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Module 4: Frequency Domain Spectral Analysis 
 
Exercise Problems 

4.8. For the exercise problem 3.13 (Chapter 3), compare between the plots of the PSDFs of the 
relative displacement x obtained for the two cases of excitation. Use the correlation 

function as exp
2

ij
ij

s

r
V
ω

ρ
π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
(Equation 2.93) and the PSDF of ground acceleration as 

given in the Appendix, same for the two supports. Assume =
s

r
V

 5s for illustrative purpose 

only. Also, compare between the rms values of the response. 
 
4.9. A suspended span of a submarine pipeline is modeled as shown in Figure 4.20. Assuming 

5% modal damping, obtain a closed form expression for the PSDF of the relative 
displacement x. Assume the PSDF of ground acceleration to be the same at the two 
supports and represented by a white noise with constant PSDF 0S . The cross spectral 

density function between supports 1 and 2 is given by 
1 2 0

−= i T
g gS S e ω  and the equivalent 

stiffness corresponding to the d. o. f. x  is k  with 2100(rad/s)k
m
= . 

 
Figure 4.20 

 
4.10. For the exercise problem 3.14, obtain plots of ( )yyS ω  and ( )yS θ ω  (both real and 

imaginary components) assuming (i) the same PSDF of excitations at all supports (given 
in the Appendix) (ii) the same PSDF but partially correlated at the supports. For the 
latter, assume the same correlation function as given in problem 4.8 having a time lag of 
2.5s between supports. 

 
4.11. For the exercise problem 3.16, find the rms values of the top relative displacement and 

the drift between the first and the second story. Assume the time lag between the supports 
as 2.5s. Take the correlation function and the PSDF same as those given in exercise 
problem 4.8. 

 
4.12. For the exercise problem 3.17, find the rms values of the absolute displacement of the 

secondary system and the base shear for perfectly correlated support excitations 
represented by the PSDF given in the Appendix. 

 



4.13. Using the modal spectral analysis, find the peak values of the displacement (relative) of 
the top floor and the first story drift of the frame of exercise problem 3.18 for perfectly 
correlated ground excitations represented by the PSDF given in the Appendix. 

 
4.14. Using the modal and state space spectral analyses, find the rms value of the deflection of 

the centre of the deck for the exercise problem 3.19. Compare the results for the two 
cases (i) perfectly correlated excitations at the supports and (ii) partially correlated 
excitations with a time lag between supports as 2.5s. Take the PSDF of ground excitation 
(horizontal) as that given in the Appendix and use the correlation function used in the 
problem 4.8. 

 
4.15. For the exercise problem 3.21, find the rms values of displacements and rotations of the 

top floor of the 3D tall building using modal spectral analysis. Also, obtain a plot of xS θ  
(both real and imaginary components). Take the excitation as the ground motion, 
represented by the PSDF given in the appendix, applied in the x direction. 

 
4.16. For the shear frame shown in the exercise problem 3.20, compare between the rms values 

of absolute accelerations of the top floor and the bending moment at the base obtained by 
the direct, modal and state space spectral analyses. Take the same PSDF of excitation 
which is used for other problems. 

 

 

Take the relevant figures from the slides or from the reference book 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Module 4: Frequency Domain Spectral Analysis 
 
Exercise Solution : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Refer to the exercise problem 4.8 and Figure 3.22 

From the exercise problem 3.13., the effective stiffness and effective mass corresponding to the 

d.o.f x are taken as 

341.8xK k=  2.33M m=  200k
m
=  

12.118 secx
n

K rad
M

ω = =  

( ) ( )
222 2 2 2 2 24n nH ω ω ω η ω ω
−

⎡ ⎤= − +⎢ ⎥⎣ ⎦
  5%ξ =  

( ) ( ) ( )2
x xgS H Sω ω ω=  

The PSDF of the displacement x  is shown in Figure 4.21. The rms value of x is the square root 

of the area under the PSDF curve. 

rms of the displacement x [from PSDF curve] = 0.011763m 

ERRATA FOR THE TEXT BOOK 

pp 178, 4th para, 8th line: 0225φ ≠ , but 0180  

pp 179, 2nd line of Equation 4.29 is redundant 

pp 186, Equation 4.76 should be 
g gx x xS HMIS= −  

pp 189, Example 4.3: Because of the use of wrong r matrix (Example 3.9) PSDF of DOF (5)  

                                  for fully correlated excitation is non zero. For correct r and K matrices,  

                                  the rms responses are 

                                   DOF(4) = 0.0237m DOF(5) = 0.00081m partially corrected 

          DOF(4) = 0.0332m DOF(5)=0  fully corrected 

         The shape of the PSDFs remain the same as shown in Figure 4.13 and 

          4.14(b) 

pp 197, Example 4.6:  Because of the use of wrong r matrix (Example 3.11), the values of the  

                       ordinates of Figures 4.17 and 4.18 will change, but the shape remains the same. 

