write,

Writing in terms of bed slopeWriting in terms of bed slope

Now from the above equation, the location of section 2 is Now from the above equation, the location of section 2 is 
known.
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Solution of gradually varied flowsSolution of gradually varied flows

This is now used as the starting value for the next This is now used as the starting value for the next 
stepstep

Then by successively increasing or decreasing the Then by successively increasing or decreasing the 
flow depth and determining where these depths will flow depth and determining where these depths will 
occur, the water surface profile in the desired  occur, the water surface profile in the desired  
channel length may be computed channel length may be computed 

The direction of computations is automatically taken The direction of computations is automatically taken 
care of if proper sign is used for the numerator and care of if proper sign is used for the numerator and 
denominator  denominator  



Solution of gradually varied flowsSolution of gradually varied flows

The disadvantages of this method areThe disadvantages of this method are

1.1. The flow depth is not computed at predetermined The flow depth is not computed at predetermined 
locations. Therefore, interpolations may become locations. Therefore, interpolations may become 
necessary, if the flow depths are required at specified necessary, if the flow depths are required at specified 
locations. Similarly, the crosslocations. Similarly, the cross--sectional information has to sectional information has to 
be estimated if such information is available only at the be estimated if such information is available only at the 
given locations. This may not yield accurate resultsgiven locations. This may not yield accurate results

2.2. Needs additional effortNeeds additional effort

3.3. It is cumbersome to apply to nonIt is cumbersome to apply to non--prismatic channelsprismatic channels



Solution of gradually varied flowsSolution of gradually varied flows
Standard step methodStandard step method

When we require to determine the depth at specified When we require to determine the depth at specified 
locations or when the channel cross sections are available locations or when the channel cross sections are available 
only at some specified locations, the direct step method is only at some specified locations, the direct step method is 
not suitable enough to apply and in these cases standard not suitable enough to apply and in these cases standard 
step method is appliedstep method is applied

In this method the following steps are followed :In this method the following steps are followed :

Total head at section 1Total head at section 1
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Solution of gradually varied flowsSolution of gradually varied flows
Total head at section 2Total head at section 2

Including the expression for friction loss Including the expression for friction loss hhff

Substituting the total head at 2 in terms of Substituting the total head at 2 in terms of 
different heads, we obtain
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Solution of gradually varied flowsSolution of gradually varied flows
In the above equation. In the above equation. AA22 andand SSf2f2 are functions of are functions of yy22, and all , and all 
other quantities are either known or already have been other quantities are either known or already have been 
calculated at section 1.calculated at section 1.

The flow depth The flow depth yy22 is then determined by solving the is then determined by solving the 
following nonlinear algebraic equation:following nonlinear algebraic equation:

The above equation is solved for The above equation is solved for yy22 by a trial and error by a trial and error 
procedure or by using the Newton or Bisection methodsprocedure or by using the Newton or Bisection methods
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Solution of gradually varied flowsSolution of gradually varied flows

Here the Newton method is discussed.Here the Newton method is discussed.
For this method we need an expression for For this method we need an expression for dF/dydF/dy22

The last term of the above equations can be The last term of the above equations can be 
evaluated asevaluated as
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Solution of gradually varied flowsSolution of gradually varied flows

Here Here dAdA22/dy/dy22 is replaced by is replaced by BB22 in the above in the above 
equation and substituting for this expressionequation and substituting for this expression

By using By using y=yy=y11, , dy/dxdy/dx=f(x=f(x11,y,y11)) , then the flow depth   , then the flow depth   
, can be computed from the equation , can be computed from the equation 

During subsequent step, howeverDuring subsequent step, however may be may be 
determined by extrapolating the change in flow determined by extrapolating the change in flow 
depth computed during the preceding step.depth computed during the preceding step.
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Solution of gradually varied flowsSolution of gradually varied flows

A better estimate for A better estimate for yy22 can be computed from the can be computed from the 
equation equation 

If If is less than a specified tolerance, is less than a specified tolerance, εε, then , then 
is the flow depth is the flow depth yy22, at section 2; otherwise, , at section 2; otherwise, 

setset and repeat the steps until a solution and repeat the steps until a solution 
is obtainedis obtained
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Solution of gradually varied flowsSolution of gradually varied flows

Integration of differential equationIntegration of differential equation

For the computation of the water surface profile by For the computation of the water surface profile by 
integrating the differential equation, the integration has to integrating the differential equation, the integration has to 
be done numerically, since be done numerically, since f(x,yf(x,y)) is a nonlinear function is a nonlinear function 

Different numerical methods have been developed to Different numerical methods have been developed to 
solve such nonlinear system efficiently solve such nonlinear system efficiently 

The numerical methods that are in use to evaluate the The numerical methods that are in use to evaluate the 
integral term can be  divided into following categories:integral term can be  divided into following categories:

1.1. SingleSingle--step methodsstep methods
2.2. PredictorPredictor--corrector methods corrector methods 



Solution of gradually varied flowsSolution of gradually varied flows
The single step method is similar to direct step method and The single step method is similar to direct step method and 
standard step methodstandard step method

The unknown depths are expressed in terms of a function The unknown depths are expressed in terms of a function 
f(x,yf(x,y), ), at a neighboring point where the flow depth is either at a neighboring point where the flow depth is either 
initially known or calculated during the previous stepinitially known or calculated during the previous step

In the predictorIn the predictor--corrector method the value of the unknown corrector method the value of the unknown 
is first predicted from the previous stepis first predicted from the previous step

This predicted value is then refined through iterative process This predicted value is then refined through iterative process 
during the corrector part till the solution is reached by the during the corrector part till the solution is reached by the 
convergence criteriaconvergence criteria



Solution of gradually varied flowsSolution of gradually varied flows

1. Euler method: 1. Euler method: In this method the rate of variation of y In this method the rate of variation of y 
with respect to with respect to xx at distance at distance xxii can be estimated as  can be estimated as  
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SingleSingle--step methodsstep methods

Euler methodEuler method

Modified Euler methodModified Euler method

Improved Euler methodImproved Euler method

FourthFourth--order order RungeRunge--KuttaKutta methodmethod



Solution of gradually varied flowsSolution of gradually varied flows

The rate of change of depth of flow in a gradually varied The rate of change of depth of flow in a gradually varied 
flow is given as belowflow is given as below

All the variables are known in the right hand side, so All the variables are known in the right hand side, so 
derivative of derivative of yy with respect to with respect to xx can be obtainedcan be obtained
Assuming that this variation is constant in the interval Assuming that this variation is constant in the interval xxii to to 
xxi+1i+1, then the flow depth at , then the flow depth at xxi+1i+1 can be computed from the can be computed from the 
equation
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Solution of gradually varied flows cont..Solution of gradually varied flows cont..

2. Modified Euler method2. Modified Euler method
We may also improve theWe may also improve the accuracy of the Euler method by accuracy of the Euler method by 

using the slope of the curve                  at                using the slope of the curve                  at                and and 

, in which                      and              , in which                      and              . . 

