Module 4 – (L12 - L18): "Watershed Modeling" Standard modeling approaches and classifications, system concept for watershed modeling, overall description of different hydrologic processes, modeling of rainfall, runoff process, subsurface flows and groundwater flow

AU TRSHED MANAGEMENT

Prof. T. I. Eldho

Department of Civil Engineering, IIT Bombay

Lecture No - 17

 Numerical Watershed Modeling

1

VATERSHED MANAGEMENT L17– Numerical Watershed

- **M d li o e ng**
	- T **Topics Covered**

Physically based watershed modeling, Numerical modeling, Finite difference method; Finite element method, Computer models

Keywords: Physically based watershed modeling, Numerical modeling, FDM, FEM.

Watershed Modeling

ATERSHED MANAGEMEN

- Transformation of rainfall into runoff over a watershed
- Generation of flow hydrograph for the outlet
- Use of the hydrograph at the upstream end to route to the downstream end
- Hydrologic simulation models use mathematical equations to calculate results like runoff volume or peak flow
- Computer models allows parameter variation in space and time – with use of numerical methods
- Ease in simulation of complex rainfall patterns and heterogeneous watersheds

Hydrologic Models

WATERSHED MANAGEMENT

WATERSHED MANAGEMENT

Necessity of Distributed models

- \blacksquare Flow of water in a watershed is a distributed process
- \blacksquare Models should be physically based
- п Governing equations - St. Venant equations
- \blacksquare Computer models- based on the St. Venant equations
- п Allows computation of flow rate and water level as functions of space and time
- \blacksquare Model more closely approximates the actual unsteady nonuniform nature of flow propagation in channels

WATERSHED MANAGEMENT

Hydrologic/ Hydraulic Modeling

- Г Hydrological / Hydraulic model- conceptual or physically based procedure- numerically solving hydrological processes -- diagnose or forecast processes.
- **Physical based: description of natural system using** basic mathematical representation of flows of mass, momentum and various forms of energy.
- \blacksquare Distributed: consider spatial variation of variables & parameters.
- **Applications: Rainfall to runoff, Surface water/** groundwater assessment, Flood/ drought predictions, Evaluation of watershed / catchment management strategies, River basin / Agricultural water management etc .

Initial and Boundary conditions

IC for overland is usually of dry bed condition. At time t = 0, h =0 and q =0 *at all nodal points* Upstream boundary condition is assumed as zero inflows; $h = 0$ and $q = 0$ at all times

 \blacksquare **q**-lateral inflow; Q-discharge in the channel; A-area of flow in the channel, $\mathsf{S}_0\text{-}\mathsf{bed}$ slope; I S_f-friction slope of channel.

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

እ

VATERSHED MANAGEMENT

Solution Methodologies

- П **Analytical method:** For the given mathematical formulation, an analytical expression involving the parameters and the independent variables are obtained using various mathematical procedures.
- \blacksquare Main limitation- only for a small class of mathematical formulations with simplified governing equations, boundary conditions & geometry, analytical solutions can be obtained.
- \blacksquare **Physical method:** As the mathematical model represents a real physical system, although on certain idealized assumptions, variables and parameters of the model can be considered as having physical dimensions and can be analyzed sometimes in the laboratory or in the field itself.
- \blacksquare The physical models are used less frequently since it is expensive, cumbersome and difficult in practice.
- П **Computational method**

Computational Method

ATERSHED MANAGEMEN

- П In the computational method, the solution is obtained with the help of some approximate methods using a computer. Commonly, numerical methods are used to obtain solution in the computational method.
- **Nider class of mathematical formulations &** advent of fast computers, computational models have become the most widely used valuable tool for solving the engineering problems.

Numerical Modeling

ATERSHED MANAGEMENT

- Ξ Variety of numerical methods such as
	- **- Method of characteristics**
	- **Finite Difference Method (FDM)**
	- **Finite Volume Method (FVM)**
	- **Finite Element Method (FEM)**
	- **- Boundary Element Method (BEM)**.

ATERSHED MANAGEMENT

Finite Difference Method

- Continuous variation of the function concerned by a set of values at points on a grid of intersecting lines.
- \blacksquare The gradient of the function are then represented by differences in the values at neighboring points and a finite difference version of the equation is formed.
- п At points in the interior of the grid, this equation is used to form a set of simultaneous equations giving the value of the function at a point in terms of values at nearby points.
- \blacksquare At the edges of the grid, the value of the function is fixed, or a special form of finite difference equation is used to give the required gradient of the function.

