Module 7 – (L27 – L30): "Management of Water Quality": Water quality and pollution, types and Sources of pollution, water quality modeling, environmental guidelines for water quality

WATERSHED MANAGEMENT

Prof. T. L. Eldho

Department of Civil Engineering, IIT Bombay

Lecture No- 29 Water Quality Modeling

L29– Water Quality Modeling Topics Covered

 Water quality, protection, quality goals, Hydrodynamics, Transport processes, Oxygen regime, Mathematical modeling, Governing equations, numerical modeling, Groundwater transport modeling.

Keywords: Water quality modeling, Hydrodynamics,
 Mathematical/ numerical modeling, Groundwater transport.

Introduction - Water Quality Modeling

- Water quality models simulate the fate of pollutants & state of selected water quality variables in water bodies
- Incorporates variety of physical, chemical, & biological processes which control the transport and transformation of these variables
- Temperature, solar radiation, wind speed, pH, and light attenuation coefficients – important parameters
- Watershed pollutant loading
- Each water quality model has its own set of characteristics and requirements- (some models can be applied to several types of water bodies and some models only for particular water bodies)

Types of Water Quality Modeling

- Water quality is modeled by one or more of the following formulations:
- Advective transport formulations;
- Dispersive transport formulation;
- Heat budget formulation;
- Dissolved oxygen saturation; Reaeration
- Carbonaceous deoxygenation, Sediment, BOD, pH, Alkalinity, Nutrients, Algae, Microorganism etc

Water Quality – Hydrological Cycle

- Emissions: (Ex = out of) from the user's point of view (community, factory, etc.)
- Avoidance and reduction of pollution into the environment - sanitary engineering

VALERS HED MANAGEMENT

- Immissions: (In = into) from the water body's point of view: consequences of pollution, injections, etc.
- Environmental fluid mechanics: flow and transport in surface waters (rivers and lakes); flow and transport in soil and groundwater; flow & transport in the atmosphere

Water Quality Protection- Goals

 Water quality protection - ensure the quality of water which guarantees the preservation of environmental goods.

Environmental Goods:

VATERSHED MANAGEMENT

- functions of the river as water resource; community of aquatic living; fishing; irrigation of farm land
- leisure and recreation; focus on contamination
- substances from inland & suspended solids & sediments; drinking water supply
- Quality goals: given as a concentration of a substance show condition of river with regard to the environmental goods - function as an instrument for decisions, protection & improvement of water quality; derived from effective values & law

Water Quality Modeling - Considerations

Water Substances -

NATERSHED MANAGEMENT

Water Quality Modeling - Considerations

Governing laws -

Water Quality – Mathematical Modeling

NATERSHED MANAGEMENT

- The prediction of water pollution using mathematical simulation techniques.
- A typical water quality model consists of a collection of formulations representing physical mechanisms that determine position and momentum of pollutants in a water body.
- Models are available for individual components of the hydrological system such as surface runoff
- Models addressing hydrologic transport and for ocean and estuarine applications.

Water Quality Modeling - Hydrodynamics

Conservation of Mass:

Mass balance in a CV and the velocity v = v(x,y,z,t):

WATERSHED MANAGEMENT

fixed in space with the density $\rho = \rho(x,y,z,t)$

$$\frac{\partial(\rho v_x)}{\partial x} + \frac{\partial(\rho v_y)}{\partial y} + \frac{\partial(\rho v_x)}{\partial z} = -\frac{\partial \rho}{\partial t}$$

Incompressible fluids

(i.e. $\rho = \text{const.} \Rightarrow \partial \rho / \partial t = 0$)

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = div \vec{v} = 0$$

Water Quality Modeling - Hydrodynamics

Conservation of Momentum – Navier-Stokes equations

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -g \frac{\partial h}{\partial x} + v \left[\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right]$$
$$\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} = -g \frac{\partial h}{\partial y} + v \left[\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right]$$
$$\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} = -g \frac{\partial h}{\partial z} + v \left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right]$$

Water QM – Hydrodynamics & Transport

Heat transfer equation

MATERSHED MANAGEMENT

$$\left(v_{x} \frac{\partial T}{\partial x} + v_{y} \frac{\partial T}{\partial y} + v_{z} \frac{\partial T}{\partial z} \right) - D_{T} \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} + \frac{\partial^{2} T}{\partial z^{2}} \right) = -\frac{\partial T}{\partial t}$$

Turbulent flow: Nature of turbulence: irregular (characterized by variations with respect to time); intensive mixing; rotation; dissipative (increased losses of energy)

velocity
$$v = \overline{v} + v'$$

pressure $p = \overline{p} + p'$
Turbulent fluctuation

on

14

Water QM- Hydrodynamics & Transport

Turbulent flow: Continuity & momentum (x-dir.)

