Seismic Analysis of Structures
by TK Dutta, Civil Department, IIT Delhi, New Delhi.

Module 2 — Seismic Inputs

Exercise Problems:

(Use standard MATLAB programs for solving the problems; you may use your own developed

program based on the methods presented in the Chapter)

2.12.

2.13.

2.14.

2.15.

2.16.

Take the Lomaprieta earthquake acceleration record from the website

http://peer.berkely.edu/smcat and obtain the Fourier amplitude and phase spectra using

FFT. Retrieve the time history of acceleration taking IFFT of the Fourier components.

Find the values of the following:

(i) Maximum ordinates of fourier amplitudes and frequencies of their occurrences
before and after smoothening.

(i)  Maximum phase angle and nyquest frequency.

(iii) Rms accelerations obtained from the time history and fourier components.

(iv) Absolute maximum ordinates of original time history and the retrieved one.

Assuming the above time history of acceleration to be a sample of an ergodic stationary

process, obtain a smoothed PSDF of acceleration. Find the rms and expected peak values

of acceleration from the PSDF and compare them with the rms and absolute peak values

of the actual time history of acceleration.

Take the San Farnendo earthquake acceleration from the  website

http://peer.berkely.edu/smcat and obtain the normalized smoothed fourier spectrum,

energy spectrum and pseudo acceleration spectrum £ =0.05 . Compare between the time

periods corresponding to the maximum values of the ordinates of the three spectra.
Draw the response spectrums of the San Fernando earthquake in tripartite plot and then,

idealize them by a series of straight lines. Compare T,, T,, T., T,, T,, and T, with those

of Elcentro earthquake.
Construct design response spectrum for 50" and 84th percentile on a four way log graph
paper for 5% damping for the hard soil for a site with R = 75km and M = 7.5. Use


http://peer.berkely.edu/smcat
http://peer.berkely.edu/smcat

Equations 2.44, 2.49 and 2.57 for finding PHA, PHV and PHD. TakeT, = 3—133; T, =%s;

T,=10s and T, =33s.

2.17. For a site, mean annual rate of exceedances of normalized ordinates of acceleration
response spectrum and PGA are given below. Obtain a uniform hazard spectrum that has
a 10% probability of exceedance in 50 years:

Table 2.5: Annual rate of exceedance a, of acceleration response spectrum ordinates

S
\ 0.05 0.2 0.6 1 1.5 2 2.5 3
T

0.1 0.2 0.2 0.2 0.1 0.05 | 0.004 | 0.003 | 0.0025
0.3 0.15 0.3 0.15 0.08 0.08 | 0.003 | 0.003 | 0.002
0.5 0.12 0.22 0.12 0.06 0.06 | 0.002 | 0.0015 | 0.0015
0.7 0.1 0.1 0.1 0.07 0.05 0.02 | 0.008 | 0.005
0.9 0.01 0.01 0.01 | 0.006 | 0.003 |0.0018 | 0.0012 | 0.0012
1.0 0.01 0.01 0.08 | 0.005 | 0.002 |0.0015| 0.001 | 0.0008
1.2 0.008 | 0.008 | 0.008 | 0.006 | 0.005 | 0.004 | 0.0009 | 0.0007
1.4 0.003 | 0.003 | 0.002 | 0.002 | 0.0015| 0.001 | 0.0007 | 0.0005
1.6 0.003 | 0.003 | 0.0015 | 0.002 | 0.0015 | 0.001 | 0.0006 | 0.0004
1.8 0.003 | 0.0024 | 0.0014 | 0.0012 | 0.0012 | 0.001 | 0.0015 | 0.0003
2.0 0.0025 | 0.002 | 0.0012 | 0.0012 | 0.0008 | 0.0006 | 0.0004 | 0.0002

Table 2.6: Annual rate of exceedance a, of PGA

PGA | 001g | 0.05g | 0.1g | 0.15g | 0.2g | 0.3g | 0.4g | 0.45g

a, 0.45 0.2 0.1 0.05 0.02 | 0.006 | 0.002 | 0.001

2.18. A site specific acceleration spectrum is to be constructed for a site which has a layer of
soft soil over rock bed. Past earthquake records on the rock out crop at some distance
away from the site shows that the pseudo velocity spectrum of the expected earthquake

can be fairly represented by Equation 2.66( use coefficient for random component). The



2.19.

2.20.

values of the ordinates of the pseudo acceleration spectrum are to be obtained from

pseudo velocity spectrum. The soft soil deposit has a predominant period of 1.4s. The soil

condition modifies the shape of the normalized spectrum at rock level in the following

manner.