VATERSHED MANAGEMENT

Method of characteristics (MOC)

- F $\blacksquare\textsf{-} \mathsf{MOC}\textsf{-}$ reduce a partial differential equation to a family of ordinary differential equations along which the solution can be integrated from some initial data given on a suitable hyper surface
- \blacksquare For a first-order PDE, MOC discovers curves (called characteristic curves or characteristics) along which PDE becomes an ODE. It is solved along the characteristic curves & transformed into a solution for original PDE.
- П ■ Variant of FDM – suitable for solving hyperbolic equations
- \blacksquare MOC to simulate advection dominated trans port
- \blacksquare Track idealized particles through flow field
- п Efficient & minimize numerical instabilities

Finite Element Method

ATERSHED MANAGEMENT

- \blacksquare The region of interest is divided in a much more flexible way
- \blacksquare The nodes at which the value of the function is found have to lie on a grid system or on a flexible mesh
- п The boundary conditions are handled in a more convenient manner.
- **Direct approach, variational principle or weighted** residual method is used to approximate the governing differential equation

Boundary Element Method

ATERSHED MANAGEMEN

- \blacksquare The partial differential equations describing the domain, is transformed in to an integral equation relating only to boundary values.
- п The method is based on Green's integral theorem.
- П The boundary is discretized instead of the domain.
- \blacksquare A 3-Dimensional problem reduces to a

2 -Dimensional problem and 2 -Dimensional problem in to 1-Dimensional problem.

 \blacksquare BEM is ideally suited to the solution of many two and three- dimensional problems in elasticity and potential theory

Analytical Solution–Kinematic wave

$$
t_e = \left(\frac{L_{\rm w}}{\alpha_{\rm y} r_{\rm e}^{\beta-1}}\right)^{(1/\beta)}
$$

ATERSHED MANAGEMEN

 $q_{v} = \alpha_{v} (r_{e} t)^{\beta}$ $0 \leq t \leq t_{e}$,

$$
q_{y} = \alpha_{y} (r_{e} t_{e})^{\beta}, t_{e} \leq t \leq t_{e},
$$

$$
q_y = r_e L_w - r_e \beta \alpha^{(1/\beta)} q_y^{(\beta - 1/\beta)}(t - t_r) \,, \; t_r \leq t \leq t_f
$$

• Analytical solution for one-dimensional kinematic wave equations is given by above equations (Jaber and Mohtar, 2003); t_c *is time of concentration (sec);* t_r *is* \cdot *rainfall duration (sec); t f is the simulation time* (sec); Lw is the length of watershed (m) in the direction of *main slope. (Jaber, F.H., and Mohtar, R.H. (2003). "Stability and accuracy of two dimensional kinematic* wave overland flow modeling." Advances in Water *Resources, 26(11), 1189-1198).*

Finite Difference Method (FDM)

- ***FDM:** Calculations are performed on a grid placed over the (x, t) plane
- Flow and water surface elevation are obtained for incremental time and distances along the channel
- \blacksquare **Explicit methods:** calculates values of velocity & depth over a grid system based on a previously knowr data for the river reach
- \blacksquare **Implicit methods methods:** set up a series of simultaneous numerical equations over ^a grid system for the entire river & equations are solved at each time step.

Fig: x-t plane for finite difference scheme

ATERSHED MANAGEMEN

Typical Steps for FDM model

 Governing Partial Differential Equations with Subsidiary conditions

VATERSHED MANAGEMENT

- Divide domain into Grids
- Transformation b y Finite Difference Method
- System of difference equations
- Application of Boundary Conditions
- Solve by direct or iterative method
- Solution

 Δ y

 $I-1, J$

 Δ x | I,J-1

 $I,J+1$

 I,J

 $I,J \quad | \quad I+1,J$

20

Finite Difference Scheme

There are three commonly used finite difference approximations for the solution of PDE

ATERSHED MANAGEMEN

a) Backward difference scheme: We consider the node in the backward direction of the node at which gradient is g sought

- b) Forward difference scheme
- c) Central difference scheme scheme.

$$
\left(\frac{\partial h}{\partial x}\right)_I = \frac{h_I - h_{I-1}}{\Delta x}
$$

$$
\left(\frac{\partial h}{\partial x}\right)_I = \frac{h_{I+1} - h_I}{\Delta x}
$$

$$
\left(\frac{\partial h}{\partial x}\right)_I = \frac{h_{I+\frac{1}{2}} - h_{I-\frac{1}{2}}}{\Delta x}
$$

WATERSHED MANAGEMENT

Finite Difference Approximations

Spatial derivative is written using terms on known time line

Spatial and temporal derivatives use unknown time lines for computation

Finite Element Method

 \blacksquare Shape function N for a linear element can be expressed as $[N] =$ [<code>N1 N2]</code> Where N $_{\sf i}$ =1-(x/L) and N $_{\sf j}$ = x/L

E<mark>quation can be written in matrix form as follows:</mark> $N(x)$ П

$$
\left[B\right]^{(e)}\left\{q\right\}+\left[C\right]^{(e)}\left\{\frac{\partial h}{\partial t}\right\}-\left\{f\right\}^{(e)}r_e=0
$$

where $[B]^{(e)} = \int_{0}^{L} N^{T} \frac{\partial N}{\partial x} dx = \frac{1}{2} \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}; [C]^{(e)} = \int_{0}^{L} N^{T} N dx = \frac{L}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix};$

$$
\left\{f\right\}^{(e)} = \int\limits_0^L N^T dx = \frac{L}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix};
$$

