Module 8 – (L31 – L34): "Storm Water & Flood Management": Storm water management, design of drainage system, flood routing through channels and reservoir, flood control and reservoir operation, case studies.

WATERSHED MANAGEMENT

Prof. T. L. Eldho

Department of Civil Engineering, IIT Bombay


Lecture No- 32 Urban Drainage System

L32– Urban Drainage System

Topics Covered

 Urban flooding, disaster risk management, Urban drainage system, design requirements, Roadside drainage design

Keywords: Urban flooding, drainage system design, risk management, roadside drain.

Causes of Urban Flooding

Why urban flooding?. –

- large increase in concrete/ impervious surface?.
- Unplanned usage of urban land?.
- Lack of proper drainage?.
- Loss of wetlands?. Mumbai on Jul 26, 27, 05
- Less groundwater usage / recharge?.
- Tidal effects?.

NATERSHED MANAGEMENT

– Very heavy storms – cloud burst?.

Urban Flood Disaster Risk Management

- Developing appropriate coping strategies & disaster risk reduction plans, along with greater awareness of how to reduce risks, is the high priority agenda
- Strategies: Enhancing national, state and local scale advocacy partnerships and knowledge management
- Standardizing hazard risk management tools, methodologies and practices

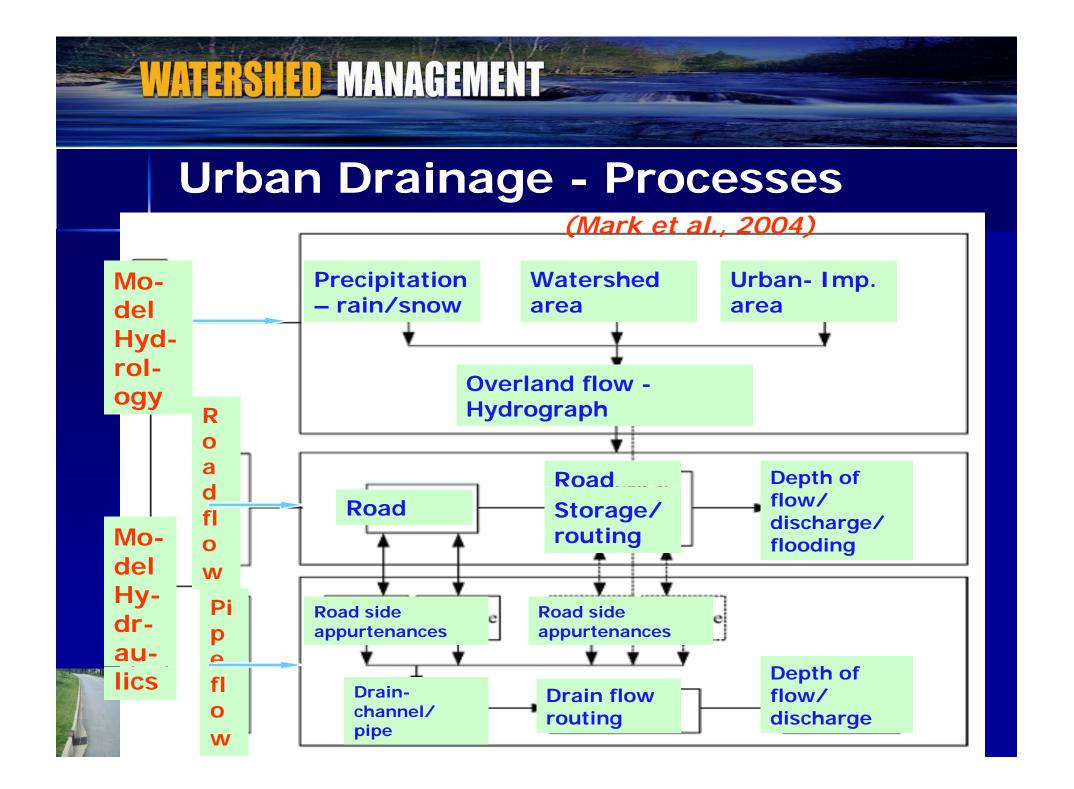
NATERSHED MANAGEMENT

- Developing integrated and coordinated approaches
- Incorporating 'Learning by Doing' mode of operations
- Promoting the diffusion/documentation of best practices
- Building appropriate communication protocols facilitating multi-platform and multi-lingual dissemination

WATERSHED MANAGEMENT Urban Flood Disaster Risk Management

- Analyzing & presenting information in an easily understandable form, for wider use by decision makers,
- Encouraging integrated approaches of project implementation based on Master Plan,
- Encouraging states to accord top priority to deal with recurring urban flooding
- Urban flood management difficulties
- Comprehensive risk assessment, Factoring risks in development planning, Coordination among different institutions, Lack of information sharing, Disintegrated investment decisions, Lack of consultation with stakeholders etc.

