Example Problem

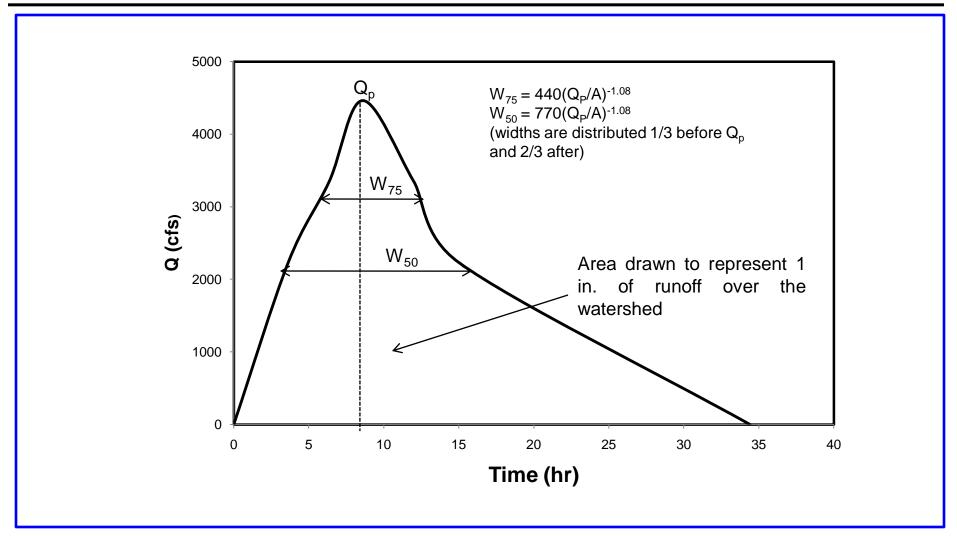
Use Snyder's method to develop a UH for the area of 100mi2 described below. Sketch the appropriate shape. What duration rainfall does this correspond to?

> $C_t = 1.8$, L= 18mi, $C_p = 0.6$, L_c= 10mi

 Calculate t_p Calculate Qp

 $t_p = C_t(LL_C)^{0.3}$ $Q_p = 640(c_p)(A)/t_p$
 $= 1.8(18 \cdot 10)^{0.3} hr$,
 = 640(0.6)(100)/8.6

 = 8.6 hr = 4465 cfs


 Since this is a small watershed,
 Duration of rainfall

 $Tb \approx 4tp = 4(8.6)$ $D = t_p/5.5 hr$

 = 34.4 hr = 1.6 hr

Example Problem

Contd...

Example Problem

Use the SCS method to develop a UH for the area of 10 mi² described below. Use rainfall duration of D = 2 hr

$$C_t = 1.8$$
, L= 5mi,
 $C_p = 0.6$, L_c= 2mi

The watershed consist CN = 78 and the average slope in the watershed is 100 ft/mi. Sketch the resulting SCS triangular hydrograph .

Solution

Find t_{D} by the eq.

$$t_p = \frac{L^{0.8} \left(\frac{1000}{\text{CN}} - 9\right)^{0.7}}{19000 \text{ y}^{0.5}}$$

Convert L= 5mi, or (5*5280 ft/mi) = 26400 ft.

Slope is 100 ft/mi, so y = (100ft/mi) (1mi/5280 ft)(100%) = 1.9%

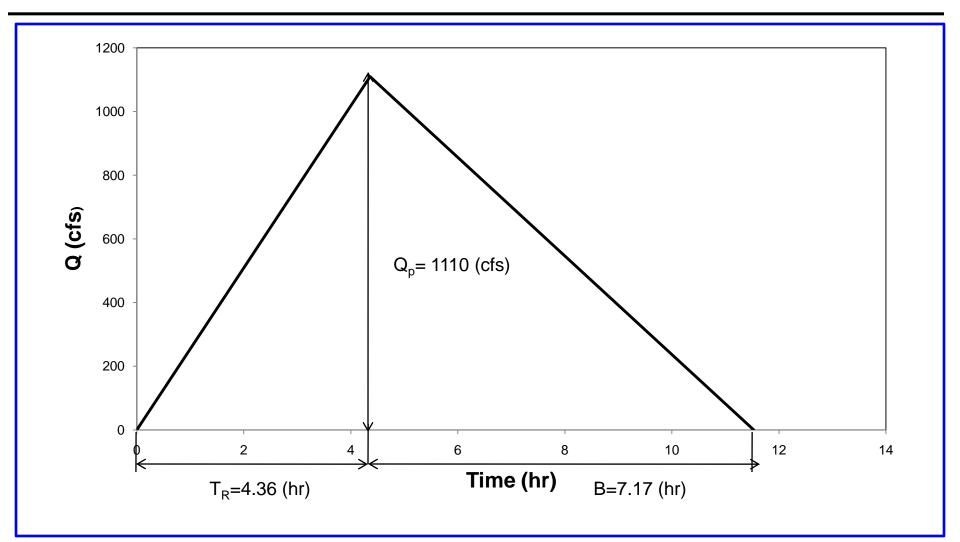
Substituting these values in eq. of t_p , we get $t_p = 3.36$ hr

Example Problem

$$T_R = \frac{D}{2} + t_p$$

Given rainfall duration is 2 hr, $T_R = 4.36$ hr, the rise of the hydrograph Then find Q_p using the eq, given A= 10 mi²

$$Q_p = rac{484A}{T_R}$$
 . Hence $\mathrm{Q_p}$ = 1.110 cfs


To complete the graph, it is also necessary to know the time of fall B. The volume is known to be 1 in. of direct runoff over the watershed.

So, Vol. = (10mi²) (5280ft/mi)² (ac/43560ft²) (1 in.) = 6400 ac-in Hence from eq. $Vol = \frac{Q_p T_R}{2} + \frac{Q_p B}{2}$

Module 3

Example Problem

Module 3

Exercise problems

 The stream flows due to three successive storms of 2.9, 4.9 and 3.9 cm of 6 hours duration each on a basin are given below. The area of the basin is 118.8 km². Assuming a constant base flow of 20 cumec, derive a 6-hour unit hydrograph for the basin. An average storm loss of 0.15 cm/hr can be assumed (Hint :- Use UH convolution method)

Time (hr)	0	3	6	9	12	15	18	21	24	27	30	33
Flow (cumec)	20	50	92	140	199	202	204	144	84	45	29	20

 The ordinates of a 4-hour unit hydrograph for a particular basin are given below. Derive the ordinates of (i) the S-curve hydrograph, and (ii) the 2-hour unit hydrograph, and plot them, area of the basin is 630 km²

Time (hr)	Discharge (cumec)	
0	0	
2	25	
4	100	
6	160	
8	190	
10	170	
12	110	

Time (hr)	Discharge (cumec)					
14	70					
16	30					
18	20					
20	6					
22	1.5					
24	0					

3. The following are the ordinates of the 9-hour unit hydrograph for the entire catchment of the river Damodar up to Tenughat dam site: and the catchment characteristics are , A = 4480 km², L = 318 km, L_{ca} = 198 km. Derive a 3-hour unit hydrograph for the catchment area of river Damodar up to the head of Tenughat reservoir, given the catchment characteristics as, A = 3780km², L = 284 km, L_{ca} = 184km. Use Snyder's approach with necessary modifications for the shape of the hydrograph.

Time (hr)	0	9	18	27	36	45	54	63	72	81	90
Flow (cumec)	0	69	1000	210	118	74	46	26	13	4	0