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Figure 0.1. Heat exchanger with temperature controller 

Chapter 0. Introduction to Course 

 
0.1. Background and Motivation 

 
Chemical processes are designed and operated for manufacturing value added 

chemicals, the value addition providing the economic incentive for the existence of the 

process. The fiercely competitive business environment constantly drives research and 

innovation for significantly improving existing process technologies and for developing new 

technologies to satisfy man’s ever growing needs. On the operation side, the processes are 

operated to meet key production objectives that include process safety, product specifications 

(production rate and quality) and environmental regulations. These key production objectives 

must be satisfied even as the process is subjected to disturbances such as changes in the fresh 

feed composition, variation in the ambient temperature, equipment fouling, sensor noise / 

bias etc. In other words, the process operation must ensure proper management of the process 

variability so that the key production objectives are met even in the presence of the process 

variability. This naturally leads to the idea of proper management of process variability, the 

task accomplished by a well designed automatic process control system. 

Consider the heat exchanger in Figure 0.1. Steam is used to heat a process stream to a 

certain temperature. Due to variations in the process stream flow rate and inlet temperature, 

the stream outlet temperature varies over a large range. From the process operation 

perspective, this is unacceptable since the large variation in the process stream temperature 

disturbs the downstream unit (eg. a reactor). The installation of a temperature controller that 

manipulates the steam flow rate to hold the outlet stream temperature constant mitigates this 

problem to a very large extent. This is illustrated in the outlet stream temperature and steam 

flow rate profiles in Figure 0.2. For open loop operation (no temperature control), the 

temperature varies over a large range while the steam flow rate remains constant. On the 

other hand, for closed loop operation (with temperature control), the variation in the outlet 

stream temperature is significantly lower with the steam flow rate showing large variability. 

The temperature controller thus transforms the variability in the outlet stream temperature to 

the steam flow rate. This simple example illustrates the action of a control loop as an agent 

for transformation of process variability. 
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A chemical process consists of various interconnected units with material and energy 

recycle. Controlling a process variable by adjusting the flow rate of a process stream 

necessarily disturbs the downstream / upstream process due to the interconnection. Material 

and energy recycle can cause the variability to be propagated through the entire plant. 

Considering the plant-wide propagation / transformation of process variability, the choice of 

the variables that are controlled (held at / close to their set-points), the corresponding 

variables that are manipulated and the degree of tightness of control (loose / tight control) are 

then key determinants of safe and stable process operation. The choice of the controlled and 

manipulated variables is also sometimes referred to as the control structure. Modern control 

text books provide very little guidance to the practicing engineer on the key issue of control 

structure selection for individual unit operations and the complete process, choosing instead 

to focus on the control algorithms and their properties with typical mathematical elegance. 

How does one go about choosing the most appropriate plant-wide control structure for a 

given set of production objectives? This work attempts to provide an engineering common 

sense approach to the practicing engineer for answering this key question. 

Given a control system that ensures safe and stable process operation in the face of 

ever present disturbances, crucial economic variables must be maintained to ensure 

economically efficient or optimum process operation. Depending on the prevailing economic 

circumstances, optimality may require process operation at the maximum achievable 

throughput or lower throughputs. At the optimum steady state, multiple process constraints 

are usually active such as reactor operation at maximum cooling 

duty/level/temperature/pressure or column operation at its flooding level etc.  How close can 

the process operate to these constraint limits is intimately tied with the basic plant-wide 

control strategy implemented. The converse problem is that of designing the regulatory 

plantwide control system such that the back-off from the constraint limits is the least 

Figure 0.2. The manipulated (steam flow rate) and controlled variable    

(outlet temperature of process stream) with and without control 
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possible. In this work, we also develop a systematic procedure for designing such an 

economic plantwide control system. 

In summary, this book is targeted at the practicing engineer to help him design 

effective plant-wide control systems through an appreciation of the major issues the control 

system must address. It is hoped that the targeted audience finds the work of practical utility. 

The author invites suggestions, comments and criticisms for improving upon the work. 

 

0.2. Organization of the Course 

 

The course is organized into four modules, excluding this Introduction. In Module 1, the 

reader is introduced to the essentials of process control. Only the most practical aspects of 

process control theory are presented. Mathematical rigor is deliberately done away with in 

favour of a more colloquial style to keep the discussion focused on the most essential and 

practical aspects of process control theory. Module 2 is devoted to the control of common 

unit operations found in the process industry. The control of distillation columns is 

exhaustively dealt with and includes simple, heat integrated and complex column 

configurations. The control of industrially common reactor configurations and heat 

exchangers is covered next. Finally common control configurations for miscellaneous 

systems such as furnaces, heat refrigeration systems and compressors are discussed. Module 

3 elaborates upon the key issues in the design of a plant-wide control system. The need for 

balancing the reactant inventory and the interaction between the reaction and separation 

section of a plant are described. We then go about developing a systematic procedure for 

economic plantwide control system design. Three elaborate case studies on realistic chemical 

processes are then presented to demonstrate the application of the methodology. Comparisons 

with conventional plantwide control structures show that an economic plantwide control 

structure can significantly improve (2-20%) the achievable profit (or maximum throughput) 

for a given process. Proper design of the plantwide control system is thus shown to be crucial 

to achieving economically optimal process operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