Watershed Based - Urban Flood Management


- Any planning for effective urban flood management has to take into the consideration of entire watershed.
- Identify problems, causes & remediation
- Preparedness and mitigation,
- Early warning and communication,
- Response,
- Awareness generation,
- Community capacity development.
- Vulnerability & risk assessment reduce vulnerability
- Hazard mapping: flood level mapping, identify damages, insurance & risk transfer
- Spatial Decision Support System
- Urban Information System

Urban Drainage System

VATERSHED MANAGEMENT

- Drainage systems categorized as major & minor systems.
- Major drainage system comprises of open nallahs/ and natural surface drains, etc.
- Minor system network of underground pipes & channels.
- Minor system categorized into two types: separate & combined.
- Separate drainage systems consist of two conveyance networks: sanitary sewers (usually underground pipes) conveying wastewater from homes & businesses to a discharge point, while the storm drains (underground pipes or channels) collect water from the rainfall runoff and convey it to a discharge point

Stormwater Drainage System

VATERSHED MANAGEMENT

- Total stormwater system major & minor inventory of the system for better management – GIS platform.
- Inventory will be both watershed based to enable proper hydrologic & hydraulic analysis & ward based to enable coordinated administrative management
- Minor systems should be mapped clearly showing the interconnections with major system besides the cross connections with sewer lines
- Major systems be mapped clearly with delineation, demarcation & details of cross-sections, slopes, drain crossings including natural formations & man made structures

Urban Drainage Design - Requirements

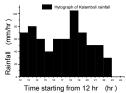
VATERSHED MANAGEMENT

- Development of an adequate & functioning drainage system based on sound hydrologic & hydraulic design principles.
- Design of an urban drainage system requires knowledge of the catchment area and topography, urbanization details, rainfall intensity, hydrology, hydraulics, etc.
- Watershed/ Catchment as basis of urban drainage design
- Contours are necessary for determining the boundaries of a watershed/ catchment & for computing directions of flow.

Legend 0.57 - 2 10.00 - 12 2.00 - 4 12.00 - 20 4.00 - 6 20.00 - 90 6.00 - 8 90.00 - 160 8.00 - 10 16000 - 227.09

Urban Drainage Design - Requirements

NATERSHED MANAGEMENT


- Rainfall data: For design of a drainage system, the conventional practice is to choose an appropriate, statistically relevant design storm to establish the stormwater flows to be conveyed, based on existing national & international practices.
- Design storms can be estimated from rainfall data records where available.
- Up to date IDF (Intensity Duration Frequency) relationships need to be used to maintain design standards for new systems & retrofitting/replacement of old urban drainage systems.
- IDF curves should be developed for each city, based on extraction of data from the raw data charts at min. 15minutes resolution

Time starting from 12 hr (hr)

Urban Drainage Design Considerations

VATERSHED MANAGEMENT

- Frequency of thunderstorms additional consideration for planning future urban drainage systems.
- Design flow: To protect urban areas, safe management & passage of water, resulting from frequent storm events (hydrologic design aspects) & adequate capacity (hydraulic design aspects) must be considered.
- Urban Drainage Design: main objectives of hydrologic analysis & design are to estimate peak flow rates &/or flow hydrographs for the adequate sizing & design of conveyance & quantity control facilities
- To estimate peak flow rates, knowledge of the rainfall intensity, its duration & frequency is required

Urban Drainage Design-Problems

VATERSHED MANAGEMENT

- Increasing rainfall intensities induced by climate change, urban heat islands and other factors, will possibly result in varying return periods for a given intensity of rainfall.
- Rainfall intensity to be used for design will also depend on the time of concentration.
- Higher the catchment area, higher will be the time of concentration & lower will be the design rainfall intensity, other factors remaining the same.
- Peak flow rates can be estimated using Rational Method Q = C I A.
- Approximations based on run-off coefficient, rainfall intensity & area of catchment.

