Seismic Analysis of Structures
by TK Dutta, Civil Department, lIT Delhi, New Delhi.

Module 4: Frequency Domain Spectral Analysis

Exercise Problems

4.8.

4.9.

4.10.

4.11.

4.12.

For the exercise problem 3.13 (Chapter 3), compare between the plots of the PSDFs of the
relative displacement X obtained for the two cases of excitation. Use the correlation

r.w
function as p; :exp[—#j (Equation 2.93) and the PSDF of ground acceleration as
/2

S

given in the Appendix, same for the two supports. Assume VL = 5s for illustrative purpose

S

only. Also, compare between the rms values of the response.

A suspended span of a submarine pipeline is modeled as shown in Figure 4.20. Assuming
5% modal damping, obtain a closed form expression for the PSDF of the relative
displacement X. Assume the PSDF of ground acceleration to be the same at the two
supports and represented by a white noise with constant PSDF S;. The cross spectral

density function between supports 1 and 2 is given by S, = S, ™" and the equivalent

stiffness corresponding to the d. o. f. X is k with X =100(rad/s)*.
m

Figure 4.20

For the exercise problem 3.14, obtain plots of S () and S, (@) (both real and

imaginary components) assuming (i) the same PSDF of excitations at all supports (given
in the Appendix) (ii) the same PSDF but partially correlated at the supports. For the
latter, assume the same correlation function as given in problem 4.8 having a time lag of
2.5s between supports.

For the exercise problem 3.16, find the rms values of the top relative displacement and
the drift between the first and the second story. Assume the time lag between the supports
as 2.5s. Take the correlation function and the PSDF same as those given in exercise
problem 4.8.

For the exercise problem 3.17, find the rms values of the absolute displacement of the
secondary system and the base shear for perfectly correlated support excitations
represented by the PSDF given in the Appendix.



4.13.

4.14.

4.15.

4.16.

Using the modal spectral analysis, find the peak values of the displacement (relative) of
the top floor and the first story drift of the frame of exercise problem 3.18 for perfectly
correlated ground excitations represented by the PSDF given in the Appendix.

Using the modal and state space spectral analyses, find the rms value of the deflection of
the centre of the deck for the exercise problem 3.19. Compare the results for the two
cases (i) perfectly correlated excitations at the supports and (ii) partially correlated
excitations with a time lag between supports as 2.5s. Take the PSDF of ground excitation
(horizontal) as that given in the Appendix and use the correlation function used in the
problem 4.8.

For the exercise problem 3.21, find the rms values of displacements and rotations of the
top floor of the 3D tall building using modal spectral analysis. Also, obtain a plot of S,

(both real and imaginary components). Take the excitation as the ground motion,
represented by the PSDF given in the appendix, applied in the X direction.

For the shear frame shown in the exercise problem 3.20, compare between the rms values
of absolute accelerations of the top floor and the bending moment at the base obtained by
the direct, modal and state space spectral analyses. Take the same PSDF of excitation
which is used for other problems.

Take the relevant figures from the slides or from the reference book



Module 4: Frequency Domain Spectral Analysis

Exercise Solution :

ERRATA FOR THE TEXT BOOK

pp 178, 4" para, 8" line: ¢ # 225°, but 180°
pp 179, 2™ line of Equation 4.29 is redundant
pp 186, Equation 4.76 should be S, , = —H|\/||SX.g

%,
pp 189, Example 4.3: Because of the use of wrong r matrix (Example 3.9) PSDF of DOF (5)
for fully correlated excitation is non zero. For correct r and K matrices,
the rms responses are
DOF(4)=0.0237m  DOF(5) =0.00081m partially corrected
DOF(4) =0.0332m DOF(5)=0 fully corrected
The shape of the PSDFs remain the same as shown in Figure 4.13 and
4.14(b)
pp 197, Example 4.6: Because of the use of wrong r matrix (Example 3.11), the values of the
ordinates of Figures 4.17 and 4.18 will change, but the shape remains the same.
For the correct value of r matrix, rms values of displacement of DOF (1), left

tower, and DOF(3, not 2 as printed), centre of the deck, are 0.0219m and

0.0152m respectively.

