Frequently asked questions Fuel Cell Technology by K Prof. S Basu, Chemical Department, IIT Delhi, New Delhi.

Module 3: Irreversible losses in fuel cell

Module 3: Frequently asked questions:

- **Question no. 1.** What are the different transport processes that occur in the fuel cell simultaneously?
- Question no. 2. Why voltage drops down when charge transport in the fuel cell?
- **Question no. 3.** Compare and discuss about the basic laws of transport processes related to fuel cell.?
- **Question no. 4.** List some of the important reasons for the use of porous ectrodes in fuel cell.?
- Question no. 5. Define the mobility of an ion.?
- **Question no. 6.** What is the meaning of migration?
- **Question no. 7.** The mole fractions of hydrogen and water vapor in a humidified hydrogen gas are 0.7 and 0.3, respectively. The pressure and temperature of humidified hydrogen can be taken as 1 atm and 80 °C Determine the following, if the velocities of hydrogen and water vapor are 3 m/s and 2 m/s, in the same direction:
 - (i) molar and mass average velocities
 - (ii) molar and mass diffusion velocities for hydrogen and water vapor.
 - (iii) total molar and mass fluxes for hydrogen and water vapor.
 - (iv) Diffusional molar and mass flux for both hydrogen and water vapor.
- Question no. 8. Hydrogen gas fully saturated with water vapor at 1 atm and 80 °C flows over an anode electrode, parallel to the anode surface, at a velocity of 1 m/s. If the anode is rectangular and

the length along the flow direction is 10 cm, determine the following;

- (i) the limiting current density profile corresponding to the rate of convective mass transfer,
- (ii) the hydrogen concentration variation at the electrode surface and its average value, if the current density drawn from the electrode if 0.5 A/cm².
- **Question no. 9.** Define Nernst-Einstein relation.
- **Question no. 10.** Define transference number of an ionic species.
- **Question no. 11.** Define resistance, specific resistance, conductivity conductance, and specific conductivity.
- Question no. 12. Write the Nernst-Planck equation and details the different terms.

Solution3

Solution 7:

Given,

 $\hbox{Mass fraction of hydrogen,} \ \ x_{H_2}=0.7$

Mass fraction of water, $x_{H_20} = 0.3$

 $T = 80^{\circ}C$, P=1 atm

$$v_{H_2} = \frac{3m}{s}$$
; $v_{H_2} 0 = 2m/s$

(i) The molar average velocity can be calculated,

$$v^* = (x_{H_2} * v_{H_2}) + (x_{H_2}O * v_{H_2}O) = (0.7*3) + (0.3*2)$$

= 2.1+0.6 = 2.7 m/s

In order to determine mass-average velocity, mass fractions of H₂ and H₂O need to be determined.

Since, the H_2 - H_2 O vapor mixture's molecular weight will be required, so first we will find out the molecular weight of the mixture (w_{mix}).

$$\mathbf{w_{mix}} = (\mathbf{x_{H_2}} * \mathbf{w_{H_2}}) + (\mathbf{x_{H_20}} * \mathbf{w_{H_20}})$$

Where and are the molecular weights (2 kg/kmol and 18 kg/kmol) of H_2 and H_2O , respectively.

$$w_{mix}$$
 =(0.7 * 2)+ (0.3 * 18)
= 1.4 + 5.4 = 6.8 kg / kmol

Therefore, the mass fraction will be,

$$y_{H_2} = x_{H_2} \left(\frac{w_{H_2}}{w_{mix}} \right) = 0.7 \left(\frac{2}{6.8} \right) = 0.206$$

$$y_{H_2O} = x_{H_2O} \left(\frac{w_{H_2O}}{w_{mix}} \right) = 0.3 \left(\frac{18}{6.8} \right) = 0.794$$

Thus, the mass average velocity becomes,

$$v = y_{H_2} * v_{H_2} + y_{H_20} * y_{H_20}$$

= 0.206 * 3 + 0.794 * 2 = 2.206 m/s

Diffusion velocity of hydrogen relative to the mass averaged mean motion of the mixture is,

$$V_{H_2} = v_{H_2} - v = 3 - 2.206 = 0.794 \, m/s$$

Diffusion velocity of hydrogen relative to the molar averaged mean motion of the mixture is,

$$V_{H_2}^* = v_{H_2} - v^* = 3 - 2.7 = 0.3 \ m/s$$

Diffusion velocity of water relative to the mass averaged mean motion of the mixture is,

$$V_{H_{20}} = v_{H_{20}}$$
 - v = 2 -2.206 = -0.206 m/s

Diffusion velocity of water relative to the molar averaged mean motion of the mixture is.

$$V_{H_{20}}^* = v_{H_{20}} - v^* = 2 - 2.7 = -0.7$$
 m/s

(iii)

The total density for the mass in the mixture may be formed out from the equation of state by assuming that the mixture follows the ideal gas behavior,

$$P = \frac{P \ w_{mix}}{RT} = \frac{101.325*10^3*6.8}{8314*(80+273)} = 0.235 \text{ kg}/m^3$$

Thus, the partial density of H₂ and H₂O is,

$$\rho_{H_2} = y_{H_2} \rho = 0.206 * 0.235 = 0.0484 \text{ kg/}m^3$$

$$\rho_{H_20} = y_{H_20} \rho = 0.794 * 0.235 = 0.1866 \text{ kg/}m^3$$

We can also find the corresponding total molar concentration for the mixture,

$$C = \frac{\rho}{w_{\text{mix}}} = \frac{0.235 \text{ kg/m}^3}{6.8 \text{ kg/kmol}} = 0.035 \text{ kmol/m}^3 = 0.35 \text{ kmol/m}^3$$

Then the molar concentration of H₂ and H₂O is,

$$C_{H_2} = x_{H_2}C = 0.7 * 35 = 24.5 \text{ mol/m}^3$$

$$C_{H_2O} = x_{H_2O} C = 0.3 * 35 = 10.5 \text{ mol/m}^3$$

Thus,

The total mass flux of H₂ = ρ_{H_2} v_{H2} = **0.0484** * **3** = **0.1452** kg/m³s The total molar flux of H₂ = C_{H_2} v_{H2} = **24**. 5 * 3 = **73**. 5 mol/m^2s Similarly,

The total mass flux of H₂O = $\rho_{H_{20}}$ $v_{H_{20}}$ = 0.1866 * 2 = 0.3732 kg/m²s

The total molar flux of H₂O = $C_{H_{20}}$ $v_{H_{20}}$ = 10.5 * 2 = 21 mol/m^2 s

(iv)

The diffusional mass flux of H₂, ρ_{H_2} v_{H₂} = **0.0484** * **0.794** = **0.0384** kg/m³s The diffusional molar flux of H₂C_{H₂}V^{*}_{H₂} = **24**. 5 * 3 = 73. 5 mol/m^2s The diffusional mass flux o fH₂O, $\rho_{H_{20}}$ v_{H₂₀} = **0.1866** *(-0.0206)= - **0.38** kg/m²s The diffusional molar flux of H₂O, C_{H₂₀} V^{*}_{H₂O} = **10.5** * (- **0.7**) = -**7.35** mol/m^2