Time starting from 12 hr (hr)

Design Considerations

VATERSHED MANAGEMENT

- Simple channel design: Manning's equation: Q = AR^{2/3}S^{1/2}/n
- For computation of water level profiles in the drainage systems or channels/rivers, suitable software for flood routing should be used.
- Public domain software HEC-HMS for hydrologic modelling of the watershed, HEC-RAS for river modeling, SWMM (Stormwater Management Model) for sewer/ drainage design
- All future stormwater drainage systems may be designed taking into consideration a runoff coefficient of upto C = 0.95 for estimating peak discharge using the rational method

UDS – Operation & Maintenance

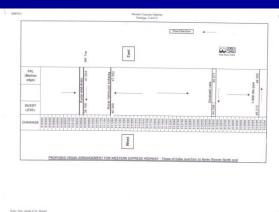
- Proper operations and maintenance (O&M) are crucial for any system to be functional to the designed capacity & for its durability as well.
- Pre-monsoon desilting -a major O&M activity.
- Periodicity of cleaning of drains should be worked out, based on the local conditions.
- Removal solid waste: Suitable interventions in the drainage system like traps, trash racks can reduce the amount of solid waste going into the storm sewers
- Removal of sediment
- Drain inlet connectivity

VATERSHED MANAGEMENT

UDS – Special Considerations

VATERSHED MANAGEMENT

- Low-lying areas should be reserved for parks and other low-impact human activities,
- Wherever unavoidable, buildings in low lying areas should be constructed on stilts above the High Flood Level (HFL)/ Full Tank Level (FTL)
- For chronic flooding spots, alternate locations may be explored for accommodating people staying there
- Buildings should be constructed on stilts after taking into account the stability of slopes, and
- Stormwater drainage systems for coastal cities have to be designed taking into account the tidal variations.

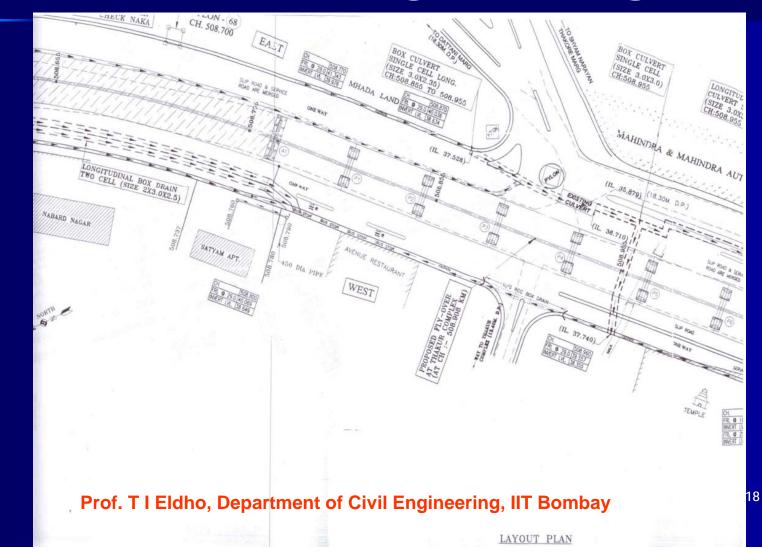


Road Side Drainage

- Road side drain: Integral part of urban drainage system
 - Storm Drainage

VATERSHED MANAGEMENT

- Collect storm water runoff
 - Away from structures
 - Through roadway and/ waterway
 - Right-of-way



- Objectives
 - Appropriate design Hydrologic & hydraulic considerations
 - Minimize the flooding and erosion to properties
 - Safe traffic

Road Side Drainage – Design

Road Side Drainage – Design Steps

- Design Problem and design criteria specification
 - Type, specific locality

VATERSHED MANAGEMENT

- System drainage area definition and preliminary layout
 - Street layout, total drainage area to be handled
- Field and office data collection
 - Make field visit, site specific problems (no width, trees, outcrops, utility locations, etc.
- System layout
 - Final layout, all ditches, waterways, inlets, manholes, mains, laterals, culverts, flow direction, etc.

