Module 2 – (L6) Sustainable Watershed Approach & Watershed Management Practices

Prof. T. I. Eldho

Department of Civil Engineering, IIT Bombay

Lecture No- 6 Soil Erosion & Conservation

#### L6– Soil Erosion & Conservation

#### Topics Covered

**HERSHED** MANAGEMEN

 Soil erosion: causes, processes, erosion factors, water erosion, types, estimation of soil loss, wind erosion, soil conservation practices

Keywords: Soil erosion, Water erosion,
 Wind erosion, Soil conservation.



#### Introduction to Soil Erosion

#### Definition :

- soil erosion is the detachment, transport & deposition of soil particle on land surface - termed as loss of soil.
- measured as mass /unit area tonne/ha or Kg/sq.m
- Soil loss is of interest primarily on-site effect of erosion such as loss of crop productivity
- Off site effect of erosion are siltation in ditches, streams, reservoirs
- Sediment generated by erosion processes are prime carrier of agricultural chemicals that pollutes stream or lakes.



Soil Erosion problem



#### Soil Erosion Problem...



India's Land Degradation: Source: state of environment report 2009 MoEF

- Soil erosion deteriorates soil quality & reduces productivity of natural, agricultural & forest ecosystem
- Soil erosion deteriorates quality of water
- Increased sedimentation causes reduction of carrying capacity of water bodies.

#### **Causes of Soil Erosion**

- Human Induced & Natural Causes
- Land use Over grazing by cattle, Deforestation, arable land use, faulty farming, construction, mining etc.
- Climatic conditions: precipitation & wind velocity
- Soil: soil characteristics texture, structure, water retention and transmission properties.
- Hydrology: Infiltration, surface detention, overland flow velocity, and subsurface water flow.
- Land forms: Slope gradient, slope length and shape of slope



#### **Types of Soil Erosion**

 Geological erosion, Natural erosion & Erosion from activities of human & animals

- Geological erosion:-Soil forming and distribution
  →Long time process
- Human and animal:-Tillage, removal of plants and other vegetation →accelerated erosion
- Stream bank erosion
- Landslide, Volcanic eruption, flooding
- Water and wind: major factors of soil erosion









#### **Soil Erosion Parameters**

#### Soil erosion – function of:

- Erosivity depends on rainfall
- Erodibility property of soil



- Topography property of land
- Management contributed by man
  Erodibility: Detachability & transportability
  Topography: Slope, length, relation to other land

Management: Land use & crop management

#### Water Erosion

- Detachment & transport of soil particles from land mass by water including rain, runoff, melted snow
- Depends on: soil nature & capacity of water to transport
- More on sloppy land
- More velocity → more transport
- Water erosion → accelerated by agriculture, grazing and construction activities



## Factors affecting Erosion by water

- Climate → Precipitation, temperature, wind, humidity and solar radiation
- Soil →size, type of soil, soil texture, structure, organic matter
- Vegetation → interception of rainfall-reduce surface sealing & runoff, decrease surface velocity, improvement of aggregation, increased biological activity and aeration, transpiration, physical holding

#### **Types of Water Erosion**

- Water Erosion Types: Interrill (raindrop and sheet), rill, gully & stream channel erosion
- Raindrop erosion (splash erosion) → Soil detachment & transport from impact of raindrops directly on soil particles or on thin water surfaces
- On bare soil → about 200 t/ha soil is splashed into the air by heavy rains
- Relationship erosion, rainfall momentum & energy by raindrop mass, size, shape, velocity & direction
- Relationship: Rainfall intensity & energy (Foster et al., 1981)
- E = 0.119 + 0.0873 log<sub>10</sub>i ; E- kinetic energy in MJ/ha-mm; i = intensity of rainfall in mm/h

## Sheet Erosion/ Interrill Erosion

ATERSHED MANAGEMENT

- Sheet erosion: Uniform removal of soil in thin layers from sloping land resulting from overland flow - Idealized form of sheet erosion rarely occurs
- Splash & sheet erosion sometimes combined & known as Interrill erosion
- Function of soil properties, rainfall and land slope
  Watson and Laften(1986) formula
   $D_l = K_l i^2 S_f$

where,  $D_i$ - interrill erosion rate in kg/m<sup>2</sup>-s K<sub>i</sub>-interrill erodibility of soil in kg-s/m<sup>4</sup> and i-rainfall intensity in m/s

S<sub>f</sub>-slope factor=1.05 - 0.85exp(-4sinθ); θ-slope in degrees

#### **Rill erosion**

- Detachment and transport of soil particles by concentrated flow of water; Predominant form of erosion; Depends on hydraulic shear of water flowing in the rill, rill erodibility and critical shear
  - Critical shear: shear below which soil detachment is negligible
  - Rill detachment rate (Dr)-erosion rate occurring beneath submerged area of the rill

Dr-Rill detachment rate in kg/m2-s Kau-Rill erodibility resulting from shear in s/m  $au_c$ -critical shear below which no erosion occurs in Pa Qs-rate of sediment flow in kg/m-s Tc-sediment transport capacity of rill in kg/m-s