(i) At the predominant period (T = 1.4s) ordinate of the normalized modified spectrum
(Si) is 3 times that of the normalized rock bed spectrum (So;).

(if) At other periods, the ordinates of the modified spectrum are given by S, =S x4 in
which2=15.

(iii) AtT=0,S, 0 =S 0 =1

If the PGA amplification is 3.0 due to the soft soil deposit, construct the site specific

acceleration response spectrum for M, =7. Use attenuation relationship (at rock bed)

proposed by Esteva (Equation 2.43) for finding PGA with a value of R taken as 100km.

Assuming o; =0.1o,, & =&, o,=107 and £ =0.4 obtain an expression for the

PSDF of ground acceleration in terms of M, R and filter characteristics using double filter
PSDF (Equation 2.74) and attenuation relationship given by Campbell (Equation 2.44).
From this expression, find the peak values and corresponding frequencies of the PSDF
for M =7, R = 50 km and 100 km. If Equations 2.54 and 2.51 were used in place of
Equation 2.44, find the same expression in terms of only M. Also, find the peak value of
the PSDF for M = 7.

A travelling train of seismic wave moves with a shear wave velocity of V, =150m/sec.

The direction of wave propagation is at an angle of 20° with the line joining three bridge
piers (A, B, C). AB = BC = 400m. If the ground acceleration produced by seismic wave
is modelled as a stationary random process, then find PSDF matrices of ground
accelerations in the major principal direction (assumed as the direction of wave
propagation) at the base of the piers (A, B, C) for a frequency of 3 rad/s using the
following data:
(i) PSDF of ground acceleration is represented by the expression given by Clough and
Penzien (Equation 2.74) with a PGA = 0.4g; o, =107 ; 0, =0.1p, and & =& =

0.4
(i) Coherence functions to be used are
(a) that given by Hindy and Novak (Equation 2.93)



(b) that Given by Clough and Penzien (Equation 2.99)
(c) that given by Harichandran and Vanmarke (Equation 2.92)
(d) that given by Loh (Equation 2.94)
2.21. A time history of ground motion is artificially generated using the following fourier
series co-efficients for a duration of 20s.

16
X t :ZAhCos ot+e, ; o, isinrad/sand ¢, isinrad.

n=1

A =0.25g @ =0.85; ¢ =0.1 A, =0.05g ¢, =0.05
A =029 4,=0.18 A, =029 ¢, =-0.12
A, =019 4,=03 A, =0.15g ¢, =-0.05
A, =0.05g ¢, =1.25 A, =0.1g ¢, =-0.02
A =0.12g ¢ =2 A, =0.12g ¢,=0.12
A =0.18g ¢, =2.6 A, =0.08g ¢,=0.15
A =029 ¢ =-02 A, =0.04g 4, =0.4
A =0.1g 4 =-0.4 A, =0.02g ¢, =0.25

o, t0 @, isgiven by o, =nw, n=2to 16

The generated time history is modulated by modulating functions given by Equations
2.83, 2.84 and 2.86. Find the absolute peak and rms values of acceleration and compare
them. Also, compare between the times at which (absolute) peaks occur. Take maximum

value of the modulating function to be unity. Take ¢ = 0.5; t, =5sec; t, =10sec for

Equation 2.83 and b, =0.412; b, =0.8 for Equation 2.84.

Take the relevant figures from the slides or from the reference book



Module 2 — Seismic Inputs

Exercise Solution:

ERRATA FOR THE TEXT BOOK
pp 79, Equation 2.43: PHA in cms™ should be in cms™

pp 81, Equation 2.54: PGA in cms™ should be in cms™
pp 89, Example 2.11: (i) Kanai and Tajimi (Equation 2.73 should be 2.72)
(if) Clough and Penzien (Equation 2.75 should be 2.74)
(iii) given by Equations 2.70, 2.71, 2.73 and 2.76 should be 2.70, 2.71, 2.72 and 2.74

pp 91, Equation 2.83: €% should be e *"™"
pp 92, Equation 2.92: (i) terms within exp should be with negative sign
(if) @, =1.09 should be f,=1.09

pp 95, Exercise problem 2.18: Equation 2.69 should be 2.66
Figure 2.45 should be 2.46
Exercise problem 2.19: Equation 2.75 should be 2.74
Exercise problem 2.20: Equation 2.75 should be 2.74
Equation 2.94 should be 2.93
Equation 2.93 should be 2.92
Equation 2.95 should be 2.94
Exercise problem 2.21: Equations 2.84, 2.85 and 2.87 should be 2.83. 2.84

Refer to the exercise problem 2.12.