Road Side Drainage – Design Steps

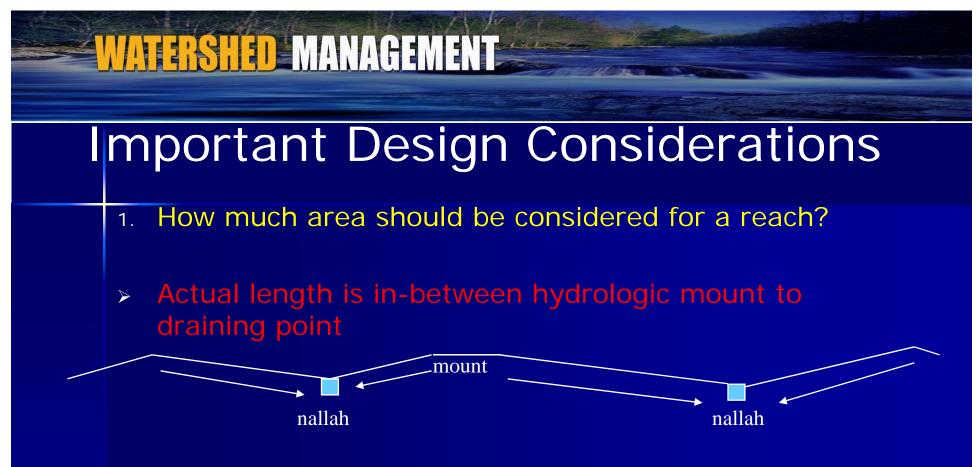
Hydrologic calculations

VATERSHED MANAGEMENT

- Flow estimation for the designed frequency
- Street flow
 - Flow and spread calculations, maximum spread, gutters flow
- Inlet spacing and layout
 - Location and type of inlet, size, extra inlet, etc.
- Hydraulic calculations
 - Size of the drain, permissible velocity, slopes, etc.
- Various design checks
 - Discharge, Froude number, velocity, slope

Drainage Design - Factors

- Return period of flood (rainfall)
- Spread
- Inlet types and spacing

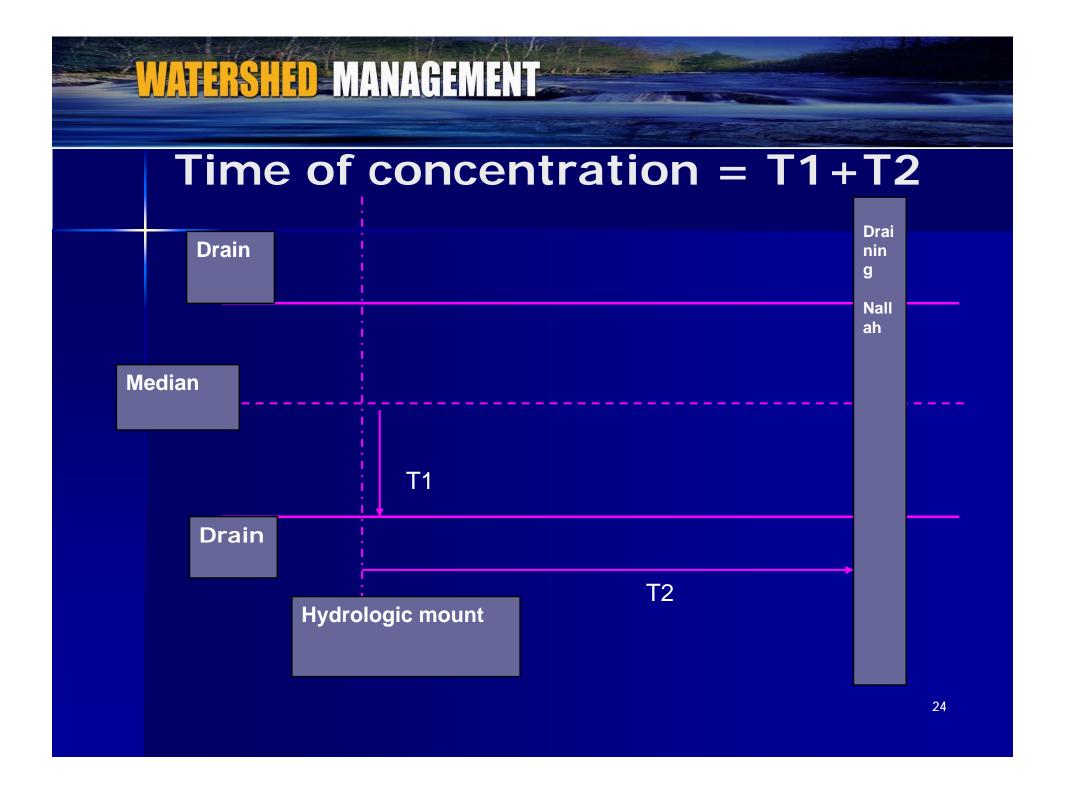

NATERSHED MANAGEMENT

- Longitudinal slope; Cross slope
- Curb and gutter section
- Roadside and median channels
- Bridge decks / fly over
- Shoulder gutter
- Median barriers
- Storm drains
- Detention storage; Erosion
- Cost