Let us call this slope          . Then Let us call this slope          . Then 

This method, called the modified Euler method, is secondThis method, called the modified Euler method, is second--
order accurate.order accurate.
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Solution of gradually varied flows cont..Solution of gradually varied flows cont..
3. Improved Euler method3. Improved Euler method
Let us call the flow depth at           obtained by using Euler Let us call the flow depth at           obtained by using Euler 
method as         i.e.,method as         i.e.,

By using this value, we can compute the slope of the curve   By using this value, we can compute the slope of the curve   
at                , i.e.,                      at                , i.e.,                      . Let us . Let us 

use the average value of the slopes of the curve at        and  use the average value of the slopes of the curve at        and  
. Then we can determine the value of          from the . Then we can determine the value of          from the 

equation                            .  This equation may be equation                            .  This equation may be 

written as                                               . This written as                                               . This method method 
called the improved Euler method, is second order accurate.called the improved Euler method, is second order accurate.
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Solution of gradually varied flows cont..Solution of gradually varied flows cont..

4. Fourth4. Fourth--order order RungeRunge KuttaKutta MethodMethod
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Solution of gradually varied flows cont..Solution of gradually varied flows cont..

PredictorPredictor--corrector methodscorrector methods
In this methodIn this method we predict the unknown flow depth first, we predict the unknown flow depth first, 
correct this predicted value, and then recorrect this predicted value, and then re--correct this correct this 
corrected value. This iteration is continued till the desired corrected value. This iteration is continued till the desired 
accuracy is met. accuracy is met. 
In the predictor part, let us use the Euler method to In the predictor part, let us use the Euler method to 
predict the value of predict the value of yyi+1i+1, I.e, I.e

we may correct using the following equationwe may correct using the following equation
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Solution of gradually varied flows cont..Solution of gradually varied flows cont..

Now we may reNow we may re--correct y again to obtain a better correct y again to obtain a better 
value:value:

Thus the j Thus the j thth iteration is iteration is 

Iteration until                       , where Iteration until                       , where εε = specified = specified 
tolerancetolerance
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SaintSaint--VenantVenant equationsequations
1D gradually varied unsteady flow in an open 1D gradually varied unsteady flow in an open 
channel is given by Saintchannel is given by Saint--VenantVenant equationsequations

X X -- distance along the channel, t distance along the channel, t -- time, vtime, v-- average average 
velocity, y velocity, y -- depth of flow, adepth of flow, a-- cross sectional area, w cross sectional area, w 
-- top width, Stop width, Soo-- bed slope, bed slope, SSff -- friction slope
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Saint Venant equationsSaint Venant equations

Friction slopeFriction slope

r r -- hydraulic radius, nhydraulic radius, n--ManningManning’’s roughness s roughness 
coefficientcoefficient

Two nonlinear equations in two unknowns v and y Two nonlinear equations in two unknowns v and y 
and two dependent variables x and t and two dependent variables x and t 

These two equations are a set of hyperbolic partial These two equations are a set of hyperbolic partial 
differential equations
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SaintSaint--VenantVenant equationsequations
Multiplying 1Multiplying 1stst equation by                and adding it equation by                and adding it 
to 2to 2ndnd equation yieldsequation yields

The above equation is a pair of equations along The above equation is a pair of equations along 
characteristics given bycharacteristics given by

Based on the equations used, methods are Based on the equations used, methods are 
classified as characteristics methods and direct classified as characteristics methods and direct 
methods.methods.
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FD methods for Saint Venant equationsFD methods for Saint Venant equations

The governing equation in the conservation The governing equation in the conservation 
form may be written in matrix form as form may be written in matrix form as 

In whichIn which

General formulation
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FD methods for Saint Venant equationsFD methods for Saint Venant equations

ContinuedContinued……
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FD methods for Saint Venant equationsFD methods for Saint Venant equations

Boundary conditions:Boundary conditions:

Downstream boundary:Downstream boundary:

Left boundary   Left boundary   y=y=yyuu= uniform flow depth= uniform flow depth
v=vv=vuu= uniform velocity = uniform velocity 

Right boundary Right boundary y=y=yycc= Critical flow depth= Critical flow depth
v=v=vvcc= Critical velocity
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FD methods for Saint Venant equationsFD methods for Saint Venant equations

Stability: unconditionally stable provided Stability: unconditionally stable provided 
αα>0.5, i.e., the flow variables are weighted >0.5, i.e., the flow variables are weighted 
toward the n+1 time level.toward the n+1 time level.

Unconditional stability means that there is no Unconditional stability means that there is no 
restriction on the size of restriction on the size of ∆∆x x and and ∆∆tt for for 
stabilitystability



Solution procedureSolution procedure

The expansion of the equationThe expansion of the equation……

The above set of nonlinear algebraic equations The above set of nonlinear algebraic equations 
can be solved by Newtoncan be solved by Newton--RaphsonRaphson method
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AssignmentsAssignments
1. Prove the following equation describes the 1. Prove the following equation describes the 

gradually varied flow in a channel having variable gradually varied flow in a channel having variable 
cross section along its length: cross section along its length: 

2. Develop computer programs to compute the 2. Develop computer programs to compute the 
waterwater-- surface profile in a trapezoidal channel surface profile in a trapezoidal channel 
having a free having a free overfalloverfall at the downstream end. To at the downstream end. To 
compute the profile, use the following methods:compute the profile, use the following methods:

(i)(i) Euler methodEuler method
(ii)(ii) Modified Euler methodModified Euler method
(iii)(iii) FourthFourth--order order RungeRunge--KuttaKutta method
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AssignmentsAssignments

3. Using method of characteristics, write a 3. Using method of characteristics, write a 
computer program to solve 1D gradually computer program to solve 1D gradually 
varied unsteady flow in an open channel as varied unsteady flow in an open channel as 
given by Saintgiven by Saint--Venant equations, assuming Venant equations, assuming 
initial and boundary conditions.initial and boundary conditions.



Solution of Pipe Transients Solution of Pipe Transients 
and Pipe Network and Pipe Network 

ProblemsProblems
Module 10Module 10
6 Lectures 6 Lectures 



ContentsContents
Basic equation of Basic equation of 
transientstransients
Method of Method of 
characteristics for its characteristics for its 
solutionsolution
Complex boundary Complex boundary 
conditioncondition
Pipe network problemsPipe network problems
Node based and Loop Node based and Loop 
based modelsbased models
Solution through Solution through 
Newton and Newton and PicardPicard
techniquestechniques



Basic equations of transientsBasic equations of transients
The flow and pressures in a water The flow and pressures in a water 
distribution system do not remain constant distribution system do not remain constant 
but fluctuate throughout the daybut fluctuate throughout the day

Two time scales on which these fluctuations Two time scales on which these fluctuations 
occuroccur

1. daily cycles1. daily cycles
2. transient fluctuations  2. transient fluctuations  



Basic equations of transientsBasic equations of transients
Continuity equation: applying the law of Continuity equation: applying the law of 
conservation of mass to the control volume (xconservation of mass to the control volume (x11
and xand x22))

By dividing throughout by By dividing throughout by ∆∆x as it approach zero, x as it approach zero, 
the above equation can be written as the above equation can be written as 

Expanding and rearranging various terms, using Expanding and rearranging various terms, using 
expressions for total derivatives, we obtainexpressions for total derivatives, we obtain
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Basic equations of transientsBasic equations of transients
Now we define the bulk modulus of elasticity, K, of Now we define the bulk modulus of elasticity, K, of 
a fluid asa fluid as

This can be written asThis can be written as

Area of  pipe,          , where R is the radius of the Area of  pipe,          , where R is the radius of the 
pipe. Hence                    . In terms of strain this pipe. Hence                    . In terms of strain this 
may be written asmay be written as

Now using hoop stress, we obtain Now using hoop stress, we obtain 
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Basic equations of transientsBasic equations of transients
Following the above equations one can write,Following the above equations one can write,

Substituting these equations into continuity equation and Substituting these equations into continuity equation and 
simplifying the equation yieldssimplifying the equation yields

Let us define                     , where a is wave speedLet us define                     , where a is wave speed
with which pressure waves travel back and forth.with which pressure waves travel back and forth.