The earthquake acceleration record of Lomaprieta sampled at 0.005s is taken for analysis and is
shown in Figure 2.51. A total time history of 23.3s is taken constituting 4660 discrete ordinates
(N). Input to the MATLAB® is

2
YY =— fft y,N
N y

do = 2_|_—” =0.269rads™



0.25

0.2

0.15

=
=

0.05

-0.05

Acceleration (g)

-0.1

-0.15

-0.2

-0.25
0 5 10 15 20

Time (&)
Figure 2.51 Time history of acceleration of Lomaprieta earthquake

The Fourier amplitude plot i.e., a’+b? % VS. o, [i =0-eee %j and phase plot i.e., tan‘1£
ai

VS. o, (i =0 %J are shown in Figure 2.52. Note that output from FFT are divided by %
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Figure 2.52 Fourier spectrums (a) amplitude (b) phase angle

Fourier amplitude spectra before and after smoothing are compared in Figure 2.53

Peak (before smoothing) = 0.08339 ms™
Frequency of occurrence = 36.85rads™
Peak (after smoothing) = 0.06064 ms™

Frequency of occurrence = 37.12rads™
N7 2 1
Nyquest frequency = S = 6.283x10° rads

Peak (phase angle, smoothed) = 0.9062rads™

rms (time history) = 0.3026 ms™

rms (Fourier components) = 0.3026 ms™

Absolute maximum (original time history) = 2.119ms?

Absolute maximum (retrieved one) = 2.119ms™
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Figure 2.53 Fourier amplitude spectrum (a) unsmoothed (b) smoothed
Refer to the exercise problem 2.13.

2

The spectral ordinates (raw) are obtained as S o = 2(;" . The plot of ¢, vs. @, has been
«

shown in Figure 2.53. S ordinates (raw) are shown in Figure 2.54. The smoothed spectrum

is also shown in the same figure.



Area under the smoothed curve = 0.09106 m*s™

Mean square value of the time history = 0.09102m?s™

A, and 4, of the smoothed PSDF are: A, =0.09016, 4, =57.23, Q= /% =25.07

2.8QT,
T

Mean peak = \/2/10 In( ) =1.0ms? (Equation 2.19¢c)

Absolute peak (time history) = 2.119ms™

rms (from PSDF) = \/Z =0.302ms™; rms (time history) = 0.302ms™
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Figure 2.54 PSDF of Lomaprieta earthquake (a) unsmoothed (b) smoothed
Note that mean peak value calculated by assuming the time history as an ergodise process is

much less than the absolute peak of the time history. The reason for this is attributed to a few
very high acceleration values clustered within 5.6 to 6.5 in the time history as shown in Figure

2.51.

Refer to the exercise problem 2.14.

Using sesimo signal (www.seismosoft.com), the Fourier and pseudo acceleration spectrums are
obtained. The energy spectrum is obtained using Equation 2.29. The spectrums are shown in
Figure 2.55

Tpeak (Energy spectrum) = 0.16 s (first peak); 0.38 s (2" peak)

Tpeak (Fourier spectrum) = 0.169 s

Tpeak (Pseudo acceleration spectrum) = 0.16s
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Figure 2.55 Spectrums of San Fernando earthquake (a) energy spectrum (b) Fourier spectrum

2.5

(c) acceleration spectrum

Refer to the exercise problem 2.15.

The displacement, pseudo velocity and pseudo acceleration response spectrums of the San
Fernando earthquake are plotted in the tripartite plot for a duration of earthquake 28s. The plot is
shown in Figure 2.56. In the same figure, the idealized spectrum by a series of straight lines is

shown.

3.5

T, Ty T, T, T, T, ()
San Fernando | 0.03 0.06 0.35 5 9 20
El-centro 0.035| 0.125 0.5 3 10 15




0.7
0.5

0.3
0.2

0.1

0.07 |
0.05

Pseudo velocity (m/sec)

0.03
0.02

1,=5

[

0.01 005 01 02 05 1 2 345710 20 50 100
Time period (sec)

0.01

Figure 2.56 Tripartite plot of San Franando earthquake

Refer to the exercise problem 2.16.
PHA, PHV and PHD are calculated as

INPHA g =-4.141+0.868M —1.09In R+0.0606e*'™ [for M = 7.5 and R = 75km]
PHA = 0.0826g

