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Solar-to-chemical energy conversion is the ultimate goal for 
scientists in the !eld of energy generation. "is process does 
not emit greenhouse gases, and the chemical energy can 

be stored and used when required. Plants perform this conver-
sion through natural photosynthesis (NPS)1, in which oxygen 
and carbohydrates are produced from water and carbon dioxide 
using sunlight. "e energy-conversion e#ciency of NPS can reach 
around 7% under optimum conditions2, although an e#ciency of 
less than 1% is usually expected for agricultural crops over their 
entire lifecycle1.

A potentially more controlled technology for the solar-to-
chemical energy-conversion process is arti!cial photosynthesis 
(APS), which aims to emulate NPS using man-made materials. 
APS has been fascinating scientists in !elds ranging from materials 
science to physical and inorganic chemistry. However, it remains 
a signi!cant challenge to construct an e#cient APS device capa-
ble of producing molecular fuels such as hydrogen at a scale and 
cost that can compete with fossil fuels. Signi!cant advances in e#-
ciency are required before such devices will be able to compete 
with conventional energy sources.

Photosynthetic reactions are determined primarily by three 
reaction processes: light-harvesting processes; charge generation 
and separation processes; and catalytic reaction processes. "e 
overall e#ciency is determined by the balance of thermodynamics 
and kinetics of these processes. In recent decades, intensive stud-
ies have been focused on further investigating the mechanisms 
involved in NPS. In particular, researchers recently revealed the 
structure of the oxygen-evolving site in photosystem ii3,4, thus pro-
viding new inspiration for designs of APS structures.

Over the past decade, fundamental progress has been made 
in developing novel material structures for water-splitting reac-
tions — particularly in those that target an e#cient oxygen-evolv-
ing catalyst for use in APS devices. Nanomaterial compositions 
and structures, including inorganic, molecular and hybrid organic/
inorganic materials, have been explored to meet speci!c require-
ments such as a light-absorbing wavelength modi!cation, photoin-
duced charge separation and a faster water-splitting reaction5–13.

"is Review summarizes the recent research trends of APS con-
cepts and designs. In particular, we focus on the di%erences and 
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similarities between NPS and APS, recent progress in design and 
structure, nanomaterial developments, and nanomaterial mecha-
nisms and optimization. Novel nanomaterials have made signi!-
cant improvements to water-splitting e#ciencies. Concurrently, 
signi!cant progress has been achieved in elucidating the mecha-
nisms of water-splitting.

Comparison between natural and artificial photosynthesis
"e light reaction of NPS occurs via a series of step-wise electron-
transfer processes to create su#cient energy for water-splitting1. 
"is process, known as the ‘Z-scheme’, is shown in Fig. 1a. Two 
photosystems — photosystem i (PSI) and photosystem ii (PSII) — 
collect light energy through an assembly of light-harvesting chloro-
phylls and pump electrons to a higher electronic state (excitation) 
inside a reaction centre14,15. "ese photosystems are connected in 
series with an electron transfer chain. At the donor side of PSII, 
a water oxidation reaction occurs at a manganese calcium oxide 
cluster3,16. "ese processes ensure that the charge separation quan-
tum e#ciency is close to 100% under optimal conditions.

For APS systems, two di%erent types of material structures are 
currently accepted. Figure 1b shows the !rst, which comprises a 
single light-excitation site attached to an electron donor on one 
side and an electron acceptor on the other. A dye molecule or 
visible-light-absorbing semiconductor is usually employed as the 
excitation site (chromophore). "e absorption wavelengths are 
tuned by modifying the dye structure (the gap between the high-
est occupied molecular orbital (HOMO) and the lowest unoccu-
pied molecular orbital (LUMO)) or designing the semiconductor’s 
electronic structure (the bandgap). "e electron donor material 
must meet two principal requirements. First, its energy level must 
be more negative than the excited state reduction potential of the 
chromophore, but more positive than the water oxidation poten-
tial. Second, the donor must be connected to the chromophore 
to induce a swi' electron transfer reaction prior to decay of the 
chromophore excited state. Similar requirements must also be 
met for the electron acceptor: its potential energy level must be 
between the chromophore excited state oxidation potential and 
the water reduction potential. Co-catalysts are usually introduced 
to accelerate water-splitting reactions17.
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"e main advantage of the single-step process is that the device 
structure is simple in comparison with the NPS Z-scheme. In addi-
tion to the chromophore, the material design can be focused on the 
electron acceptor site to optimize the hydrogen-producing process 
and on the donor site for the oxygen-evolving process. However, 
there are several drawbacks to the single-step process. First, material 
choice is limited because the chromophore excited-state reduction 
potential must be more positive than the water oxidation potential 
(+0.82 V relative to a normal hydrogen electrode at pH 7), and the 
excited-state oxidation potential must be more negative than the 
hydrogen evolution potential (−0.41 V relative to a normal hydro-
gen electrode at pH 7). Second, only a fraction of the sunlight can be 
utilized to initiate both hydrogen- and oxygen-evolution processes. 

