Introduction to Organometallic Chemistry A. G. Samuelson

III) Questions based on η^m (m=even) ligands

- 12. Metal alkene complexes
- 13. Alkynes n2 bonding
- 14. Metal dihydrogen and hydrides
- 15. Migratory Insertion reaction with alkynes
- 16. $\eta^{\rm m}$ (m=4 dienes and m=2n, polyenes)
- 2. Explain the following observations
 - (a) Olefins have different chemical shifts and ¹³C-¹H coupling constants on binding to a metal.
 - (b) Cyclooctatetraene forms a $\eta 4$ complex with Fe(CO)₃. Uranium forms a $\eta 8$ complex with the same ligand.
 - (c) The IR spectra of [(C₂H₄)PtCl₂]₂ shows a C=C stretching frequency of 1506 cm⁻¹ whereas the first organometallic compound synthesized by Zeise shows a C=C stretching frequency at 1516 cm⁻¹
- 3. Suggest suitable methods for the preparation of

$$Cp_2Mo(C_2H_2);$$

 $[Fe(CO)_4(C_2H_4)]$
 $[Co_2(CO)_6(C_2H_2)]$

- 4. Draw the molecular orbitals of cyclobutadiene and match them with the orbitals on a 3d transition metal.
- 5. Complete the following equations giving the structure and electron count of the organometallic products

b. RuCl₃ + 1,4-cyclohexadiene +Ethanol (reflux)

c.
$$Ph - C \equiv C - Ph + CO_2(CO)_8 \rightarrow$$

d.
$$C_2F_4 + Pt(PPh_3)_3$$

e. NiCl₂ + AlR₃ + C₄H₆
$$\rightarrow$$
 (butadiene)