Similarly, PHV =15¢™® 7540.17¢**™ ' —13.113cms™

PHD =

PHV ° 400
1+ 05
PHA 75°

J: 65.8cm

For 5% damping, «,=2.12, «, =1.65, «,=1.39 (50" percentile values) and a, =271,

a, =2.30, a, =2.01 (84" percentile). The values are taken from the reference [2.4]



The 50" and 84™ percentile idealized response spectrums drawn for the calculated peak values of
ground acceleration (PHA), velocity (PHV) and displacement (PHD) and are shown in Figure
2.57
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Figure 2.57 Design response spectra for 50" and 84™ percentile in tripartite plot
Refer to the exercise problem 2.17.
10% probability of exceedance in 50 yrs corresponds to mean annual rate of exceedance as

In[1-P N>=1] In1-01

a‘l‘ = =

50 50
For the above value of a,, the PGA value is estimated as 0.4g from Table 2.7. The normalized

=0.0021~ 0.002

spectral ordinates for different values of T corresponding to the value of a, =0.002 are obtained

from Table 2.6 and are shown below

T s 0.1 0.3 0.5 0.7 0.9 1.0 1.2 1.4 1.6 1.8 |2




>3 >3 >3 >3 >3 225 (215 |2 1.75 |15 |0.05

wn|

Restricting the normalized response spectrum ordinate to a maximum of 3, the uniform hazard

spectrum for 10% probability of exceedance in 50 yrs is determined by multiplying S with PGA

and is shown in Figure 2.58.
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Figure 2.58 Uniform hazard spectrum with 10% probability of exceedance in 50 years

Refer to exercise problem 2.18.

For Equation 2.66, the values of the coefficients are taken from the reference [2.26].

Values of the coefficients for different values of T are given below

Ts b, b, b, b, b b,

0.1 1.653 0.327 -0.098 -0.934 0.046 0.136
0.3 1.974 0.334 -0.070 -0.893 0.239 0.356
0.5 1.881 0.384 -0.039 -0.846 0.279 0.439
0.7 1.797 0.418 -0.023 -0.818 0.297 0.483
0.9 1.742 0.442 -0.015 -0.802 0.309 0.508
1.0 1.724 0.450 -0.014 -0.798 0.314 0.517




1.2 1.701 0.462 -0.014 -0.794 0.324 0.528
1.4 1.695 0.469 -0.017 -0.794 0.333 0.535
1.6 1.706 0.473 -0.025 -0.801 0.347 0.539
1.8 1.715 0.472 -0.029 -0.804 0.351 0.539
2.0 1.737 0.471 -0.037 -0.812 0.360 0.537

b, =0

logS, T =b+b, M,-6 +b,

Assume G;=1; G;=0. For M, =7 and R=100km, S, T

computed and the plot of S, T vs. T and the corresponding plot of S, T vs. T are shown in

Figure 2.59.

Note that S, 0 =PGA is calculated using Equation 2.43 for M, =7 and R=100km. The

M, —6 > +b,R+b, logR +b,G, +b,G,

normalized spectrum at the rock bed is shown in Figure 2.60.

The site specific normalized spectrum (after modification) is given in the same figure. The
ordinates of the normalized spectrum are multiplied by 3PGA to obtain the site specific spectrum

which is shown in Figure 2.61.
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Refer to the exercise problem 2.19.

Using Equation 2.74 to find S, , 4, = jSUg o do; 1,= ja)zsug o do
0 0



?wz‘Hl ® ‘Z‘Hz ® ‘ZS% o do
0 .

o- - |
%o ﬂH1 @ ‘Z‘HZ @ ‘ZSUO o do
0

L
I,

Since S, @ =3, =constant, Q=

in which |2=dja)2‘H1 o ‘Z‘Hz @ ‘zda) and I1=0:)ﬂH1 ® ‘Z‘HZ ® ‘zda)
0 0

The integrations 1, and 1, are performed numerically for » up to 30rads™ with
dew=0.05rads™ and w, =107, £, =0.4. The value of I,and I, are obtained as I, =1088.2;

I, =1633.6 and 2 =1.225

PGA= \/le In ( Z'iQTd jSO in which T, is the duration of earthquake

T
S PGA °
0 —
2, In(z.smd j
27
InS, =2InPGA- In{ZIl In(z'sm-d H
27

=2[-4.141+0.868M ~1.09In R+0.0606¢"™" ]—ln[zllln(z'zmd H
V3

For a given set of values of M and R, S, may be calculated from the above equation and put in

the expression for S.ug o i.e.,
S, © =DH1 ol H, o so}
For M =7,R =50kmand T, =30s, S, =1.122x10"°

For M = 7, R = 100km and T, =30s, S, =2.92x10" (PSDF will be obtained consistent with
PGA in g unit)

For these two cases, plots of the PSDFs are shown in Figure 2.62. Peak values for the two cases
are 3.12x10™° and 8.137x107" respectively. The frequencies at which the peaks occur are the
same and are equal to 27.95rads™.

