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Lecture 13 

Asymmetric carbon-heteroatom bond formation is among the fundamentally 

important reactions. This module covers the carbon-heteroatom bond-forming 

reactions using transition-metal-complex as well as the chiral Lewis acid 

catalyzed protocols. 

1.1 Allylic Substitution  

Much effort has been devoted on controlling the regioselectivity and 

enantioselectivity in allylic substitution of substrates 1 or 2 (Scheme 1). The 

palladium-catalyzed allylic substitution is versatile, however, the (E)-linear 

product 3 is often formed. Thus, the control of regioselectivity has been 

recently the main focus to provide product 4. 
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1.1.1 Allylic Amination and Etherification of Allylic Alcohol 

Derivatives  

Chiral iridium complex having phosphoramidate 4a or 5a has been shown to 

catalyze the allylic amination of carbonate to give branched product with 

excellent enantioselectivity (Scheme 2).  An activated form of the iridium 

complex by in situ C-H activation at CH3 group of a hindered ligand 4a has 

been identified. 

The direct reaction of allylic alcohols has been studied to give allylic amines in 

the presence of chiral iridium complex derived from [Ir(COD)Cl]2 and ligand 6 

(Scheme 3). In this reaction, sulfamic acid serves not only as a nitrogen source 

but also as an in situ activator of the hydroxyl group of the allylic alcohol 
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Allylic amination is important for the construction of nitrogen-based 

heterocyclic compounds (Scheme 4).  The enantioselective intramolecular 

allylic amination has been accomplished using chiral iridium complex derived 

from [Ir(CDD)Cl2]2 and ligand 7. Good enantioselectivity has been obtained 

upon activation using 1,5,7-triazabicylo[4.4.0]undec-5-ene (TBD) as base. The 

catalytic system has also been used for the sequential aminations of bis-allylic 

carbonate via an inter- followed by an intramolecular reactions. 
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Enantioselective allylic amination is also a powerful tool for the construction of 

natural products. For example, asymmetric desymmetrization of meso-diol with 

p-tosyl isocyanate using chiral palladium complex gives easy access to chiral 

nitrogen-substituted heterocycles which are precursor for the synthesis of (-)-

swainsonine (Scheme 5).   
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The chiral palladium catalyzed enantioselective allylic amination has also been 

utilized for the total synthesis of (-)-tubifoline, (-)-dehydrotubifoline and (-)-

strychnine (Scheme 6). 
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Scheme 6 

The one-pot enantioselective synthesis of azacycle has been shown using a 

ruthenium-catalyzed ene-yne addition followed by a palladium-catalyzed 

asymmetric allylic amination (Scheme 7). 
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The regio- and enantioselective allylic etherification has been studied using 

chiral ruthenium complex.  For example, planar-chiral cyclopentadienyl 

ruthenium complex 9 catalyzes efficiently the reaction of cinnamoyl chloride 

with 3-methylphenol with high enantioselectivity and yield (Scheme 8). 
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K. Onitsuka, Angew. Chem. Int. Ed. Engl. 2008, 47, 1454.

Scheme 8 

Enantioselective allylic substitution of carbonates with a diboron using 

copper(I)-based catalysts has been demonstrated. For example, Cu(I)-phosphine 

complex generated in situ from Cu(O-t-Bu) with ligand 10 has been shown to 

catalyze the reaction of allylboronate with carbonate in excellent 

regioselectivity and enantioselectivity (Scheme 9). Addition-elimination 

mechanism having the generation of Cu-alkene -complex and 

borylalkylcopper intermediate has been suggested.
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1.1.2 Reaction of -Allyl Intermediates 

Nucleophilic attack of an amine to a -allyl intermediate can afford an allylic 

amine derivative.  For example, palladium complex derived from [Pd(C3H5)Cl]2 

and ligand 11 catalyzes the reaction of racemic vinyloxirane with phthalimide 

in nearly quantitative yield (Scheme 10). Involvement of the hydrogen bond of 

the nucleophile to the oxygen leaving group is proposed to deliver the 

nucleophile to the adjacent carbon to provide the target molecule. The process 

has been utilized for the synthesis of (+)-broussonetine G. 