 \blacksquare Assembling the overland flow line elements and applying implicit finite difference scheme for time domain

$$
[B]\{(1-\omega)(q)^t + \omega(q)^{t+\Delta t}\} + [C]\left\{\frac{h^{t+\Delta t} - h^t}{\Delta t}\right\} - \{f\}\{(1-\omega)(r_e)^t + \omega(r_e)^{t+\Delta t}\} = 0
$$

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay

 \Box

 N_i

 $---(4)$

 N_i

WATERSHED MANAGEMENT

Г

After rearranging terms, the final form of equation as:

$$
\begin{bmatrix} C \end{bmatrix} \begin{Bmatrix} h \end{Bmatrix}^{t+\Delta t} = \begin{bmatrix} C \end{bmatrix} \begin{Bmatrix} h \end{Bmatrix}^{t} - \Delta t \begin{bmatrix} B \end{bmatrix} \begin{Bmatrix} (1-\omega)q^{t} + \omega q^{t+\Delta t} \end{Bmatrix} + \Delta t \begin{Bmatrix} f \end{Bmatrix} \begin{Bmatrix} (1-\omega)(r_e)^t + \omega(r_e)^{t+\Delta t} \end{Bmatrix}
$$

System of equations will be solved after applying the boundary conditions

Typical Finite element Grid map

Case study: Harsul Watershed (Venkata Reddy, 2007)

Location- Nashik district, Maharashtra, India \bullet

IATERSHED MANAGEMENT

- 10.929 km2 Area-画
- Major Soil class Gravelly loam \bullet
- Remotely Sensed Data- IRS 1D LISS III imagery of \bullet January, 1998
- Thematic Maps- Drainage, DEM, Slope and LU/LC \blacksquare

VATERSHED MANAGEMENT

- $\frac{1}{2}$ Overland flow elements - 144
- $\frac{1}{2}$ Overland flow nodes -188
- Channel flow elements 22
- $\mathbf{a}_\mathrm{g}^\mathrm{A}$ Channel flow Element length - 0.25 km
- $\frac{1}{2}$ Average bed width - 18 m
- $\frac{1}{2}$ Slope
	- $\frac{1}{2}$ Overland flow
	- $\frac{1}{2}$ Channel flow
- $\frac{1}{2}$ Manning's roughness
	- $\frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n} \frac{1}{\sqrt{2}}\sum_{i=1}^{n}$ Overland flow
	- $\frac{1}{2}$ Channel flow

Finite element grid map **Prof. T I Eldho, Department of Civil Engineering, IIT Bombay**

ATERSHED MANAGEMENT

Case study: Harsul Watershed (Venkata Reddy, 2007)

- П Diffusion wave- GAML model
- П Calibration - 3 Rainfall events
- П Validation - 2 Rainfall events

Calibrated parameters for rainfall events (Harsul)

Observed & simulated hydrographs of calibration & validation rainfall events

ATERSHED MANAGEMEN

References

•

- Raj Vir Singh (2000), Watershed Planning and Management, Yash Publishing House
- • J.V.S Murthy (1991), Watershed Management, New Age international Publications
- \blacksquare Venkata Reddy K., Eldho T. I., Rao E.P. and Hengade N. (2007) "A kinematic wave based distributed watershed model using FEM, GIS and remotely sensed data." Journal of Hydrological Processes, 21, 2765 2777
- \blacksquare Chow, V.T., Maidment, D.R., and Mays, L.W. (1988). *Applied Hydrology*, McGraw-Hill, Inc., New York.
- п Bedient, P.B. and Huber W.C.(1988). *Hydrology and flood plain analysis*, Addison-Wesley Publishing Company., London
- \blacksquare Cunderlik, J. M. (2003). "Hydrologic model selection for the CFCAS project: Assessment of Water Resources Risk and Vulnerability to changing Climatic Conditions – Project Report 1", Department of Civil and Environmental engineering, University of Western Ontario

Tutorials - Question!.?.

VATERSHED MANAGEMENT

- Г Illustrate the necessity of physically based watershed modeling.
- **Develop a conceptual model for a typical** watershed, for physically based modeling. Describe the merits & demerits of physical modeling.

VATERSHED MANAGEMENT

Self Evaluation - Questions!.

- **NHY distributed modeling required for** watershed modeling?.
- **Illustrate various solution methodologies for** problem solution.
- \blacksquare Differentiate between explicit & implicit FDM schemes.
- **Describe FEM solution methodology with** salient features.

Assignment- Questions?.

VATERSHED MANAGEMENT

- **Nith the help of a flow chart, illustrate** hydrologic/ hydraulic modeling.
- \blacksquare Describe FDM solution methodology with salient features.
- **Differentiate between FDM & MOC.**
- **Describe BEM solution methodology with** salient features.

Unsolved Problem!.

VATERSHED MANAGEMENT

 Study the salient features & problems of your watershed area. Identify how various physically based models can be used for various problem solutions such as: rainfall runoff, flooding, drought management, rainwater harvesting, soil erosion etc.

VATERSHED MANAGEMENT

Dr. T. I. Eldho Professor,

Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India, 400 076. Email: eldho@iitb.ac.in Phone: (022) – 25767339; Fax: 25767302 http://www.civil.iitb.ac.in