Assuming such processes require 0.3 eV as a reaction driving force, 
and given that the energy di%erence between water oxidation and 
reduction potentials is 1.23 eV, the excitation energy required for 
the overall process is more than 1.83 eV (<677 nm).

"e two-step process (Fig. 1c) is an alternative technique that is 
analogous to the NPS Z-scheme. Like the single-step process, the 
two-step process places requirements on the excited-state oxidation 
and reduction potentials, although these are less severe because two 
photons are employed to drive the overall water-splitting reaction. 
"e electron transfer must be balanced through the electron-transfer 
relay materials between the chromophores. One advantage of the two-
step process is that it can utilize lower energy sunlight (down to near-
infrared wavelengths) and thus increases available choices for material 
combinations. As long as the excited-state oxidation potential at the 
oxygen-evolving site (P1* in Fig. 1c) is more negative than the excited 
state reduction potential at the hydrogen-evolving site (P2), there is 
no further potential requirement for these states. However, the overall 
system structure is more complex than that of the single-step process. 
For example, in the two-step process, it is more di#cult to control the 
kinetic balance for the whole electron-transfer process without losing 
the energy through charge recombination reactions.

Designs and structures of artificial photosynthesis
Improving the e#ciency of water-splitting reactions requires the 
device to be optimized in terms of its material selection and struc-
ture. Two types of device have been developed in this manner. 
"e !rst was developed as an isolated photoactive species such as 
a molecular or semiconductor-particle-based device (Fig.  2a,b). 
Unfortunately, with such devices it is di#cult to collect oxygen and 
hydrogen at separate regions, as these are likely to be generated 
simultaneously. However, separate gas collection could be achieved 
by employing the two-step process (Fig.  2c)18,19. For example, in 
Fig. 2c, oxygen is generated in one semiconductor system (le'-hand 
side), while hydrogen is generated in the other (right-hand side). 
"e second type of device is based on the integration of functional 
materials to form an electrode; that is, the oxygen- and hydrogen-
evolution sites are separated and fabricated on di%erent electrodes. 
In this case, the generated oxygen and hydrogen can be individually 
collected in separate containers. Here we discuss some examples of 
device structures recently developed by optimizing material func-
tions that employ these strategies.

Molecular redox relays have been extensively studied as molecu-
lar devices since the 1970s8,20–23. Figure 2a shows a triad molecular 
structure24 based on a single-step system with a porphyrin dye, which 
is similar to the chlorophyll structure in NPS, as the light-absorbing 
molecule. Electron transfer occurs from the porphyrin excited-state 
LUMO level (P*) to the fullerene (C60), and from the carotenoid 
(C) to the porphyrin ground-state HOMO (P). Charge separation 
(forming C –P–C60 ) completes on a picosecond timescale with a 
quantum yield of >95%, whereas charge recombination occurs on a 
sub-microsecond timescale. "is design has been further improved 
by using light-harvesting molecules to capture light, and introduc-
ing a light-switching molecule to reduce photodamage20,25.