Palladium based systems has also been utilized for the cycloaddition reaction of 

epoxides and aziridines with heterocumulenes (Scheme 11).  

Enantioselective copper(I)-catalyzed substitution reactions of propargylic 

acetates with amines has been explored. For examples, copper complexes 

deriveded from copper(I) salts and ligands 12 and 13 catalyze the reaction of 

propargylic amination with 85% ee (Scheme 12). 
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Problems 

A. Give some examples for chiral Rh-catalyzed allylic substitution. 

 

B. Complete the following reactions. 

OTBS

OTf

1.

Pd(OAc)2

K2CO3

C6H6

2.

O

N

I

Pd2(dba)3 CHCl3

Ag2PO4

3. O

Cl

O O

Cu(OAc)2 H2O, (S)-BINAP

4. Ph

O O
[Rh(COD)Cl]2

Et3N

5.

Ph H

O O
Rh(PPh3)3Cl

H2

(R)-BINAP

(R)-BINAP

(R)-BINAP

 

Reference 

I. Ojima, Catalytic Asymmetric Synthesis, 3
rd

 ed., Wiley, New Jersey, 2010. 
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Lecture 14  

Carbon-Heteroatom Bond-Forming Reactions II 

4.2 Aza-Claisen Rearrangement and Related Reactions 

Aza-Claisen rearrangement, known as the Overman rearrangement, has been 

extensively studied that allows us to synthesize chiral allylic amines from 

achiral allylic imidates with excellent enantioselectivity. For example, prochiral 

N-arylbenzimidates can be converted into chiral N-arylbenzamides in the 

presence of ferrocenyloxazoline palladacycle, FOP-TFA, (Scheme 1). 

SiMe3
O

N

FePdO

R

Ph

Ar
N O

R

Ph

Ar

*
X

2

FOP-TFA 1

FOP-TFA 1 X = OCOCF3

C. E. Anderson, et al., J. Org. Chem. 2005, 70, 648.

Scheme 1 

This catalytic system has also been shown to promote the cyclization of allylic 

N-arylsulfonylcarbamates to give five-membered nitrogen containing 

heterocycles (Scheme 2). An involvement of aminopalladation of the alkene 

followed by insertion of the alkene into the Pd-N has been proposed.   

This procedure has also been extended for the allylic etherification reaction. For 

example, the reaction of (Z)-allylic trichloroacetimidates with carboxylic acids 

in the presence of COP-OAc gives chiral allylic esters in high enantiopurity 

(Scheme 3).  Under these reaction conditions, E-stereoisomer show inferior 

results. In these reactions, the COP-OAc activates the carbon-carbon double 

bond for attack by external oxygen nucleophile and the trichloroacetimidate 

group serves as a leaving group along with templating the catalyst to the double 

bond. 
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4.3 Hydroamination of Alkenes 

Scandium 3,3’-tris(phenylsilyl)binaphtholatecan be used as a highly active 

catalyst for the synthesis of pyrrolidine via intramolecular hydroamination 

(Scheme 4). 
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Chiral neutral zirconium amidate has been used for hydroamination of primary 

aminoalkenes with 93% ee (Scheme 5).  
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4.4 Hydroalkoxylation of Allenes 

Hydroalkoxylation of allenes has been accomplished using a catalytic 1:2 

mixture of the dppm(AuCl)2 and chiral silver phosphonate to give furan with 

97% ee (Scheme 6).  

OH O
H

O

O
P

O

O Ag

Ar

AgLn*

dppm(AuCl)2

90% y, 97% ee
Ar = 2,4,6-i-Pr3-C6H2

AgLn*

C6H6

G. L. Hamilton et al., Science 2007, 317, 496.

Scheme 6 

4.5 Oxidation Reactions 

Wacker-type tandem cyclization reaction of alkenyl alcohol is reported using 

chiral palladium(II)-spirobis(isoxazoline) with excellent enantioselectivity 

(Scheme 7). In this reaction, benzoquinone reoxidizes the reduced palladium(0) 

to palladium(II) species. 
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H

O N N O
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i-Pri-Pr

i-Pr
H HLn, Pd(OTf)2

CH2Cl2
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M. A. Arai, et al., J. Am. Chem. Soc. 2001, 123, 2907.