Substituting this expression we get the following continuity Substituting this expression we get the following continuity 
equationequation
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Method of characteristicsMethod of characteristics
The dynamic and continuity equations for flow through a The dynamic and continuity equations for flow through a 
pipe line is given by pipe line is given by 

Where Q=discharge through the pipe Where Q=discharge through the pipe 
H=H=piezometricpiezometric headhead
A=area of the pipeA=area of the pipe
g=acceleration due to gravityg=acceleration due to gravity
a=velocity of the wavea=velocity of the wave
D=diameter of the pipeD=diameter of the pipe
x=distance along the pipex=distance along the pipe
t=timet=time
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Method of characteristicsMethod of characteristics
These equations can be written in terms of velocityThese equations can be written in terms of velocity

Where,
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Method of characteristicsMethod of characteristics
Where k=bulk modulus of elasticityWhere k=bulk modulus of elasticity

ρρ=density of fluid=density of fluid
E=YoungE=Young’’s modulus of elasticity of       s modulus of elasticity of       
the materialthe material

Taking a linear combination of L1 and Taking a linear combination of L1 and λλL2, L2, 
leads to leads to 

Assume Assume H=H(x,t);Q=Q(x,t)
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Method of characteristicsMethod of characteristics
Writing total derivatives ,Writing total derivatives ,

Defining the unknown multiplier Defining the unknown multiplier λλ as as 

Finally we getFinally we get

The above two equations are called characteristic The above two equations are called characteristic 
equations and 2equations and 2ndnd among them is condition along the among them is condition along the 
characteristics
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Method of characteristicsMethod of characteristics
FigureFigure……

Constant head reservoir at Constant head reservoir at x=0x=0, at , at x=Lx=L, valve is , valve is 
instantaneously closed. Pressure wave travels in the instantaneously closed. Pressure wave travels in the 
upstream direction.
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Complex boundary conditionComplex boundary condition
We may develop the boundary conditions by We may develop the boundary conditions by 
solving the positive or negative characteristic solving the positive or negative characteristic 
equations simultaneous with the condition imposed equations simultaneous with the condition imposed 
by the boundary.by the boundary.

This condition may be in the form of specifying This condition may be in the form of specifying 
head, discharge or a relationship between the head, discharge or a relationship between the 
head and discharge head and discharge 

Example: head is constant in the case of a Example: head is constant in the case of a 
constant level reservoir, flow is always zero at the constant level reservoir, flow is always zero at the 
dead end and the flow through an orifice is related dead end and the flow through an orifice is related 
to the head loss through the orifice.to the head loss through the orifice.



Complex boundary conditionComplex boundary condition
ConstantConstant--level upstream reservoirlevel upstream reservoir

In this case it is assume that the water level in the In this case it is assume that the water level in the 
reservoir or tank remains at the same level reservoir or tank remains at the same level 
independent of the flow conditions in the pipelineindependent of the flow conditions in the pipeline
This is true for the large reservoir volume  This is true for the large reservoir volume  
If the pipe at the upstream end of the pipeline is If the pipe at the upstream end of the pipeline is 
1, then1, then where where is the elevation is the elevation 
of the water level in the reservoir above the of the water level in the reservoir above the 
datum.datum.
At the upstream end, we get the negative At the upstream end, we get the negative 
characteristic equation,characteristic equation,

ruP HH =1,1 ruH

ruanP HCCQ +=1,1



Complex boundary conditionComplex boundary condition

ConstantConstant--level downstream reservoirlevel downstream reservoir
In this case, the head at the last node of pipe i will In this case, the head at the last node of pipe i will 
always be equal to the height of the water level in always be equal to the height of the water level in 
the tank above the datum, the tank above the datum, HHrdrd::

At the downstream end, we have the positive At the downstream end, we have the positive 
characteristic equation linking the boundary node characteristic equation linking the boundary node 
to the rest of the pipeline. We can write

rdnPi HH =+1,

to the rest of the pipeline. We can write

rdanPi HCCpQ −=+1,



Complex boundary conditionComplex boundary condition

Dead endDead end
At a dead end located at the end of pipe i, the At a dead end located at the end of pipe i, the 
discharge is always zero:discharge is always zero:

At the last node of pipe i, we have the positive At the last node of pipe i, we have the positive 
characteristics equation. We get 

01, =+nPiQ

characteristics equation. We get 
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p
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Complex boundary conditionComplex boundary condition

Downstream valveDownstream valve
In the previous boundaries, either the head or In the previous boundaries, either the head or 
discharge was specified, discharge was specified, 
However for a valve we specify a relationship However for a valve we specify a relationship 
between the head losses through the valve and the between the head losses through the valve and the 
discharge discharge 
Denoting the steadyDenoting the steady--state values by subscript 0, state values by subscript 0, 
the discharge through a valve is given by the the discharge through a valve is given by the 
following equation:following equation:

000 2gHACQ vd=



Complex boundary conditionComplex boundary condition
WhereWhere
CCdd=coefficient of discharge=coefficient of discharge
AAv0v0=area of the valve opening =area of the valve opening 
HH00=the drop in head =the drop in head 
QQ00= a discharge = a discharge 

By assuming that a similar relationship is valid for By assuming that a similar relationship is valid for 
the transient state conditions, we getthe transient state conditions, we get

Where subscript P denotes values of Q and H at Where subscript P denotes values of Q and H at 
the end of a computational time interval

1,1, 2)( ++ = nPiPvdnPi gHACQ

the end of a computational time interval



Complex boundary conditionComplex boundary condition
From the above two equations we can writeFrom the above two equations we can write

Where the effective valve opening is Where the effective valve opening is 

For the last section on pipe i, we have the positive For the last section on pipe i, we have the positive 
characteristic equation
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Complex boundary conditionComplex boundary condition

WhereWhere

Solving for Solving for QQPi,n+1Pi,n+1 and neglecting the negative and neglecting the negative 
sign with the radical term, we get
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Pipe network problemsPipe network problems

The network designing is largely empirical.The network designing is largely empirical.
The main must be laid in every street along which The main must be laid in every street along which 
there are properties requiring a supply.there are properties requiring a supply.
Mains most frequently used for this are 100 or Mains most frequently used for this are 100 or 
150mm diameter150mm diameter
The nodes are points of junction of mains or where The nodes are points of junction of mains or where 
a main changes diameter.a main changes diameter.
The demands along each main have to be The demands along each main have to be 
estimated and are then apportioned to the nodes at estimated and are then apportioned to the nodes at 
each end in a ratio which approximated  each end in a ratio which approximated  