Water Quality Modeling

Turbulent diffusion:

Dispersion:

Momentum flux:

 $\mathbf{T} = -\mathbf{\rho}\mathbf{v}\frac{\partial \mathbf{v}_x}{\partial \mathbf{y}}$

 $\mathbf{T} = -\rho \mathbf{v}_{t} \frac{\partial \overline{\mathbf{v}}_{x}}{\partial y}$

 $q = -D_m \frac{\partial c}{\partial x}$

 $q = -\varepsilon_{\mathcal{D}} \frac{\partial c}{\partial x}$

 $q = -K \frac{\partial \overline{c}}{\partial x}$

Turbulent momentum exchange :

$$q_T = -\rho c_\rho D_T \frac{\partial T}{\partial x}$$

Heat flux:

Ref: Lecture notes on Environmental Fluid Mechanics, Prof. H. Kobus, Dept. Civil Engg., Uni. Stuttgart, Germany

Three dimensional transport equation

$$\frac{\partial \overline{c}}{\partial t} + \left(v_x \frac{\partial \overline{c}}{\partial x} + v_y \frac{\partial \overline{c}}{\partial y} + v_z \frac{\partial \overline{c}}{\partial z} \right) = \left(K_x \frac{\partial^2 \overline{c}}{\partial x^2} + K_y \frac{\partial^2 \overline{c}}{\partial y^2} + K_z \frac{\partial^2 \overline{c}}{\partial z^2} \right) + I$$

Ref: Lecture notes on Environmental Fluid Mechanics, Prof. H. Kobus, Dept. Civil Engg., Uni. Stuttgart, Germany 18

Dept. Civil Engg., Uni. Stuttgart, Germany

Groundwater Transport Modeling

2D non-homogeneous $\frac{\partial}{\partial x} \left(T_x \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(T_y \frac{\partial h}{\partial y} \right) = S \frac{\partial h}{\partial t} + Q_w \delta(x - x_i)(y - y_i) - q_s$ confined aquifer-Flow Equation

WATERSHED MANAGEMENT

2D non-homogeneous unconfined aquifer-Flow Equation

2D Transport equation

$$\frac{\partial}{\partial x}\left(K_x\frac{\partial h}{\partial x}\right) + \frac{\partial}{\partial y}\left(K_y\frac{\partial h}{\partial y}\right) = S_y\frac{\partial h}{\partial t} + Q_w\delta(x-x_i)(y-y_i) - q_s$$

$$v_x = -K_x \frac{\partial h}{\partial x}$$
 $v_y = -K_y \frac{\partial h}{\partial y}$

$$R\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D_{xx} \frac{\partial c}{\partial x} \right) + \frac{\partial}{\partial y} \left(D_{yy} \frac{\partial c}{\partial y} \right) - \frac{\partial}{\partial x} (V_x c) - \frac{\partial}{\partial y} (V_y c) - \frac{c'W}{nb} - R\lambda c$$

Water Quality – Numerical Modeling

- Numerical procedures- approx. sol. to most of field problems.
- Transform a complex practical problem into a simple discrete form of mathematical description
- Recreate & solve the problem on a computer, & finally reveal phenomena virtually according to requirements of analysts.
- Numerical or approximate solution for a complex problem efficiently, as long as proper numerical method is used.
- Numerical methods are used to analyze these phenomena like
 - Finite Difference Method (FDM)
 - Finite Element Method (FEM)
 - Finite Volume Method (FVM)
 - Method of Characteristics (MoC)
 - Boundary Element Method (BEM)
 - Meshfree Method (MFree)