Ln*

Scheme 7 

 

 

Palladium complex derived from Pd(TFA)2 and (S,S)-BOXAX has been found 

to be effective for the synthesis of chiral chroman framework in the presence of 

benzoquinone (Scheme 8).  
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The mercury(II) complex derived from Hg(TFA)2 and bisoxazoline has been 

used for the mercuriocyclizationwith high enantioselectivity (Scheme 9).  
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Chiral cobalt(II)-salen has been used for the enantioselective intramolecular 

iodoetherification to procure 2-substituted tetrahydrofurans with up to 90% ee 

(Scheme 10). 
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Problems 

C. Complete the following reactions. 

1.
HN O

CCl3

Ph

PdLn*

2.

PdLn*

+   PhNH2

3. .
Me

Me

NHTs PdLn*

4.

OH

.

AgLn*

5.

NH

O

PdLn*

O2

 
D. Provide some examples for the chiral Y and Au-catalyzed hydroamination reactions. 

 

Reference/Text Book 

1. I. Ojima, Catalytic Asymmetric Synthesis, 3
rd

 ed., Wiley, New Jersey, 2010. 

2.  M. B. Smith, Organic Synthesis, 2
nd

 edition, McGraw Hill, New Delhi, 2004. 
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Lecture 15 

Carbon-Heteroatom Bond-Forming Reactions III 

4.6 Aziridination of Alkenes 

The aziridination of alkenes has been successfully accomplished using chiral 

Mn-salen with 94% ee. The presence of catalytic amount of 4-phenylpyridine-

N-oxide leads to enhancement in the enantioselectivity (Scheme 1). 

Ph

O

N N

O

Ph

Mn

AcO

Ph NTs IPh

4-Phenylpyridine-N-Oxide

Substrate : CH2Cl2 = 5.1
76% y, 94% ee

Mn(III)-salen

NTs
Ph

Mn(III)salen

+

K. Noda et al., Synlett 1993, 469.

Scheme 1 

Chiral Ru(salen)(CO) can be utilized for the aziridination using 2-

(trimethylsilyl)ethanesulfonyl (SES) group as a nitrene precursor, because the  

SES group is an easily removable N-protecting group under milder conditions 

(Scheme 2). These reaction conditions are compatible for the reactions of 

conjugated alkenes with high enantioselectivity. 

Although the aziridination of alkenes has been explored well, the reaction of 

-amino 

ketones via the ring opening process of the aziridine intermediates. The chiral 

dirhodium complex, Rh2(S-TFPTTL)4, catalyses efficiently the amination of 

enol ethers employing NsN=IPh as nitrogen source (Scheme 3). The use of the 

N-2-nitrophenylsulfonyl (Ns) group is synthetically valuable, because the 

alkylation and deprotection of N-monosubstituted Ns-amide takes under milder 

conditions. The application of this protocol has been shown in the formal 

synthesis of (-)-metazocine. 
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The use of chiral amine has been demonstrated for the reaction of electron 

deficient alkenes. For example, the use of aminimide as an effective NH-

transfer reagent for the aziridination of electron deficient alkenes is reported 

(Scheme 4). In this reaction, in situ generation of a hydrazinium salt from 

tertiary amine and O-mesitylenesulfonylhydroxylamine (MSH), deprotonation 

of the hydrazinium salt to form an aminimide, and subsequent aziridination is 

involved. 
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NH2
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N

N

Ph

O

Ph Ph

O

Ph

NH

EWG EWG

NH
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CH3CN : CH2Cl2 = 2:1 81% y, 55% ee

NR3
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Y.-M. Shen et al., Angew. Chem. Int. Ed. Engl. 2006, 45, 8005.