Pipe network problemsPipe network problems

There are a number of limitations and difficulties There are a number of limitations and difficulties 
with respect to computer analysis of network with respect to computer analysis of network 
flows , which are mentioned below:flows , which are mentioned below:

1.1. The limitation with respect to the number of The limitation with respect to the number of 
mains it is economic to analyze means that mains it is economic to analyze means that 
mains of 150 mm diameter and less are usually mains of 150 mm diameter and less are usually 
not included in the analysis of large systems, so not included in the analysis of large systems, so 
their flow capacity is ignoredtheir flow capacity is ignored

2.2. It is excessively time consuming to work out the It is excessively time consuming to work out the 
nodal demands for a large systemnodal demands for a large system



Pipe network problemsPipe network problems
1.1. The nodal demands are estimates and may not represent The nodal demands are estimates and may not represent 

actual demandsactual demands
2.2. Losses, which commonly range from 25% to 35% of the Losses, which commonly range from 25% to 35% of the 

total supply, have to be apportioned to the nodal total supply, have to be apportioned to the nodal 
demands in some arbitrary fashion.demands in some arbitrary fashion.

3.3. No diversification factor can be applied to the peak hourly No diversification factor can be applied to the peak hourly 
demands representing reduced peaking on the larger demands representing reduced peaking on the larger 
mains since the total nodal demands must equal the input mains since the total nodal demands must equal the input 
to the system to the system 

4.4. The friction coefficients have to be estimated. The friction coefficients have to be estimated. 
5.5. No account is taken of the influence of pressure at a node No account is taken of the influence of pressure at a node 

on the demand at that node, I.e under high or low on the demand at that node, I.e under high or low 
pressure the demand is assumed to be constant.pressure the demand is assumed to be constant.



Governing Equation for Network Governing Equation for Network 
AnalysisAnalysis

Every network has to satisfy the following equations:Every network has to satisfy the following equations:
1. Node continuity equations 1. Node continuity equations –– the node continuity the node continuity 

equations state that the algebraic sum of all the equations state that the algebraic sum of all the 
flows entering and leaving a node is zero.flows entering and leaving a node is zero.

Where NJ is the number of nodes, Where NJ is the number of nodes, Q(pQ(p) is the flow in ) is the flow in 
element p (melement p (m33/s), /s), C(jC(j) is the consumption at node j ) is the consumption at node j 
(m(m33/s),           refers to the set of elements /s),           refers to the set of elements 
connected to node j. connected to node j. 

∑ ∑ =++ ,0)()()( jCpQpQ NJj ,...,1=
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Network AnalysisNetwork Analysis
2. Energy conservation equations 2. Energy conservation equations –– the energy conservation the energy conservation 

equations state that the energy loss along a path equals equations state that the energy loss along a path equals 
the difference in head at the starting node and end node the difference in head at the starting node and end node 
of the path.of the path.

Where Where h(ph(p) is the head loss in element ) is the head loss in element p(mp(m), ), s(ls(l) is the ) is the 
starting node of path l, starting node of path l, e(le(l) is the end of path 1, NL is the ) is the end of path 1, NL is the 
number of loops, and NPATH is the  number of paths other number of loops, and NPATH is the  number of paths other 
than loops and         refers to the pipes belonging to path than loops and         refers to the pipes belonging to path 
l. loop is a special case of path, wherein, the starting node l. loop is a special case of path, wherein, the starting node 
and end node are the same, making the head loss around and end node are the same, making the head loss around 
a loop zero, that is, a loop zero, that is, 

( ) ( ) [ ] 0))(())(()()( =−−±+± ∑∑ leHlsHphph
}{lpε }{lpε

NPATHNLl += ,...,1

}{lpε

( ) ( ) 0)()( =±+± ∑∑ phph



Network AnalysisNetwork Analysis
3. Element characteristics 3. Element characteristics –– the equations defining the the equations defining the 

element characteristics relate the flow through the element element characteristics relate the flow through the element 
to the head loss in the element. For a pipe element, to the head loss in the element. For a pipe element, h(ph(p) is ) is 
given by,given by,

Where Where R(pR(p) is the resistance of pipe p and e is the exponent ) is the resistance of pipe p and e is the exponent 
in the head loss equation. If Hazenin the head loss equation. If Hazen--Williams equation is Williams equation is 
used, where e=1.852 used, where e=1.852 

Where Where L(pL(p) is the length of pipe ) is the length of pipe p(mp(m), ), D(pD(p) is the diameter of ) is the diameter of 
pipe pipe p(mp(m), and CHW (p) is the Hazen), and CHW (p) is the Hazen--Williams coefficient Williams coefficient 
for pipe p.for pipe p.

epQpRph )()()( =

852.187.4 )()(
)(78.10)(
pCHWpD
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Network AnalysisNetwork Analysis
For a pump element, For a pump element, h(ph(p) is negative as head is gained in the ) is negative as head is gained in the 

element. The characteristics of the pump element are defined element. The characteristics of the pump element are defined 
by the headby the head--discharge relation of the pump. This relationship discharge relation of the pump. This relationship 
may be expressed by a polynomial or in an alternate form. In may be expressed by a polynomial or in an alternate form. In 
this study, the following equation is used. this study, the following equation is used. 

Where Where HR(mHR(m) is the rated head of the ) is the rated head of the mm--thth pump (m), pump (m), QR(mQR(m) is ) is 
the rated discharge of the rated discharge of mm--thth pump (m3/s), C1(m), C2(m) and pump (m3/s), C1(m), C2(m) and 
C3(m) are empirical constants for the C3(m) are empirical constants for the mm--thth pump obtained pump obtained 
from the pump from the pump charateristicscharateristics. Here p refers to the element . Here p refers to the element 
corresponding to the corresponding to the mm--thth pump. If the actual pump pump. If the actual pump 
characteristics are available, the constants C1, C2, C3 may be characteristics are available, the constants C1, C2, C3 may be 
evaluated. C1 is determined from the shutoff head as 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−=

)(3

)(
)().(2)(1)()(

mC

mQR
pQmCmCmHRph

evaluated. C1 is determined from the shutoff head as 

)(
)()(1

mHR
mHOmC =



Network AnalysisNetwork Analysis
Where Where HO(mHO(m) is the shutoff head of the ) is the shutoff head of the mm--thth pump. As pump. As 

h(ph(p)=)=--HR(mHR(m) for rated flow,) for rated flow,

From which C2(m)is determined. C3 (m) is obtained by From which C2(m)is determined. C3 (m) is obtained by 
fitting the equation to the actual pump characteristics.fitting the equation to the actual pump characteristics.