Researchers have also developed a similar single-step system that 
uses semiconductor particles (Fig.  2b) or metal oxide electrodes 
(Fig. 2d). "e major breakthrough was reported in 1972 by Honda 
and Fujishima, who used a TiO2 !lm as a photoelectrode26 but no 
co-catalysts on the TiO2 surface. "e photogenerated electron was 
separated from the hole at the TiO2–electrolyte interface. Oxygen 
and hydrogen were generated at a TiO2 electrode and at a platinum 
counter-electrode, respectively, in separate compartments inside 
the photoelectrochemical cell. Co-catalysts are o'en introduced to 
accelerate water-splitting reactions. Note that exact locations of the 
co-catalysts (such as in Fig. 2b) are rarely known, although some 
studies have identi!ed the relationship between device morphol-
ogy and the water-splitting activity18,27. Domen reported that the 
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Figure 1 | Comparison between NPS and APS. a, NPS charge-separation 
processes, including type i and ii reaction centres (simplified Z-scheme). 
P680: pigment (chlorophyll) that absorbs 680 nm light in photosystem II 
(PSII); P680*: the excited state of P680; P700: pigment (chlorophyll) 
that absorbs 700 nm light in photosystem I (PSI); P700*: the excited 
state of P700. Mn: manganese calcium oxide cluster; Tyr: tyrosine in 
PSII; Pheo: pheophytin, the primary electron acceptor of PSII; QA: primary 
plastoquinone electron acceptor; QB: secondary plastoquinone electron 
acceptor; PQ: plastoquinone; FeS: Rieske iron sulphur protein; Cyt. f: 
cytochrome f; PC: plastocyanin; A0: primary electron acceptor of PSI; A1: 
phylloquinone; FX, FA, FB: three separate iron sulphur centres; FD: ferredoxin; 
FNR: nicotinamide adenine dinucleotide phosphate (NADP) reductase. This 
Z-scheme process is driven by the absorption of two photons, one at PSII 
and the other at PSI. Light absorption at PSII creates P680*, which provides 
an electron to reduce pheophytin, and the step-wise electron transfer 
occurs from pheophytin to P700+ (the oxidizing species after the electron 
transfer from P700*). Following this initial electron transfer, P680+ can 
oxidize tyrosine and subsequently the manganese calcium oxide cluster. 
Light absorption at PSI creates P700*, which provides an electron to reduce 
A0 to FNR. A series of electron transfer pathways are indicated by black 
arrows. b,c, APS charge-separation processes: single-step reactions (b) 
and two-step (Z-scheme) reactions (c). P: chromophore of a single-step 
reaction system; P*: excited state of P; P1: the first chromophore of a two-
step reaction system; P1*: excited state of P1; P2: second chromophore of a 
two-step reaction system; P2*: excited state of P2.
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visible-light-absorbing semiconductor (Ga1–xZnx)(N1–xOx), with a 
co-catalyst, provides a water-splitting quantum e#ciency of 2.5% at 
wavelengths of 420–440 nm (ref. 28).

Researchers have recently employed the combined structure of 
organic molecules and metal oxide nanoparticles as a single-step 
dye-sensitized water-splitting system. "is con!guration initiates 
(Fig. 2e) opportunities for the selection of a sensitizer dye with a 
di%erent light absorption pro!le29,30. Mallouk et al. proposed a dye-
sensitized TiO2 water-splitting cell with hydrated iridium oxide 
nanoparticles as the oxygen-evolving catalyst31. Following elec-
tron injection from the excited ruthenium complex into a TiO2 
nanocrystal, the oxidation energy of the dye cation is used to split 
water using the iridium oxide attached to the dye. "e injected elec-
tron in the TiO2 is transferred to a platinum counter-electrode to 
produce hydrogen. Spiccia  et  al. also employed manganese as an 
‘Mn–oxo’ cluster catalyst in a dye-sensitized water-splitting cell32.

Several structures have been suggested for two-step water-
splitting devices19,33–36. Abe, Domen and co-workers recently estab-
lished two-step-based Z-scheme structures using an IO3

–/I– redox 
couple (Fig. 2c)19,33. "e preferential attachment of redox species to 
the particular semiconductor surface selects either a water-splitting 
reaction or an electron-transfer reaction from I–. Kudo et al. reported 
the formation of an aggregated structure comprising two di%erent 
semiconducting nanomaterials, thus inducing swi' electron-transfer 
processes between two light-absorbing semiconductors37. Tada et al. 
demonstrated a CdS–Au–TiO2 Z-scheme system that contained a 
vectorial electron-transfer path38. "e tandem cell con!guration 
(Fig. 2f) is another favourable structure of the two-step system34,35. 
Grätzel et al. combined the oxygen-evolving electrode with the dye-
sensitized TiO2 electrode34,35. Researchers have also demonstrated 
water-splitting by employing multijunction photovoltaic devices 
coupled to oxidation and reduction catalysts; as for the Z-scheme, 
a multijunction device is required to generate a voltage su#cient for 
driving both the oxidation and reduction reactions39–41.

Nanomaterial developments
Signi!cant progress in the fabrication of nanomaterials has provided 
a plethora of novel and innovative hetero-nanostructures for solar 
water-splitting, with photocurrents ranging from microamperes to 
milliamperes per square centimetre. "is rapid development has 
been the topic of many comprehensive reviews6,18,30,36,42–49, perspec-
tives5,50, books51–55 and book chapters56. Many reports focus on tech-
niques for fabricating novel structures and devices, as well as the 
latest improvements of well-known large-bandgap semiconductors 
such as TiO2 and ZnO, which exhibit high performances for solar 
water-splitting. Many new emerging systems, such as oxynitrides, 
tantalates and niobates, also show great potential.