 $\tau$ -hydraulic shear of flowing water in Pa=p g r s

$$D_r = K_{\tau} \left( \tau - \tau_c \right) \left( 1 - \frac{Q_s}{T_c} \right)$$

where,  $\rho$ -Density of water in kg/m3; g-acceleration due to gravity in m/c2

r-hydraulic radius of rill in m; s-hydraulic gradient of rill flow

#### **Gully erosion**

Advanced form of rill erosion –forms larger channels than rills

- Four stages
  - Formation stage
  - Development stage
  - Healing stage
  - Stabilization stage
  - Gullies may be small-1m or less
  - Medium-1m to 5m
  - Large-more than 5m



Stream channel Erosion: Removal of soil for stream
 banks or soil movement in channel



#### Measurement of Soil Loss – Water Erosion

#### Measurement from runoff plots

- Size varies from 1/250 to 1/125 Hectare
- Runoff measured by Flume
- Measurement from streams
  - Silt observation Posts (SOP)
  - Suspension, saltation and surface creep (bed load)
  - Both separately measured and added
  - Soil Sampler: S = p\* q\*86400/1000
- S-amount of material transported in tones/day
- p-amount of material (1m<sup>3</sup> of water in kg),
- q-rate of stream flow in m<sup>3</sup>/sec

#### Estimation of Soil Loss- Water Erosion

Universal soil loss equation (USLE)
 (through experiments) (Raj Vir Singh, 2000)

## A = RK L S C P

- A-Average annual loss: in ton/ha/year
- R-Rainfall & runoff erosivity index for location
- K-Soil erodibility factor
- L-slope length factor
- S slope steepness factor
- C-cover management factor
- P-conservation practice factor
  Prof. T I Eldho, Department of Civil Engineering, IIT Bombay



$$EI_{30} = (KE \ I_{30}) / 100$$

- EI-by multiplying kinetic energy of storm to maximum 30 min. intensity for that storm
- KE-kinetic energy of storm

- I<sub>30</sub>=Maximum 30 minutes rainfall intensity of storm
- KE=210.3 + 89 log I in ton/ha-cm
- I-rainfall intensity in cm/hr

#### Erodibility factor (K)

ATERSHED MANAGEMEN

 Soil erodibility factor K can be found by regression equation by Foster et.al(1981)

 $K = 2.8 * 10^{-7} M^{1.14} (12 - a) + 4.3 * 10^{-3} (b - 2) +$  $3.3 * 10^{-3} (c - 3)$ 

Where, M-particle size parameter (% silt+% very fine sand)\*(100-%clay)

a-percent organic matter; b-soil structure code

(very fine granular 1, fine granular 2, Medium or course granular 3, blocks, platy or massive 4)

c-profile permeability class (rapid 1;moderate to rapid 2;moderate 3;slow to moderate 4;slow 5;very slow 6)



s-field slope in %



#### Crop management factor (C)

Combined effect of crop sequences, productivity level, length of growing season, tillage practices, residue management & expected time distribution of erosive rain storm with respect to planting & harvest date

| Eg.<br>Hyderabad                                          | Crop       | Soil loss<br>(tn/ha) | Value of C |
|-----------------------------------------------------------|------------|----------------------|------------|
|                                                           | Cultivated | 5                    | 1          |
|                                                           | Grass      | 0.59                 | 0.12       |
|                                                           | Bajra      | 2                    | 0.38       |
| Prof T   Eldbo Department of Civil Engineering IIT Bombay |            |                      |            |



#### Wind Erosion

- Process of detachment transportation and deposition of soil by action of wind
- Depends on wind speed, soil, topographic features and vegetative cover
- More problems in arid or semi-arid region
- Change in texture of soil
- In India: Mainly occur in Rajasthan, Gujarat and parts of Punjab



#### **Mechanism of Wind Erosion**

- Initiation of movement –due to turbulence and wind velocity
- Transportation –depends on particle size, gradation, wind velocity and distance
- Deposition—occurs when gravitational force is greater than forces holding soil particles in air
- Types of soil movement by wind
  - Saltation- Fine particles lifted from surface and following specific path w.r.t wind and gravity
  - Suspension-floating of small particles
  - Surface creep -rolling or sliding of large soil particles along soil surface.





h-ridge height in mm; d-ridge spacing in mm from  $K_r$ , roughness factor K

$$K = 0.35 + \frac{12}{\left(K_r + 18\right)} + 6.2 * 10^{-6} Kr^2$$

#### **Climatic Factor**

 Index of climatic erosivity-> depends on wind velocity and soil surface moisture
 Mean wind velocity profile expression

Where,  $u_z$ -wind velocity at z height (L/T)

$$u_{z} = \frac{u^{*}}{\kappa} \ln\left(\frac{z-d}{z_{o}}\right)$$

u<sup>\*</sup>-friction velocity  $(L/T) = (\tau 0/\rho)^{0.5}$   $\tau_0$ -shear stress at boundary  $(F/L^2)$   $\rho$ -air density  $(m/L^3)$ k- Karman's constant=0.4 z-Height above a reference surface d-an effective surface roughness height  $z_0$ -a roughness parameter (h) d=0.7h;  $z_0$ =0.13h h-height of vegetation