For a pipe element,For a pipe element,

For HazenFor Hazen--Williams equation, the above equation becomesWilliams equation, the above equation becomes
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Network AnalysisNetwork Analysis
Similarly for a pump elementSimilarly for a pump element

Where outside the parenthesis, + sign is used if flow is Where outside the parenthesis, + sign is used if flow is 
towards node j and towards node j and ––sign is used if flow is away from node j sign is used if flow is away from node j 
and, inside the parenthesis, the + sign is used, if i is the and, inside the parenthesis, the + sign is used, if i is the 
node downstream of the pump and the node downstream of the pump and the –– sign is used if j is sign is used if j is 
the node downstream of the pump.
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Network AnalysisNetwork Analysis
The network analysis problem reduces to one of solving a set of The network analysis problem reduces to one of solving a set of nonnon--
linear algebraic equations. Three types of formulation are used linear algebraic equations. Three types of formulation are used –– the the 
nodal, the path and the node and path formulation.nodal, the path and the node and path formulation.

Each formulation and method of analysis has its own advantages aEach formulation and method of analysis has its own advantages and nd 
limitations. In general path formulation with Newtonlimitations. In general path formulation with Newton--RaphsonRaphson method method 
gives the fastest convergence with minimum computer storage gives the fastest convergence with minimum computer storage 
requirements. requirements. 

The node formulation is conceptually simple with a very convenieThe node formulation is conceptually simple with a very convenient nt 
data base, but it has not been data base, but it has not been favouredfavoured earlier, because in earlier, because in 
conjunction with Newtonconjunction with Newton--RaphsonRaphson method, the convergence to the method, the convergence to the 
final solution was found to depend critically on the quality of final solution was found to depend critically on the quality of the initial the initial 
guess solution.guess solution.

The node and path formulation can have a self starting procedureThe node and path formulation can have a self starting procedure
without the need for a guess solution, but this formulation needwithout the need for a guess solution, but this formulation needs the s the 
maximum computer storage.maximum computer storage.



Node based modelsNode based models
The node (H) equationsThe node (H) equations

The number of equations to be solved can be reduced from The number of equations to be solved can be reduced from 
L+JL+J--1 to J by combining the energy equation for each pipe 1 to J by combining the energy equation for each pipe 
with continuity equation.with continuity equation.
The head loss equation for a single pipe can be written asThe head loss equation for a single pipe can be written as

Where HWhere Hii=head at i =head at i thth node, L node, L 
KKijij= head loss coefficient for pipe from node i to = head loss coefficient for pipe from node i to 

node j node j 
QQijij= flow in pipe from node i to node j, L= flow in pipe from node i to node j, L33/t/t
nnijij=exponent in head loss equation for pipe from =exponent in head loss equation for pipe from ii--j

nKQh =

ij
n

ijijji QQKHH ij sgn=−

j



Node based modelsNode based models
The double subscript shows the nodes that are connect by The double subscript shows the nodes that are connect by 
a pipea pipe
Since the head loss is positive in the direction of flow, Since the head loss is positive in the direction of flow, sgnsgn
QQijij==sgnsgn (H(Hii--HHjj), and we solve for Q as), and we solve for Q as

The continuity equation at node I can be written asThe continuity equation at node I can be written as

Where Where QQkiki=flow into node i from node k, L=flow into node i from node k, L33/T/T
UUii=consumptive use at node i, L=consumptive use at node i, L33/T/T
mmii=number of pipes connected to node i.=number of pipes connected to node i.
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Node based modelsNode based models
Combining energy and continuity equations for each flow in Combining energy and continuity equations for each flow in 
the continuity equation givesthe continuity equation gives

The above is a node H equation, there is one such equation The above is a node H equation, there is one such equation 
for each node, and one unknown Hfor each node, and one unknown Hii for each equationfor each equation

These equations are all nonlinearThese equations are all nonlinear

The node (H)  equations are very convenient for systems The node (H)  equations are very convenient for systems 
containing pressure controlled devices I.e. check valves, containing pressure controlled devices I.e. check valves, 
pressure reducing valves, since it is easy to fix the pressure pressure reducing valves, since it is easy to fix the pressure 
at the downstream end of such a valve and reduce the at the downstream end of such a valve and reduce the 
value if the upstream pressure is not sufficient to maintain value if the upstream pressure is not sufficient to maintain 
downstream pressure
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Loop based modelsLoop based models
The Loop (The Loop (∆∆QQ) equations) equations

One approach is to setting up looped system problems is to One approach is to setting up looped system problems is to 
write the energy equations in such a way that, for an initial write the energy equations in such a way that, for an initial 
solution, the continuity will be satisfiedsolution, the continuity will be satisfied

Then correct the flow in each loop in such a way that the Then correct the flow in each loop in such a way that the 
continuity equations are not violated.continuity equations are not violated.

This is done by adding a correction to the flow to every pipe This is done by adding a correction to the flow to every pipe 
in the loop .in the loop .

If there is negligibly small head loss, flow is added around If there is negligibly small head loss, flow is added around 
the loop, if there is large loss, flow is reducedthe loop, if there is large loss, flow is reduced

Thus the problem turns into finding the correction factor Thus the problem turns into finding the correction factor ∆∆QQ
such that each loop energy equation is satisfiedsuch that each loop energy equation is satisfied



Loop based modelsLoop based models
The loop energy equations may be writtenThe loop energy equations may be written

(l=1,2,(l=1,2,……,L),L)

Where  Where  
QiQiii = initial estimate of the flow in = initial estimate of the flow in ii thth pipe, pipe, LL33/T/T
∆∆QlQl = correction to flow in l = correction to flow in l thth loop, loop, LL33/T/T
mml l = = number of pipes in l number of pipes in l thth looploop
LL = number of loops= number of loops
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Loop based modelsLoop based models

The The QQii terms are fixed for each pipe and do not change terms are fixed for each pipe and do not change 
from one iteration to the next.from one iteration to the next.

The The ∆∆QQ terms refer to the loop in which the pipe fallsterms refer to the loop in which the pipe falls

The flow in a pipe is therefore The flow in a pipe is therefore QQii + + ∆∆QQ for a pipe that lies in for a pipe that lies in 
only one loop.only one loop.

For a pipe that lies in several loops (say ,a b,  and c) the For a pipe that lies in several loops (say ,a b,  and c) the 
flow might be flow might be 

cbai QQQQ ∆+∆−∆+



Loop based modelsLoop based models
The negative sign in front of b term is included The negative sign in front of b term is included 
merely to illustrate that a given pipe may be merely to illustrate that a given pipe may be 
situated in positive direction in one loop and in situated in positive direction in one loop and in 
negative direction in another loop.negative direction in another loop.