Refer to the exercise problem 4.8 and Figure 3.22
From the exercise problem 3.13., the effective stiffness and effective mass corresponding to the

d.o.f x are taken as

K,=341.8k M =2.33m £=200

m
K
o, :‘/ﬁx =12.118rad/sec

H(@)f <[ (0f -] +aroter | c=su

2
5, (@)=|H (o)) S, ()
The PSDF of the displacement X is shown in Figure 4.21. The rms value of x is the square root
of the area under the PSDF curve.

rms of the displacement x [from PSDF curve] = 0.011763m



rms of the displacement x [from the time history analysis — Ch.3; (problem 3.13)] = 0.012136m
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Figure 4.21 PSDF of the x — displacement

Refer to the exercise problem 4.9 and Figure 4.20

w§:5=100

m

20

Since both supports have different excitations, the acceleration experienced by the mass (Figure

4.20) is given by

.
a{l lH..gl}=Axg
2 2%

Equation of motion takes the form

MX+cX+kx=—méd = —mAXg

Dividing by m, the equation becomes

X+ 20w X+ o)X = —AX,

1 eia)T

—iwT 1

in which S, = AS, A" = A{
’ €

Therefore,
1

)
S, =5[(wﬁ -’ )2 +4772a)2a)ﬁ} (1+cosawT)S,

}ATS0 :%(l+cosa)T)SO



2
=%|:(100—a)2)2 +a)2] (I+cos@T)S,

Refer to the exercise problems 4.10, 3.14 and Figure 3.23.

Equation of motion takes the form

MX+Cx + Kx =-MIX, X:{g}

in which (exercise problem 3.14)
3 6.7 —1.65 3.893 -0.5
M = m; K= K ; C= m;
24.75 —1.65 54.375 -0.5 32

For multi support excitations,

1
1=|>
3

S T
2 2 2
L L 3

L

For the same support excitation,
4
| =

For partially correlated ground motion,
H(0)={[K-Mo*]-iCa

S, =H(®)S,H (o)

XX

B 250 -50 750 ]
1 e 2z e 2r e 2r
250 25w -Sw
e 2r l e 2z e 2r
T
S =Ml 1" MS,
p -Sw 250 25w g
e 2r e 2z 1 e 2r
750 -S0 25w
e 2z e 2z e 2z 1

For perfectly correlated ground motion,

S,=MII"M'S,



The plots of S, (@) and S, (@) for the cases of partially correlated and perfectly correlated

ground motions are shown in Figures 4.22 and 4.23. The rms values of the responses computed
from Figure 4.22 show that the rms value of y for partially correlated ground motion is more than
that of fully correlated ground motion. The reason for this is attributed to the pipe undergoing
rigid body rotation.

rms for partially correlated ground motion = 0.0552m

rms for fully correlated ground motion = 0.04787m
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Figure 4.22 PSDF of the y — displacement
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Figure 4.23 Real component of cross PSDF between y and 0

Refer to the exercise problems 4.11, 3.16 and Figure 3.25.

Equation of motion for the frame is given by (exercise problem 3.16)

u
MX +CX + Kx = —MrX, x{ 1}
u2

. . 2m 2.344 -0.552
mwhlchM={ m} C={ }m

-0.552 0.23
1 11
5 -2 3 3 3
K = k: r— 3 3 3
2 2 111
3 3 3

S,=H(w)S,H (o)

in which H (@)= {[K ~Mo*]+iCa)

18



250 —50 |
1 e 2z e 27

25w 25w

S, =|e? 1 ez |S, S, =MrS, r'MT’
Xg Xg p Xg
-Sw 250
e 2r e 2z 1

Drift between the second and the first story is § =u, —u,
S; =S, +S, =S, =S,

U

Since S, is complex conjugate of S, ,

S; =S, +S, —2real(Su]u2)

The PSDFs of the S, and S; are shown in Figure 4.24. The rms values of u, and & are
0.018362m and 0.00786m respectively.
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Figure 4.24 PSDF of (a) displacement u; (b) drift &

Refer to the exercise problems 4.12, 3.17 and Figure 3.26.