For the correct value of r matrix, rms values of displacement of DOF (1), left 

tower, and DOF(3, not 2 as printed), centre of the  deck, are 0.0219m and 

0.0152m respectively. 



rms of the displacement x [from the time history analysis – Ch.3; (problem 3.13)] = 0.012136m 

 
    Figure 4.21  PSDF of the x – displacement 
 

Refer to the exercise problem 4.9 and Figure 4.20 
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K
m

ω = =  

Since both supports have different excitations, the acceleration experienced by the mass (Figure 

4.20) is given by 
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Equation of motion takes the form 

mx cx kx ma m+ + = − = − gAx  

Dividing by m, the equation becomes 
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Refer to the exercise problems 4.10, 3.14 and Figure 3.23. 

Equation of motion takes the form 

gx+ + = −Mx Cx Kx MI  
0
y⎧ ⎫

= ⎨ ⎬
⎩ ⎭

x  

in which (exercise problem 3.14) 
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For partially correlated ground motion, 
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For perfectly correlated ground motion, 

gp xS= T TS MII M  



 

The plots of ( )yyS ω  and ( )yS θ ω  for the cases of partially correlated and perfectly correlated 

ground motions are shown in Figures 4.22 and 4.23. The rms values of the responses computed 

from Figure 4.22 show that the rms value of y for partially correlated ground motion is more than 

that of fully correlated ground motion. The reason for this is attributed to the pipe undergoing 

rigid body rotation. 

rms for partially correlated ground motion = 0.0552m 

rms for fully correlated ground motion = 0.04787m 

 

 
Figure 4.22  PSDF of the y – displacement 
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Figure 4.23 Real component of cross PSDF between y and θ 

 

Refer to the exercise problems 4.11, 3.16 and Figure 3.25. 

Equation of motion for the frame is given by (exercise problem 3.16) 

 

+ + = − gMx Cx Kx Mrx  1

2

u
x

u
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

in which 
2m

m
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M ; 
2.344 0.552
0.552 0.23

m
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
C  

5 -2
k

-2 2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

K ; 

1 1 1
3 3 3
1 1 1
3 3 3

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

r  

( ) ( )*T
x pω ω=S H S H  

in which ( ) { } 12 iω ω
−

⎡ ⎤= − +⎣ ⎦H K M Cω  

 

‐2

‐1.5

‐1

‐0.5

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18

C
ro

ss
 P

SD
F 

×1
0-5

(m
2 s

 ra
d)

Frequency (rad/s)

Fully correlated

Partially correlated



2.5 .5
2 2

2.5 2.5
2 2

.5 2.5
2 2

1

1

1

g gx x

e e

e e S

e e

ω ω
π π

ω ω
π π

ω ω
π π

− −

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  
g

T T
p x=S MrS r M  

Drift between the second and the first story is 2 1u uδ = −  

2 1 1 2 2 1u u u u u uS S S S Sδ = + − −  

Since 
2 1u uS  is complex conjugate of 

1 2u uS , 

( )2 1 1 2
2realu u u uS S S Sδ = + −  

 

The PSDFs of the 
2uS  and Sδ  are shown in Figure 4.24. The rms values of 2u  and δ  are 

0.018362m and 0.00786m respectively. 
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   (b) 

Figure 4.24  PSDF of (a) displacement u2 (b) drift δ 
 

      

Refer to the exercise problems 4.12, 3.17 and Figure 3.26. 

Equations of motion of the primary and the secondary system are given by (the exercise problem 

3.17) 
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-1
1 3.06 rad sω = ; -1

2 4.959 rad sω = ; -1
3 5.058rad sω = ; 0.194α = ; 0.0118β =  

r matrix for multipoint excitation is given as 
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Modal spectral analysis 

Using T
i ip Pφ= ; 

i j

T
p p i p jS φ φ= S  

i jz zS  is obtained as in exercise problem 4.13. Finally xS  is determined as 

T
x z=S Sφ φ  

State space spectral analysis 

For state space spectral analysis, the load vector P  is given by 
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The PSDFs of the centre of the deck displacement obtained by the modal analysis is shown in 

Figure 4.28. The rms values of the displacement are compared below 

 Case (i) 
(Correlated) 

Case (ii) 
(Partially Correlated) 

Modal 0 0.00992 m 

State space 0 0.0105 m 

 

       

 
Figure 4.28 PSDF of the centre of the deck displacement 

 

Refer to the exercise problems 4.15, 3.21 and Figure 3.30. 