When the loop approach is used, a total of L When the loop approach is used, a total of L 
equations are required as there are l unknowns, equations are required as there are l unknowns, 
one for each loopone for each loop



Solution of pipe network problems Solution of pipe network problems 
through Newtonthrough Newton--RaphsonRaphson methodmethod

NewtonNewton--RaphsonRaphson method is applicable for the problems method is applicable for the problems 
that can be expressed as that can be expressed as F(x)=0F(x)=0, where the solution is the , where the solution is the 
value of x that will force F to be zerovalue of x that will force F to be zero
The derivative of F can be a expressed by The derivative of F can be a expressed by 

Given an initial estimate of x, the solution to the problem is Given an initial estimate of x, the solution to the problem is 
the value of the value of x+x+∆∆xx that forces F to 0. Setting that forces F to 0. Setting F(F(x+x+∆∆xx)) to to 
zero and solving for zero and solving for ∆∆xx gives
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Solution of pipe network problems Solution of pipe network problems 
through Newtonthrough Newton--RaphsonRaphson methodmethod

New value of x+New value of x+∆∆x becomes x for the next iteration. This x becomes x for the next iteration. This 
process is continued until F is sufficiently close to zeroprocess is continued until F is sufficiently close to zero
For a pipe network problem, this method can be applied to For a pipe network problem, this method can be applied to 
the Nthe N--1=k, H1=k, H--equationsequations
The head (H) equations for each node (1 through k), it is The head (H) equations for each node (1 through k), it is 
possible to write as:possible to write as:

Where mWhere mii= number of pipes connected to node I= number of pipes connected to node I
UUii= consumptive use at node i, L= consumptive use at node i, L33/T/T

F(i) and F(i+1) is the value of F at F(i) and F(i+1) is the value of F at ithith and (i+1)th iteration, and (i+1)th iteration, 
thenthen
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Solution of pipe network problems Solution of pipe network problems 
through Newtonthrough Newton--RaphsonRaphson methodmethod

This change can also be approximated by total This change can also be approximated by total 
derivativederivative

Where Where ∆∆HH= change in H between the = change in H between the ithith and and 
(i+1)th iterations, L (i+1)th iterations, L 
Finding the values of Finding the values of ∆∆HH which forces F(i+1)=0.which forces F(i+1)=0.
Setting above two equations equal, results in a Setting above two equations equal, results in a 
system of k linear equations with k unknowns system of k linear equations with k unknowns ((∆∆H)H)
which can be solved by the any linear methods  
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Solution of pipe network problems Solution of pipe network problems 
through Newtonthrough Newton--RaphsonRaphson methodmethod

Initial guess for HInitial guess for H
Calculate partial derivatives of each F with respect to each H Calculate partial derivatives of each F with respect to each H 
Solving the resulting system of linear equations to find H, Solving the resulting system of linear equations to find H, 
and repeating until all of the Fand repeating until all of the F’’s are sufficiently close to 0s are sufficiently close to 0
The derivative of the terms in the previous  equation is The derivative of the terms in the previous  equation is 
given bygiven by

andand
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Solution of pipe network problems Solution of pipe network problems 
through Hardythrough Hardy--Cross methodCross method

The linear theory method and the NewtonThe linear theory method and the Newton--RaphsonRaphson
method can converge to the correct solution rapidlymethod can converge to the correct solution rapidly
Manual solution or solution on small computers may not Manual solution or solution on small computers may not 
be possible with these methodsbe possible with these methods
However, the HardyHowever, the Hardy--cross method, which dates back to cross method, which dates back to 
1936, can be used for such calculations, in essence, the 1936, can be used for such calculations, in essence, the 
HardyHardy--Cross method is similar to applying the NewtonCross method is similar to applying the Newton--
RaphsonRaphson method to one equation at a time method to one equation at a time 
Hardy cross method is applied to Hardy cross method is applied to ∆∆Q equations although it Q equations although it 
can be applied to the node equations and even the flow can be applied to the node equations and even the flow 
equations.equations.
The method, when applied to the The method, when applied to the ∆∆Q equations,Q equations, requires requires 
an initial solution which satisfies the continuity equationan initial solution which satisfies the continuity equation



Solution of pipe network problems Solution of pipe network problems 
through Hardythrough Hardy--Cross methodCross method

Nevertheless it is still widely used especially for manual Nevertheless it is still widely used especially for manual 
solutions and small computers or hand calculators and solutions and small computers or hand calculators and 
produces adequate results for most problemsproduces adequate results for most problems
For the l For the l thth loop in a pipe network the loop in a pipe network the ∆∆Q equation can be Q equation can be 
written as followswritten as follows

WhereWhere
∆∆QQll=correction to l =correction to l thth loop to achieve convergence, Lloop to achieve convergence, L33/T/T
QQiiii=initial estimates of flow in i =initial estimates of flow in i thth pipe (satisfies pipe (satisfies 

continuity),Lcontinuity),L33/T/T
mmll=number of pipes in loop l
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Solution of pipe network problems Solution of pipe network problems 
through Hardythrough Hardy--Cross methodCross method

Applying the NewtonApplying the Newton--RaphsonRaphson method for a single equation method for a single equation 
givesgives

Where the k+1 refers to the values of Where the k+1 refers to the values of ∆∆Q in the (k+1) Q in the (k+1) thth
iteration, and all other values refer to the k iteration, and all other values refer to the k thth iterations and iterations and 
are omitted from the equation for ease of readingare omitted from the equation for ease of reading
The above equation is equivalent toThe above equation is equivalent to……

Sign on the Sign on the QQii terms depend on how that pipe is situated in terms depend on how that pipe is situated in 
the loop under consideration.the loop under consideration.
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AssignmentsAssignments
1. How many 1. How many ∆∆Q equations must be set up for a network Q equations must be set up for a network 

with L loops (and pseudowith L loops (and pseudo--loops), N nodes, and P pipes? loops), N nodes, and P pipes? 
How many HHow many H--equations must be set up?equations must be set up?

2. What are the primary differences between the Hardy2. What are the primary differences between the Hardy--
Cross and NewtonCross and Newton--RaphsonRaphson method for solving the method for solving the ∆∆Q Q 
equations?equations?

3. For two pipes in parallel, with K3. For two pipes in parallel, with K11>K>K22, what is the , what is the 
relationship between Krelationship between K11, K, K2,2, and and KKee , the K for the , the K for the 
equivalent pipe replacing 1 and 2 (h=equivalent pipe replacing 1 and 2 (h=KQKQnn)?)?

a. Ka. K11>K>K22>>KKee

b. Kb. K11>>KKee>K>K22

c. c. KKee>K>K11>K>K22



AssignmentsAssignments
4. Derive the following momentum equation by applying 4. Derive the following momentum equation by applying 

conservation of momentum for a control volume for conservation of momentum for a control volume for 
transient flow through a pipe transient flow through a pipe 

5. Develop the system of equations for the following network 5. Develop the system of equations for the following network 
(consists of 8 nodes and 9 elements, out of which 8 are (consists of 8 nodes and 9 elements, out of which 8 are 
pipe elements and the other is a pump element) to find the pipe elements and the other is a pump element) to find the 
values of the specified unknowns. Also write a computer values of the specified unknowns. Also write a computer 
program to solve the system of equations.
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Assignments continuedAssignments continued

8 2

7 6

3

1
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 - Node with H unknown & C known

 - Node with H known & C known

 - Node with H known & C unknown

 - Node with R unknown 

 - Pump element

 Unknowns
 H [2],   H [4],  H [5]
 R [4],   R [5]
 C [6],   C [7],  C [8]



Contaminant Transport in Contaminant Transport in 
Open Channels and PipesOpen Channels and Pipes

Module 11Module 11
5 lectures5 lectures



ContentsContents
Contaminant transport Contaminant transport 
Definition of termsDefinition of terms
Introduction to ADE Introduction to ADE 
equationequation
Few simple solutionsFew simple solutions
Solution of  ADE through Solution of  ADE through 
FD methodsFD methods
Problems associated with Problems associated with 
solution methodssolution methods
Demonstration of methods Demonstration of methods 
for open channel and pipe for open channel and pipe 
flowsflows



Contaminant transportContaminant transport
Contaminant transport modeling studies are usually Contaminant transport modeling studies are usually 
concerned with the movement within an aquifer system of a concerned with the movement within an aquifer system of a 
solute.solute.