Equations of motion of the primary and the secondary system are given by (the exercise problem
3.17)

MX +Cx + KX = —MIX,

4 -2 0 1
in which K=|-2 2.187 -0.187 |k; M = 1 m
0 -0.187 0.187

0.831 -0.35 0
C=|-035 0514 -0.033
0 —-0.033  0.065

S,=H(@)MI'MH(@)"S, I"=[1 1 1]

X Xg



S, =—H (a))MISX.g

Absolute-displacement X,, = (X, )rel +Xg3= S, +5, + 2real(SX3Xg )

The PSDF of the absolute displacement X,, is shown in Figure 4.25. The rms of the absolute
displacement X, is 0.0413m

The base shear is given by V = 2kx,

S, =4k’S,

The PSDF of the base shear is shown in Figure 4.26. The rms of the base shear is 2.8437x10"k?
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Figure 4.26 PSDF of the base shear

Refer to the exercise problems 4.13, 3.18 and Figure 3.27.

Equations of motion for the frame is (exercise problem 3.18)

M +Cx + Kx = —MIX,

7 -3 0 O 2
-3 5 -2 0 2
K= k; M = m
0 -2 3 -1 2
0O 0 -1 1 2

Modal load p; =—¢' MIX,

Syn =4 MIITMTgS,

Sy, =4 MIg'MIS,

o, =2.54rads”; @, =5.908rads™; @, =9.525rads™; w, =13.71rads’



h ()= [(a)i2 —a)2)+2i§a)i T

X = ¢Z ; SXX = ¢SZZ¢T

Since the first storey displacement is the same as the first storey drift, the PSDFs of the top
storey and the first storey are obtained using the mode shapes of the frame taken from exercise

problem 3.18. The PSDFs are shown in Figure 4.27.
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Figure 4.27 PSDF of (a) top floor displacement (b) first floor displacement
The 4,, A4, and A, for the two PSDFs are calculated and using Equation 2.19¢ (with T=30s), the
peak factors for the top and first storeys are obtained as p, =2.803, p, =2.68

o, =0.01748m; o, =0.088m; X, = p,o, =0.049m, X, = p,o, =0.236m

Refer to the exercise problems 4.14, 3.19 and Figure 3.28.
The mass, stiffness and damping matrices of the bridge corresponding to the degrees of freedom

shown in the exercise problem 3.19

20 0 O 10.77 0 -1.14
M=0 20 0 |m C=| 0 10.77 1.1845 |m
0 0 60 -1.14 1.14 18.77
492 0 95
K=| 0 492 95 |m
-95 95 621.13

The mode shapes and frequencies are

¢=[-031178 031178 -1]'; g=[1 1 0] g=[-1 1 02078]



= 3.06rads™; w, = 4.959rads™; @, = 5.058rads™; @ =0.194; f=0.0118
r matrix for multipoint excitation is given as

0.6037 0.199  -0.00606 —0.01837
r=-0.0183 -0.00606 0.199149  0.6037
0.095  0.03138 —0.03138 —0.0951

S, =Mrs, r'm’

For fully correlated excitation:

1

—_— e

—_— = =

S
w

1
% |1
1

For partially correlated excitation

! Sym |
25w
e 2" 1
S)’( = —So 250 Sx
’ p2r @ 27 1 ’
750 S0 250
e 2z e 2z e 2z 1

Modal spectral analysis

. . _ T
Using p, :¢\|TP, Spipj =@ Sp¢j

SZiZj is obtained as in exercise problem 4.13. Finally S, is determined as

S, =¢S.¢'

State space spectral analysis

For state space spectral analysis, the load vector P is given by

5:[0 rxg]

T

L 0 0 )
S, matrix is given a S; = 0 s |} Sy =TSy r
9

S, = H (@) S,H (@)

X

H (@) is obtained as



e A aLa de

The PSDFs of the centre of the deck displacement obtained by the modal analysis is shown in

Figure 4.28. The rms values of the displacement are compared below

Case (1) Case (i1)
(Correlated)  (Partially Correlated)
Modal 0 0.00992 m
State space 0 0.0105 m
16
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Figure 4.28 PSDF of the centre of the deck displacement

Refer to the exercise problems 4.15, 3.21 and Figure 3.30.