Scheme 4 

4.7 Amination of Carbonyl Compounds 

The electrophilic Amination reaction is useful technology for the introduction 

of an amine functionality next to carbonyl carbon. Asymmetric version of this 

process has been considerably explored.  Recently, the use of the combination 

of copper and palladium based catalytic system has been demonstrated for the 

asymmetric one-pot tandem addition-cyclization reaction of 2-(2’,3’-dienyl)--

keto esters, aryl halides, and dibenzylazodicarboxylate to afford pyrazolidine 
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(Scheme 5). An involvement of -allylpalladium intermediate via the 

carbopalladation of allene has been proposed. 
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The use of bifunctional chiral amide iridium complex for the direct amination 

of -substituted -cyanoacetate with azodicarboyxlate has been demonstrated 

with excellent enantioselectivity (Scheme 6).  In this reaction, the chiral amide 

complexmay be involved in the deprotonation of cyanoacetate that would lead 

to the formation of N-bound nitrile complex; thus, cyanoacetate and 

azodicarboxylate are activated sequentially by the bifunctional catalyst that 

could facilitate the transformation. 
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Using chiral diamine-copper(II) the amination of anecarbamates can be 

accomplished with excellent enantioselectivities (Scheme 7). Under these 

conditions, the changing the enecarbamate geometry from Z to E resulted in a 

dramatic improvement of the reactivity. 
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4.8 Boration of Alkenes 

Organoboranes are useful reagents for organic synthesis. Recently, catalytic 

methods have been developed for enantioselectiveboration of unsaturated 

substrates. For example, the diboration of alkenes with bis(catecholato)diboron 

using rhodium(I) salt and (S)-quinap can be accomplished (Scheme 8). 

Oxidation of the diborane derivatives can lead to chiral 1,2-diols. Furthermore, 

tandem diboration, Suzuki cross-coupling and oxidation reaction of can lead to 

carbohydroxylation with similar enantioselectivity. 

p-Tol

MeMe

N

Ph2P

O
B

O
B

O

O

p-Tol
B(cat)

MeMe

B(cat)

p-Tol
OH

MeMe

OH

p-Tol

MeMe

OH N

N

Br

(nbd)(Rh(acac)

(S)-Quinap

B2(cat)2

THF

H2O2/NaOH

dppfPdCl2

then H2O2/NaOH

74% y, 96% ee

58% y, 96% ee

(S)-Quinap B2(cat)2 S. P. Miller, Miller, et al., Org. Lett. 2004, 6, 131.

Scheme 8 

 

 

 

 

 

 



NPTEL – Chemistry and Biochemistry  – Catalytic Asymmetric Synthesis 
 

Joint initiative of IITs and IISc – Funded by MHRD                                    Page 26 of 30 

The asymmetric silaboration of symmetrically substituted meso-

methylcyclopropanes can be accomplished via carbon-carbon bond cleavage 

employing chiral palladium-catalyzedboration with Me2PhSiB(pin) as the 

silylboron reagent (Scheme 9). The catalytic system is also effective for the 

silaboration of mono-substituted allene to give allylsilane with good 

enantioselectivity (Scheme 10). 
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The diboration of terminal allenes is also demonstrated using palladium 

complex derived from Pd(dba)2 and a chiral phosphoramidite to give 1,2-

bis(boronate)ester with high enantioselectivity (Scheme 11). The rate 

determining step involves the oxidative addition of the diboron to Pd, which is 

followed by the transfer of both boron groups to the unsaturated substrate via a 

-allyl complex. 
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4.9  Hydrophosphonylation of Imines 

The hydrophosphonylation of aldehydes and imines affords an effective route 

for the formation of C-P bonds.Recently, the reaction of cyclic phosphate with 

cyclic imines has been shown employing bimetallic chiral (S)-YbPB with 

excellent enantioselectivity (Scheme 12). 
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Problems 

E. Predict the major product for the following reactions. 
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F. Describe asymmetric oxygenation of carbonyl compounds. 
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