If Equations 2.54 and 2.51 are used to obtain PGA, then



log PGA =0.3 1.667M —2.167 —0.014=0.5M —0.664

Expression for S, becomes

log S, =2 0.5M —0.664 -|og[2|l |n(2'82?sz ﬂ

=5.672-3.784 =1.888

For M =7and T, =30s, S, =77.26 (PSDF will be obtained in unit consistent with PGA in cms
)

The shape of the PSDF curve remains the same as that shown in Figure 2.63. The peak value of

the PSDF is 220x10°°
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Figure 2.62 PSDF of ground acceleration (a) R =50 km (b) R = 100 km (c) R independent (Eq.
2.54)

Refer to the exercise problem 2.20.

Component of X, along the line joining the piers is X, cos 20°



PSDF of earthquake along the line of piers = S, cos? 20°

Spatial correlation length |,;, =400c0s20 =375.88m

. =751.75m, loe =,
1
PSDF matrix = 0.883| p,, 1 So|H, @ \Z\Hz o \2; S, =2.53x10°°
Pac Pec 1
1
3 2 2
=2.23x10%| p,, 1 H, o[ |H, o
Pac Pec 1

Note that S, is computed from PGA=0.4g as described in the previous problem and upper

triangle of the matrix is symmetric if real; complex conjugate if complex.

For @ =3rads™.

2.4
. 1+ 25p, " 1*(1%}

2 2 2 27? 2
1=pg + 25,0, 1_(3) 4{2-4]
107 107

3}“
4 =
‘Hz o ‘zz Py _ Vs 03315

1-p2 "+ 25,p, [1_(3)2}2{2.‘1}2 T 0.98768
T

T

0.8419

Hindy and Novak (Equation 2.93)
C isassumed as 0.5

~0.5x375.88
Prs = EXP| — ———

=0.8192
27 %150

—0.5x375.88

=0.6711
7 %150 }

Pac = exp[

Pas = Pac
Clough and Penzien (Equation 2.99)



Pas =EXP [—mi} =0.33-0.944i

150
6x375.88. .
=exp| ————— 1 |=-0.782-0.623i
Pac p[ 150 }
Pec = Pas

Harichandran and Vannarke (Equation 2.92)

1-A+aA = 1-0.736+0.147x0.736 =0.3722

1-A =1-0.736 =0.264

3 2.278 7%
0 =5210{1+(—j } = 4853

1.09x 27
Pag =0.736eXp —meB?ZZ +exp —wxomzz x0.264
| 0.147x4853 i | 4853 i
=0.497+0.249=0.746
Pac =0.736exp —wxo.eﬂzz +exp —MXO.WZZ x0.264
| 0.147x4853 i | 4853 i

=0.33+0.23=0.56

Prc = Pas

Loh (Equation 2.94)

‘Dij‘ is to be taken in km
Assume K, =4.769, a = 2.756

Pag =€Xp —2.756x0.376 cos 2z 4.769 x0.376 =0.259

Pac =EXP —2.756x2x0.376 cos 27 4.769 x2x0.376 =-0.108

Prc = Pas
It is seen that the correlation coefficients significantly vary with the expressions adopted for the

correlation functions.

2.21. Refer to the exercise problem 2.21.



The generated time history is shown in Figure 2.63.The modulating functions given by Equations
2.83, 2.84 and 2.86 are shown in Figures 2.64. The three time histories obtained by multiplying

the original time histories with the modulating functions are plotted in Figures 2.65

Table 2.8 Characteristics of Modulated time histories

Modulating Function Absolég;e peak rms (9) | Treak (S)
Equation 2.83 1.4 0.239 7.38
Equation 2.84 0.4886 0.1209 2.56
Equation 2.86 1.368 0.2793 7.38
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Figure 2.63 Generated time history
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Figure 2.65 modulated time histories of accelerations (a) for modulating function ‘a’ (b) for

modulating function ‘b’ (c¢) for modulating function ‘c’
It is seen that the absolute peak value, rms value and the occurrences of the peaks differ if

different types of modulating functions are used to modulate a time history.