Mass, stiffness and damping matrices for the 3D frame are given as (exercise problem 3.19)

15 Sym
0 15
1.5 75 67.5
K= k

75 0 075 75
0 -75 =375 0 15
|-7.5 375 -33.75 075 3.75 33.75]




M = m I"=[1 0 0 1 0 0]

The mode shapes and frequencies are

g =[0.12 0618 -0.1 02 1 -0.16]; @ =14.5rads"

¢ =[-0.618 012 0 -1 02 0]; @ =15.14rads’

g =[-0.03 —0.148 -0.618 —0.048 024 -1]; w, =26.58rads’
g =[02 1 -0.166 -0.124 -0.618 0.103]; @, =38rads’

g =[1 02 0 —0.618 0.124 0]; o, =39.6rads’

4 =[-0.05 —024 -1 0.029 0.148 0.618]; o, = 69.6rads’

Using four modes, the PSDF matrix of the modal load is given as
T T T
S, =¢ MII'M ¢ng

1.047 -5.236 -0.2513 0.247

-5.236 2618 1.257 -1.236 ;
o = x10"S,
-0.251 1.257 0.0603 -0.059 9

0.247 -1.236 -0.059 0.0583

Using the same approach as used in the exercise problem 4.13, Szizj is obtained.

SXX = ¢SZZ¢T

The plots of S,, and S, for the top floor are shown in Figures 4.29 and 4.30. The rms values of

the top floor displacement and rotations are compared below.
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Refer to the exercise problems 4.16, 3.20 and Figure 3.29.

The mass, stiffness and damping matrices for the frame are (the exercise problem 3.20)

1

M = m
1
1
L 1_
[ 1.442
—-0.664 1.442
0  —0.664 1.442
i 0 —0.664
0 0 0
0 0 0
80 40 0 0 0 O
40 -8 40 0 0 0
A 0 40 -80 40 0 0
0 0 40 -80 40 0
0 0 0 40 -80 40
L0 0 0 0 40 -40

Using o, and o, ,

a=0.1138, #=0.0166

QT:[—O.24 -0.46 -0.66 -0.82 -0.94

2 Sym
-1 2
0 -1 2
0 0 -1 2 K
0 0 0 -1 2
00 0 0 ~1 1}
1.442 m
—0.664 1.442
0 -0.664 0.778 |
-1.44  0.66 0 0 0
0.66 -1.44 0.66 0 0
0 0.66 -1.44 0.66 0
0 0 0.66 -1.44 0.66
0 0 0 0.66 -1.44
0 0 0 0 0.66

-1]; @ =1.525rads™

¢ =[0.66 1 0.82 024 046 —-0.94]; w, =4.485rads’

g =[-0.94 —0.66 0461 1 024 —0.82]; w,=7.185rads’

g =[1 —024 —094 046 0.82 —0.66]; w, =9.47rads"

¢ =[0.82 —0.94 024 0.66 -1 0.46]; o, =112rads"

4’ =[-0.46 0829 -1 094 —-0.66 0.24]; v, =12.28rads’

S O O

0.66
~0.779




The direct, modal and state space spectral analysis are carried out using the methods given in
exercise problems 4.11 and 4.16.

Absolute acceleration of the top floor X, = X, + X,
PSDF of X, =S, +S, +S,, +S,

X(@) =H (@) MI%, (o)

% (@) =—H (o) MI%, ()

S,y =®'H (o) MITMH (0)'S, ()

XgX

From the matrix of S, , , the term ngx( can be selected. Since SX(X'Q is the complex conjugate of

g%

S

the expression for PSDF of absolute acceleration Si(, is given by

S, =Sy, +S; +2real (s, )

Bending moment at the base is

M =kx;h (assuming h=3m)

Sy =9k’S,

S, can be obtained from the PSDF matrix of the displacement. The rms values of the

X

acceleration and bending moment obtained by different methods are compared below

) Modal
Direct (4 modes) State space
Absolute acceleration 0.1682ms™ 0.1592ms™ 0.1612ms™

Base moment 4.2681m 3.94m 4.12m