These studies have become increasingly important with the These studies have become increasingly important with the 
current interest on water pollution.current interest on water pollution.

Heat transport models are usually focused on developing Heat transport models are usually focused on developing 
geothermal energy resources.geothermal energy resources.

Pollutant transport is an obvious concern relative to water Pollutant transport is an obvious concern relative to water 
quality management and the development of water quality management and the development of water 
protection programsprotection programs



Definition of termsDefinition of terms
Terminologies related to contaminant Terminologies related to contaminant 

transporttransport
DiffusionDiffusion: It refers to random scattering of : It refers to random scattering of 
particles in a flow to turbulent motionparticles in a flow to turbulent motion

DispersionDispersion: This is the scattering of : This is the scattering of 
particles by combined effect of shear and particles by combined effect of shear and 
transverse diffusiontransverse diffusion

AdvectionAdvection: The : The advectiveadvective transport system transport system 
is  transport by the imposed velocity system is  transport by the imposed velocity system 



Introduction to ADE equationIntroduction to ADE equation
The one dimensional formulation of conservative tracer The one dimensional formulation of conservative tracer 
mass balance for mass balance for advectiveadvective--dispersive transport process dispersive transport process 
isis

= advection of tracer with fluid = advection of tracer with fluid 

= molecular diffusion +Hydrodynamic            = molecular diffusion +Hydrodynamic            
dispersiondispersion

= time rate of change of concentration = time rate of change of concentration 
at a pointat a point

= reaction term depends on reaction rate and = reaction term depends on reaction rate and 
concentration (chemical or biological, not considered in concentration (chemical or biological, not considered in 
the present study)the present study)
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Few simple solutionsFew simple solutions
Bear discussed several analytical solutions to relatively Bear discussed several analytical solutions to relatively 
simple, onesimple, one--dimensional solute transport problems. dimensional solute transport problems. 
However, even simple solutions tend to get overwhelmed However, even simple solutions tend to get overwhelmed 
with advanced mathematics. with advanced mathematics. 

As an example, consider the oneAs an example, consider the one--dimensional flow of a dimensional flow of a 
solute through the soil column, the boundary conditions solute through the soil column, the boundary conditions 
represented by the step function input are described represented by the step function input are described 
mathematically as:mathematically as:

0)0,1( =C 01≥

0),0( CtC = 0≥t

0≥t0),( =∞ tC



Few simple solutionsFew simple solutions
For these boundary conditions the solution to ADE For these boundary conditions the solution to ADE 
equation for a saturated homogeneous porous equation for a saturated homogeneous porous 
medium is:medium is:

erfcerfc represents the complimentary error function; l represents the complimentary error function; l 
is the distance along the flow path; and v is the is the distance along the flow path; and v is the 
average water velocity.average water velocity.
For conditions in which the For conditions in which the dispersivitydispersivity DDll of the of the 
porous medium is large or when 1 or t is large, the porous medium is large or when 1 or t is large, the 
second term on the rightsecond term on the right--hand side of equation is hand side of equation is 
negligible.negligible.
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Few simple solutionsFew simple solutions
This equation can be used to compute the shapes of the This equation can be used to compute the shapes of the 
breakthrough curves and concentration profiles breakthrough curves and concentration profiles 

Analytical models represent an attractive alternative to both Analytical models represent an attractive alternative to both 
physical and numerical models in terms of decreased physical and numerical models in terms of decreased 
complexity and input data requirements.complexity and input data requirements.

Analytical models are often only feasible when based on Analytical models are often only feasible when based on 
significant simplifying assumptions, and these assumptions significant simplifying assumptions, and these assumptions 
may not allow the model to accurately reflect the conditions may not allow the model to accurately reflect the conditions 
of interest.of interest.

Additionally, even the simplest analytical models tend to Additionally, even the simplest analytical models tend to 
involve complex mathematicsinvolve complex mathematics



Solution of ADE through FD methodsSolution of ADE through FD methods
Using implicit finite central difference methodUsing implicit finite central difference method
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Solution of ADE through FD methodsSolution of ADE through FD methods

ContinuedContinued……

The above equation can be written in matrix The above equation can be written in matrix 
form as:form as:

1. For internal nodes1. For internal nodes
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Solution of ADE through FD methodsSolution of ADE through FD methods

2. For Right boundary condition:2. For Right boundary condition:
Using forward finite difference formation in Using forward finite difference formation in 

the right boundary, flux  can be written as the right boundary, flux  can be written as 
follows asfollows as

flux
x

CC ii =
∆
−+1

)(1 xfluxCC ii ∆+=+

DDxfluxCCCBBCAAC iii =∆+++− ))((1

)()(1 xCCfluxDDCCCBBAAC ii ∆−=++−



Solution of ADE through FD methodsSolution of ADE through FD methods

3. For Left boundary condition:3. For Left boundary condition:
At the left boundary, initial condition and At the left boundary, initial condition and DirichletDirichlet
condition are used which is given below: condition are used which is given below: 

Using backward finite difference formation in the Using backward finite difference formation in the 
right boundary, flux can be written as follows

iCxC =)0,( ;0>x

0),0( CtC = ;0>t

right boundary, flux can be written as follows

flux
x
CC ii =

∆
− −1



Solution of ADE through FD methodsSolution of ADE through FD methods

ContinuedContinued

The above three equations are solved for The above three equations are solved for CCii at all the at all the 
nodes for the mesh. Thomas Algorithm can be used nodes for the mesh. Thomas Algorithm can be used 
to solve the set of equations. 

( )xfluxCC ii ∆−=−1

( ) ( )xfluxAADDCCCCBBAA ii ∆+=++ +1

to solve the set of equations. 



Problems linked with solution methodsProblems linked with solution methods
The contaminant transport in open channels and pipes are The contaminant transport in open channels and pipes are 
solved through various computer models.solved through various computer models.

Because of their increased popularity and wide availability, it Because of their increased popularity and wide availability, it 
is necessary to note the limitations of these modelsis necessary to note the limitations of these models

The first limitation is the requirement of significant dataThe first limitation is the requirement of significant data
Some available data may not be usefulSome available data may not be useful

The second limitation associated with computer models is The second limitation associated with computer models is 
their required boundary conditions their required boundary conditions 



Problems linked with solution methodsProblems linked with solution methods
Computer models can be very precise in their predictions, but Computer models can be very precise in their predictions, but 
these predictions are not always accuratethese predictions are not always accurate

The accuracy of the model depends on the accuracy of the The accuracy of the model depends on the accuracy of the 
input datainput data

Some models may exhibit difficulty in handling areas of Some models may exhibit difficulty in handling areas of 
dynamic flow such as they occur very near wellsdynamic flow such as they occur very near wells

Another problem associated with some computer models is Another problem associated with some computer models is 
that they can be quite complicated from a mathematical that they can be quite complicated from a mathematical 

perspectiveperspective



Problems linked with solution methodsProblems linked with solution methods
These computer modeling are also time consuming These computer modeling are also time consuming 

This is usually found to be true if sufficient data is not This is usually found to be true if sufficient data is not 
availableavailable

Uncertainty relative to the model assumption and usability Uncertainty relative to the model assumption and usability 
must be recognizedmust be recognized

The computer model has been some time misused, as for The computer model has been some time misused, as for 
example the model has been applied to the cases where it is example the model has been applied to the cases where it is 
not even applicable.not even applicable.