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

anhighwayspartnership.org

- 2. How much width should be considered on other side of the road drainage?
- Internationally road side drain are designed to cater "only road run-off", but in highly populated area it may be designed to carry run-off from near-by area also


Important Design Considerations

- Actual width should be based on topographical survey
 - The roads in Mumbai are very peculiar
 - The actual area contributing to road side drain is not known
- 3) Designed rainfall intensity?

VATERSHED MANAGEMENT

- Generally rainfall intensity with 10 year return period
- For important roads it should be 50 year return period
 - It should be based on time of concentration, IDF curves
 - IRC recommends time of concentration as: made of two time periods: 1.Time required for the rain water to flow over the road surface and enter into the drain (T1); 2. Time of flow in drains (T2)

23

Important Design Considerations

- As per IRC 50: For Mumbai the critical intensity of rainfall is 50 mm/hr
- The values are worked out assuming
 - Time of concentration of 30 mints
 - Rate of rainfall is 62.5 mm/hr (return period 2 years)
 - 4) Average runoff coefficient (C) of 0.6

Type of surface	Range of C
Bituminous and cement concrete pavement	0.8- 0.9
Gravel and WBM pavement	0.35- 0.70
Impervious soil	0.40- 0.65
Soil covered with turf	0.30- 0.55
Pervious soil	0.05- 0.30

Important Design Considerations

5) Manning's Coefficient value?

VATERSHED MANAGEMENT

- For concrete channels it is 0.013 to 0.017
- 6) Permissible velocity in the drains?
- For RCC drains allowable is 6 m/s but practically it was restricted 3 m/s.

Surface Characteristi cs	Range of n
Concrete:	
a) Formed, no	0.013 to
finish	0.017
b) Trowel finish	0.011 to
	0.015
c) Float finish	0.013 to
	0.015
d) Gunite, good	0.016 to
section	0.019
e) Gunite, wavy	0.018 to
section	0.022

AS per IRC 50: Minimum width of drain should not be less than 250 mm and incase of pipe the minimum diameter should not be less than 450 mm.

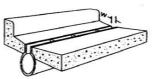
- Slope is designed such that the flow is always in subcritical flow
 - To avoid hydraulic jump
 - > As per IRC 50, a minimum longitudinal gradient is 0.3%

- Generally for open channels a free board of 0.3 m is provided
- But Mumbai is having very flat terrain and does not allow to have more free board.

> IRC recommends the following free boards
Bed width
< 300 mm
10 cm
300 to 900 mm
15 cm
900 to 1500 mm
30 cm
Larger size
90 cm