Mass, stiffness and damping matrices for the 3D frame are given as (exercise problem 3.19) 
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The mode shapes and frequencies are 

 

[ ]1 0.12 0.618 0.1 0.2 1 0.16T = − −φ ; -1
1 14.5 rad sω =  

[ ]2 0.618 0.12 0 1 0.2 0T = − −φ ; -1
2 15.14 rad sω =  

[ ]3 0.03 0.148 0.618 0.048 0.24 1T = − − − − − −φ ; -1
3 26.58 rad sω =  

[ ]4 0.2 1 0.166 0.124 0.618 0.103T = − − −φ ; -1
4 38 rad sω =  

[ ]5 1 0.2 0 0.618 0.124 0T = − −φ ; -1
5 39.6 rad sω =  

[ ]6 0.05 0.24 1 0.029 0.148 0.618T = − − −φ ; -1
6 69.6 rad sω =  

 

Using four modes, the PSDF matrix of the modal load is given as 

 

g

T T T
pp xS=S MII Mφ φ  

 

7

1.047 5.236 0.2513 0.247
5.236 2.618 1.257 1.236

10
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 Using the same approach as used in the exercise problem 4.13, 
i jz zS  is obtained. 

T
xx zz=S Sφ φ  

 

The plots of xxS  and xS θ  for the top floor are shown in Figures 4.29 and 4.30. The rms values of 

the top floor displacement and rotations are compared below. 



Displacement x 38.66 10 m−×  

Displacement y 49.57 10 m−×  

Displacement θ 42.77 10 rad−×  

 

 
Figure 4.29  PSDF of top floor x – displacement 

 
Figure 4.30  Cross PSDF between top floor x- displacement and rotation θ 
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Refer to the exercise problems 4.16, 3.20 and Figure 3.29. 

The mass, stiffness and damping matrices for the frame are (the exercise problem 3.20) 
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⎢ ⎥

−⎣ ⎦

K

 

1.442
0.664 1.442

0.664 1.442
0.664 1.442

0.664 1.442
0.664 0.778

0
m

0 0
0 0 0
0 0 0 0

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎣ ⎦

C  

 

80 40 0 0 0 0 1.44 0.66 0 0 0 0
40 80 40 0 0 0 0.66 1.44 0.66 0 0 0
0 40 80 40 0 0 0 0.66 1.44 0.66 0 0
0 0 40 80 40 0 0 0 0.66 1.44 0.66 0
0 0 0 40 80 40 0 0 0 0.66 1.44 0.66
0 0 0 0 40 40 0 0 0 0 0.66 0.779

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− −

= ⎢ ⎥− −⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎣ ⎦

A  

Using 1ω and 2ω , 

0.1138α = , 0.0166β =  

[ ]1 0.24 0.46 0.66 0.82 0.94 1T = − − − − − −φ ; -1
1 1.525rad sω =  

[ ]2 0.66 1 0.82 0.24 0.46 0.94T = − −φ ; -1
2 4.485rad sω =  

[ ]3 0.94 0.66 0.461 1 0.24 0.82T = − − −φ ; -1
3 7.185rad sω =  

[ ]4 1 0.24 0.94 0.46 0.82 0.66T = − − −φ ; -1
4 9.47 rad sω =  

[ ]5 0.82 0.94 0.24 0.66 1 0.46T = − −φ ; -1
5 11.2 rad sω =  

[ ]6 0.46 0.829 1 0.94 0.66 0.24T = − − −φ ; -1
6 12.28rad sω =  



The direct, modal and state space spectral analysis are carried out using the methods given in 

exercise problems 4.11 and 4.16. 

Absolute acceleration of the top floor 6 6 gx x x= +  

PSDF of 
6 6 66 g g gx x x x x xx S S S S= + + +  

( ) ( ) ( )gxω ω ω=x H MI  

( ) ( ) ( )2
gxω ω ω ω= −x H MI  

( ) ( ) ( )*4
g g

T T
x x xSω ω ω ω=S H MII M H  

From the matrix of 
6gx xS , the term 

6gx xS  can be selected. Since 
6 gx xS  is the complex conjugate of 

6gx xS , the expression for PSDF of absolute acceleration 
6xS  is given by 

( )6 66
2

g gx x x xxS S S real S= + +  

Bending moment at the base is 

1kx h=M  (assuming h=3m) 

1

29M xS k S=  

1x
S  can be obtained from the PSDF matrix of the displacement. The rms values of the 

acceleration and bending moment obtained by different methods are compared below 

 

 Direct Modal 
(4 modes) State space 

Absolute acceleration -20.1682ms  -20.1592ms  -20.1612ms  

Base moment 4.2681m 3.94m 4.12m 

 

 

 

 

 

 

 

 

 