Surface Water Quality Models

NATERSHED MANAGEMENT

- WASP Water Quality Analysis Simulation Program, US EPA: Interpret & predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions
- QUAL2K river and stream water quality model
- Aquatox- simulation model for aquatic systems; predicts the fate of various pollutants, such as nutrients & organic chemicals, & effects on ecosystem
- EPD-RIV1- Riverine Hydrodynamic and Water Quality Model, a system of programs to perform 1D dynamic hydraulic & water quality simulations
- SWMM Storm Water Management Model

Groundwater Quality Models

- MODFLOW (1988) USGS flow model for 3-D aquifers
- □ <u>MODPATH</u> flow line model for depicting streamlines
- □ MOC (1988) USGS 2-D advection/dispersion code
- MT3D (1990, 1998) 3-D transport code works with MODFLOW
- RT3D (1998) 3-D transport chlorinated MODFLOW
- BIOPLUME II, III (1987, 1998) authored at Rice Univ 2-D based on the MOC procedures.
- □ FEMWATER
- GMS package

Groundwater Transport Modeling – Case Study

Dhar et al., (1999), NGRI Report; M. Meenal & T. I. Eldho, (2012) Submitted to Journal of Hydrologic Engineering, ASCE HINDACO-Belgaum, India)

Case study..

- Watershed area- 72 sq. km, basaltic terrain on northern side of Belgaum.
- Watershed is drained by Markandeya river in the north
- Red mud- hydrous silt muddy, highly alkaline solid waste produced by physical and chemical treatments of bauxite in alumina production.
- Red mud is harmful to the ecological environment, safety of its storage has become an environmental problem of concern.
- Natural recharge of 65 mm/yr is given as input to the flow model.
- The seepage from red mud ponds is simulated as additional recharge (130 mm/yr) from the ponds.

Parameter	Value
Hydraulic	
Conductivity	
(m/day)	
Zone I	0.5
Zone II	1
Zone III	2
Longitudinal	50
dispersivity (m)	
Transverse	5
dispersivity (m)	
Specific Yield	0.2

Case study...

Mategaonkar, Meenal, (2012). Ph.D. Thesis, Dept. Civil Engineering, IIT Bombay

Steady state head distribution

Velocity distribution

References

- Guidelines for Water Quality Management, Central pollution control board (CPCB)
- Website : http://www.cpcb.nic.in
- Hydrological Modeling of Small Watershed C.T Han, H.P. Johnson, D.L. Brakensiek (Eds.), ASAE Monograph, Michigan
- Freeze, R.A. and Cherry J.A. (1979). Groundwater. Prentice Hall-INC., Englewood Cliffs, NJ
- www.epa.gov
- http://wrmin.nic.in
- Standard Methods for the Examination of Water and Wastewater; APHA, AWWA, and WEF, 21st Edition, 2005.
- http://cgwb.gov.in/

Tutorials - Question!.?.

NATERSHED MANAGEMENT

Critically study various groundwater water and surface water quality models available in literature (details can be obtained from Internet: (eg. <u>www.epa.gov</u>; www.bentley.com)

Study the capabilities of each model and the problems where it can be applied

Self Evaluation - Questions!.

MATERSHED MANAGEMENT

- Illustrate the different types of water quality modeling.
- Describe WQ modeling within the perspective of water cycle.
- Explain various conservation laws used in WQ modeling?.
- Describe with governing equations, the groundwater transport modeling.
- Illustrate the role of numerical modeling in WQ modeling.
- Describe various models used in groundwater quality modeling

Assignment- Questions?.

NATERSHED MANAGEMENT

- Illustrate watershed based WQ issues within the perspective of Hydrologic cycle.
- What are the typical WQ problem goals?.
- Describe with governing equations, the surface water transport modeling.
- Illustrate the oxygen regime modeling in Rivers.
- Describe various models used in surface water quality modeling

Unsolved Problem!.

NATERSHED MANAGEMENT

- With reference to a typical point source pollution from an industry to groundwater in your watershed area, critically study the possible water quality modeling for TDS concentration.
- Identify the possible water quality model from the open sources (from Internet sources: like MODFLOW/ MT3D).
- Collect the necessary data for the water quality modeling.
- Try to develop the model for your study area and predict the future spreading, say for next 10 years.

THANKYOU

Dr. T. I. Eldho Professor, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India, 400 076. Email: <u>eldho@iitb.ac.in</u> Phone: (022) – 25767339; Fax: 25767302 <u>http://www.civil.iitb.ac.in</u>