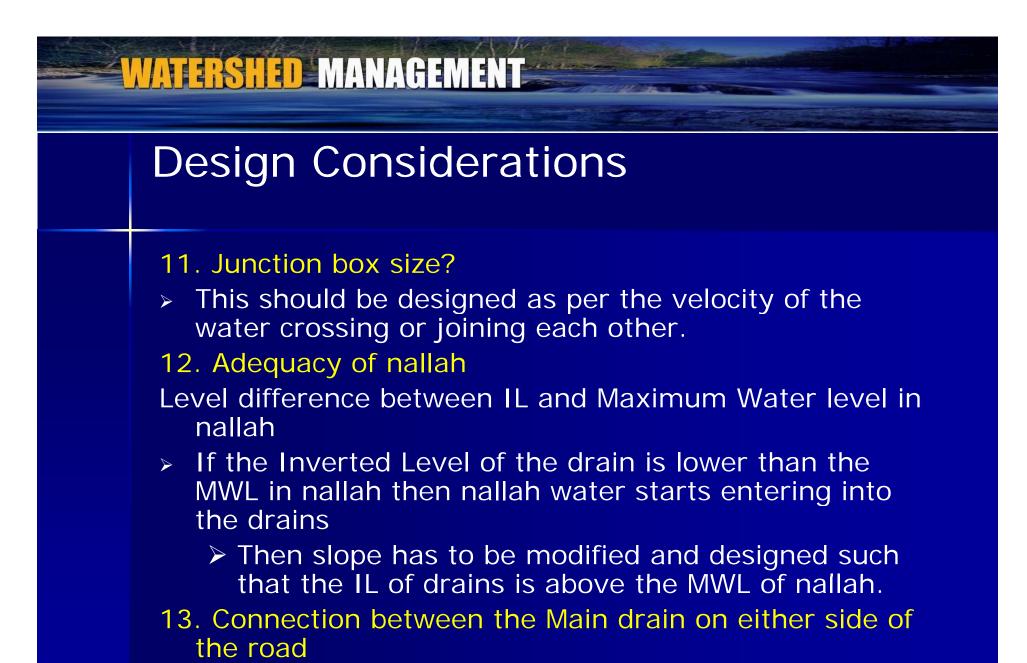
Design Consideration

- 10. Type of inlet to drains?
- Curb inlet
- Grate
- Combined



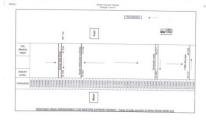
b. Curb-opening Inlet

a. Grate



c. Combination Inlet

d. Slotted Drain Inlet


- Design of drain draining to the creek or nallah having tidal effect.
- If the outlet point of the drain is to a creek or a nallah whose water level rises according to the tide level
- The IL of the drains should be above the high tide level, else sea water enters the drain
- If possible a large size drains may be constructed which can act as holding pong until the high tide level.

Data Needed for the design

- I Rainfall intensity
 - Runoff coefficient
 - Area contributing to drains (length and width)
- Cross-sectional parameters of the road
- RL of the hydraulic mount
- RL of the ground level, IL of the drains

II. KEY PLAN OF THE WORK

- the length
- location of nallah
- size, IL of drains at starting point and draining point
- Slope between the sections
- Other major drainage work nearby/ or river nearby

Data Needed for the design

III. DETAILED PLAN OF THE ROAD

- Length (in terms of chainage)
- Location of point sources and their discharge
- Hydrologic mount
- RL of ground levels at chainage points and other important points
- Arrows showing the flow direction of storm water in the drains
- Location of draining nallah
- Location and size of cross drainage work
- Location of man holes and their sizes
- Any other item relevant to the site specific be highlighted)

Data Needed for the design

V. LONGITUDINAL SECTION DRAWING

- -Finished Road Level
- -RL of existing ground level
- -IL of drains
- -Bed levels, water levels of nallah
- -Location of curb inlet points
- Location and size of other point sources joining the drain

References

- American Society of Civil Engineers and Water Environment Federation (ASCE and WEF). 1998. *Urban Runoff Quality Management.* WEF Manual of Practice No. 23, ASCE Manual and Report on Engineering Practice No. 87.
- http://ndma.gov.in/ndma/guidelines.html
- http://www.epa.gov/oaintrnt/stormwater/index.htm
- Mark, O., Weesakul, S., Apirumanekul, C., Aroonnet, S.B., Djordjevic, S. (2004). "Potential and Limitations of 1D Modelling of Urban Flooding." *J.Hydrology*, 299, 284-299
- National Disaster Management Guidelines (2010) Managemnet of urban flooding, Gov. of India, New Delhi.
- National Research Council of the National Academies (NRC). 2008. "Urban Stormwater Management in the Unites States." The National Academies Press. Washington, DC.

Self Evaluation - Questions!.

- What are the important causes of urban flooding?
- What are the difficulties in urban flood management?
- Discuss watershed based urban flood management.
- Describe the inventories to be taken for stormwater drainage system.
- What are the important design considerations for urban drainage systems?.
- What are the important data to be considered for roadside drainage design?.

Assignment- Questions?.

NATERSHED MANAGEMENT

- What are the important strategies for urban flood disaster risk management?.
- Illustrate various urban drainage systems.
- What are the important design requirements for urban drainage systems?.
- Discuss the important design considerations for roadside drainage design?.
- What are the important factors to be considered for roadside drainage design?.

THANKYOU

Dr. T. I. Eldho Professor, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India, 400 076. Email: <u>eldho@iitb.ac.in</u> Phone: (022) – 25767339; Fax: 25767302 <u>http://www.civil.iitb.ac.in</u>