Demonstration of methods for open Demonstration of methods for open 
channel flowschannel flows

Mass transport in streams or long open channels is Mass transport in streams or long open channels is 
typically described by a onetypically described by a one--dimensionaldimensional

Advection {dispersion equation, in which the longitudinal Advection {dispersion equation, in which the longitudinal 
dispersion codispersion co--efficient is the combination of various efficient is the combination of various 
sectionsection--averaged hydrodynamic mixing effects.averaged hydrodynamic mixing effects.

The classical work of Taylor (1953, 1954) established the The classical work of Taylor (1953, 1954) established the 
fact that the primary cause of dispersion in shear flow is fact that the primary cause of dispersion in shear flow is 
the combined action of lateral diffusion and differential the combined action of lateral diffusion and differential 
longitudinal advection.longitudinal advection.



Demonstration of methods for open Demonstration of methods for open 
channel flowschannel flows

The transport of solutes in streams is affected by a suite of The transport of solutes in streams is affected by a suite of 
physical, chemical and biological processes, with the physical, chemical and biological processes, with the 
relative importance of each depending on the georelative importance of each depending on the geo--
environmental setting and properties of the solutes.environmental setting and properties of the solutes.

For many species, chemical and biological reactions are For many species, chemical and biological reactions are 
just as influential as the physical processes of advection just as influential as the physical processes of advection 
and dispersion in controlling their movement in an aquatic and dispersion in controlling their movement in an aquatic 
system like a stream.system like a stream.



Demonstration of methods for open Demonstration of methods for open 
channel flowschannel flows

Though chemical reactions and phase exchange Though chemical reactions and phase exchange 
mechanisms have now been incorporated into some mechanisms have now been incorporated into some 
applied transport models.applied transport models.

Theoretical studies into these chemical effects on the Theoretical studies into these chemical effects on the 
physical transport have been very limited. physical transport have been very limited. 

There lacks, for example, a systematic understanding of There lacks, for example, a systematic understanding of 
the effects of sorption kinetics on the longitudinal the effects of sorption kinetics on the longitudinal 
dispersion: dispersion is conventionally considered to be dispersion: dispersion is conventionally considered to be 
affected by physical and hydrodynamic processes only.affected by physical and hydrodynamic processes only.



Demonstration of methods for pipe Demonstration of methods for pipe 
flowsflows

An important component of a water supply systems is the An important component of a water supply systems is the 
distribution system which conveys water to the consumer distribution system which conveys water to the consumer 
from the sources.from the sources.

Drinking water transported through such distribution Drinking water transported through such distribution 
systems can undergo a variety of water quality changes in systems can undergo a variety of water quality changes in 
terms of physical, chemical, and biological degradation.terms of physical, chemical, and biological degradation.

Water quality variation during transportation in distribution Water quality variation during transportation in distribution 
systems may be attributed to two main aspects of reasons. systems may be attributed to two main aspects of reasons. 
One is internal degradation, and the other is external One is internal degradation, and the other is external 
intrusion. intrusion. 



Demonstration of methods for pipe Demonstration of methods for pipe 
flowsflows

The internal factors including physical, chemical, and The internal factors including physical, chemical, and 
biological reaction with pipe wall material that degrades biological reaction with pipe wall material that degrades 
water quality.water quality.

Furthermore, recent evidence has demonstrated that Furthermore, recent evidence has demonstrated that 
external contaminant intrusion into water distribution external contaminant intrusion into water distribution 
systems may be more frequent and of a great importance systems may be more frequent and of a great importance 
than previously suspected. than previously suspected. 

In conventional (continuous) water distribution systems, In conventional (continuous) water distribution systems, 
contaminant may enter into water supply pipe through contaminant may enter into water supply pipe through 
cracks where low or negative pressure occurs due to cracks where low or negative pressure occurs due to 
transient event.transient event.



Demonstration of methods for pipe Demonstration of methods for pipe 
flowsflows

The sources of contaminant intrusion into water The sources of contaminant intrusion into water 
distribution systems are many and various. But leaky sewer distribution systems are many and various. But leaky sewer 
pipes, pipes, faecalfaecal water bodies, and polluted canals may be the water bodies, and polluted canals may be the 
primary sources for water distribution systems primary sources for water distribution systems 
contamination.contamination.

Both continuous and intermittent water distribution Both continuous and intermittent water distribution 
systems might suffer from the contaminant intrusion systems might suffer from the contaminant intrusion 
problem, and the intermittent systems were found more problem, and the intermittent systems were found more 

vulnerable of contaminant intrusion.vulnerable of contaminant intrusion.



Demonstration of methods for pipe Demonstration of methods for pipe 
flowsflows

Chlorination in pipe flow is required to control the Chlorination in pipe flow is required to control the 
biological growth, which on the other hand results in water biological growth, which on the other hand results in water 
quality deterioration. quality deterioration. 

Pipe condition assessment component simulates Pipe condition assessment component simulates 
contaminant ingress potential of water pipe. contaminant ingress potential of water pipe. 

Contaminant seepage will be the major component of the Contaminant seepage will be the major component of the 
model. Its objective will be to simulate the flow and model. Its objective will be to simulate the flow and 
transport of contaminant in the soil from leaky sewers and transport of contaminant in the soil from leaky sewers and 

other pollution sources to water distribution pipes.other pollution sources to water distribution pipes.



Demonstration of methods for pipe Demonstration of methods for pipe 
flowsflows

The equations to be applied to simulate contaminant flow The equations to be applied to simulate contaminant flow 
through the pipes are similar to open channel through the pipes are similar to open channel 
contaminant transport. contaminant transport. 

The process involved during the contaminants transport The process involved during the contaminants transport 
includes advection, dispersion and reaction, etc., which includes advection, dispersion and reaction, etc., which 
results in varying concentration of the contaminants results in varying concentration of the contaminants 
during its transportation. during its transportation. 



Assignments Assignments 
1. Considering the one1. Considering the one--dimensional flow of a solute through dimensional flow of a solute through 

the soil column, write a computer program for solving the the soil column, write a computer program for solving the 
given contaminant transport equation by finite difference given contaminant transport equation by finite difference 
technique. The boundary conditions represented by the technique. The boundary conditions represented by the 
step function input are described mathematically as: step function input are described mathematically as: 

Compare and discuss the results with the analytical Compare and discuss the results with the analytical 
method. method. 

2. Write  the governing equation for transport of 2. Write  the governing equation for transport of 
contaminant in a pipe, neglecting advection and dispersion contaminant in a pipe, neglecting advection and dispersion 
terms, and solve to get analytical solution of the same.
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terms, and solve to get analytical solution of the same.