 R<sub>w</sub> – quantity of residual to be converted to small grain equivalent in kg/ha

#### Photo, A.K. Singh, 2002

#### **Preventing Soil Erosion**

- Preventing soil erosion requires political, economic & technical changes.
- Aspects of technical changes include:
- use of contour ploughing and wind breaks;
- leaving unploughed grass strips between ploughed land;
- making sure that there are always plants growing on the soil, and that the soil is rich in humus (decaying plant and animal remains).
- avoiding overgrazing and the over-use of crop lands;
- allowing indigenous plants to grow along the river banks
- encouraging biological diversity by planting several different types of plants together;
- conservation of wetlands.

ATERSHED MANAGEME

## WATERSHED MANAGEMENT Soil Conservation Practices

- Conservation measures reduce soil erosion by both water & wind.
- Tillage and cropping practices, as well a land management practices, directly affect the overall soil erosion problem.
- Combination of approaches (Eg. contour plowing, strip cropping, or terracing)
- Other measures: Silt Fencing, Erosion Control Blankets, Sediment Traps, Plastic Covering/Bank Stabilization, Pipeline Sand Bagging, Check Dams, Drain Inlets, Filter Berms & Silt Dikes





#### Soil Conservation Practices - Types

- Vegetative practices
  - Contouring
  - Strip cropping
  - Tillage operations
  - Mulching
- Mechanical practices
  - Terraces
  - Bunds (graded & contour)
  - Check dams
  - Vegetated outlets & watercourses

Prof. T I Eldho, Department of Civil Engineering, IIT Bombay









Photos: Singh, 07. 2001

Photo, A.K. Singh, 2002

#### Case Study: Indian Scenario

- Soil erosion prevalent almost 55% of total land
- Himalayan & lower Himalayar regions highly affected
- More than 25% reservoir capacity lost
- Erosion rates in India-
- Iso-erosion lines- annual
  Erosion rates in ton km<sup>-2</sup>year<sup>-1</sup> (Garde & Kothyari, 1987; Kothyari, 1996)



#### Annual Soil Loss Estimate– Indian Scenario

| Region                         | Land-Use               | Soil loss(t/km <sup>2</sup> ) |
|--------------------------------|------------------------|-------------------------------|
| North Himalayan                | Forest                 | ~280                          |
| forest region                  |                        |                               |
| Punjab-Haryana alluvial plains | Agriculture            | ~330                          |
| Upper-Gangetic-alluvial plains | Agriculture/waste land | ~1400-3300                    |
| Lower Gangetic alluvial plains | Agriculture            | ~280-950                      |
| North-eastern forest           | Agriculture/shifting   | ~2750-4100                    |
| region                         | cultivation            |                               |
| Gujarat alluvial plain         | Agriculture            | ~300-3300                     |
| Red soil region                | Agriculture            | ~250-350                      |
| Black soil region              | Agriculture            | ~2370-11000                   |
| Lateritic soil                 | Agriculture            | ~4000                         |

Ref: Raj Vir Singh (2000), Watershed Planning and Management, Yash Publishing House

#### References

ATERSHED MANAGEMENT

- State of Environment of India 2009: report of Ministry of Environment and Forest ( source: <u>http://moef.nic.in/downloads/home/home-SoE-Report-2009.pdf</u> )
- Raj Vir Singh (2000), Watershed Planning and Management, Yash Publishing House
- <u>http://www.geo.fu-berlin.de/fb/e-</u> learning/geolearning/en/soil\_erosion/types/index.html
- http://iahs.info/redbooks/a236/iahs 236 0531.pdf
- http://www.ias.ac.in/currsci/25jan2010/213.pdf
- G. Das (2000): , Hydrology & Soil Conservation Engg., Prentice Hall of India, New Delhi

#### Tutorials - Question!.?.

- Illustrate the possible soil conservation measures within the perspective of sustainable watershed management practices.
- Identify the components soil erosion
- Scientific interventions
- Identify the problems
- Identify vegetative & mechanical measures.
- Importance of soil conservation.







#### **Self Evaluation - Questions!.**

- What are the causes and consequences of soil erosion?.
- What is wind erosion & under what conditions does it occur?.
- Enumerate measures adopted for control of soil erosion caused by wind.

# WATERSHED MANAGEMENT Image: Constraint of the second s

- Illustrate soil erosion processes.
- What are the important factors affecting soil erosion by water?.
- What are different types of water erosion?. Discuss each type.

#### **Unsolved Problem!.**

- For your Watershed area, study the soil erosion problems?.
- Identify the problems.

NATERSHED MANAGEMENT

- Find out the ways to control soil erosion problems.
  - Carry out survey
  - Consider traditional practices to control erosion
  - Suggest scientific methods for soil conservation

# THANKYOU

Dr. T. I. Eldho Professor, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India, 400 076. Email: eldho@iitb.ac.in Phone: (022) – 25767339; Fax: 25767302 http://www.civil.iitb.ac.in