From an academic standpoint, any functioning systems are nec-
essary to understand and exploit the fundamental mechanisms and 
energetics involved in the water oxidation process. However, from 
a practical standpoint, and particularly for a cost-e%ective and sus-
tainable large-scale implementation, very di%erent issues must be 
addressed and ful!lled, including cost, abundance, low toxicity and 
long-term stability in water under strong illumination by concen-
trated solar irradiation. "ese crucial requirements suggest the use 
of cheap transition metals and naturally abundant chemical ele-
ments such as iron, titanium, zinc, carbon, nitrogen and sulphur.

It is also important to show the ‘true’ e#ciency of the device; 
that is, its e#ciency without the use of o'en costly or industrially 
irrelevant sacri!cial agents. "is demonstration would instead make 
use of the most abundant and geographically balanced free natural 
resource available on Earth — seawater. Although the market for 
photovoltaic devices grows daily, researchers have yet to develop 
modules for use in large-scale solar water-splitting facilities. "e 
fabrication and testing of large systems, devices, modules and pan-
els is of major importance. In addition, work so far has been lim-
ited mostly to n- or p-type photoanodes; very little attention has 
been paid to the cathode or the conducting substrate. An increase 
in Ohmic loss at larger areas requires the implementation of a 

Single excitation step Two excitation steps
El

ec
tro

de
 sy

st
em

 

a c

d e

b

f

M
ol

ec
ul

ar
/p

ar
tic

le
 d

ev
ic

e Electron
acceptor

Reduced
electrolyte 

CH3

NN N

N N
HHC

O
N
H

Electron
donor

O2 evolution 
catalyst O2 evolution 

catalyst

H2 evolution 
catalyst

H2 evolution 
catalyst

Oxidized
electrolyte

hυ

hυ hυ

e-

e-

e-

e-
e-

e-

2H2O H2

2H+O2

2H2O H2

2H+O2

2H2O H2

2H+O2

Figure 2 | Structural designs of APS reaction processes. a, Structure of the carotenoid–porphyrin–fullerene molecular dyad system. b, Single-step 
semiconductor particle with attached hydrogen- and oxygen-evolving co-catalysts. c, Two-step system: mixture of semiconductor particles with attached 
hydrogen- or oxygen-evolving co-catalyst and redox electrolyte couples. d, Single-excitation-step water-splitting cell, containing a semiconductor 
electrode with water oxidation co-catalysts and a counter-electrode to reduce water. e, Dye-sensitized transparent metal oxide water-splitting cell.  
f, Two-step tandem water-splitting cell. Inset of a reproduced with permission from ref. 24, © 2004 Wiley.

REVIEW ARTICLENATURE PHOTONICS DOI: 10.1038/NPHOTON.2012.175



514 NATURE PHOTONICS | VOL 6 | AUGUST 2012 | www.nature.com/naturephotonics

conducting grid (usually made from silver or gold) to achieve the 
necessary conductivity, which raises the price of the device. New 
transparent conductive oxides have also been reported. "e most 
striking of these are graphene-based, but their long-term stability 
has yet to be investigated. For the interface between a photoac-
tive material and a transparent conductive oxide, researchers have 
demonstrated an order of magnitude increase in e#ciency under 
sudden high-temperature annealing — an e%ect that has been 
attributed to atomic di%usion of tin and subsequent doping. From 
a structural point of view, the development of facet-selective reac-
tivity, which is well-described for single crystals in heterogeneous 
catalysis, requires control over not only the material’s shape, ori-
entation and size, but also its surface and interfacial chemistry57. 
In addition, such local chemical control also enables the creation 
of chemical potential gradients of charges, which are necessary to 
maintain the dynamics under operating conditions. Recently, the 
importance of the interfacial electronic structure58 and spontaneous 
electron enrichment59 were shown to account quantitatively to the 
reported e#ciency enhancement.

Recent approaches have utilized nanostructuring60,61, quan-
tum con!nement62, plasmonics63–65, enhancement to the carrier 
dynamics, orbital engineering66, up- and downconversion, and 
intermediate-band electronic structure67. Such strategies have 
proven successful, and a new generation of quantum-con!ned 

nanostructures with optimized bandgap and band edges tuned for 
e#cient water-splitting has been fabricated. "ese quantum-dot-
sensitized quantum-68 and nano-rods69 show signi!cant e#ciency 
improvement, particularly in the visible region of the solar spec-
trum (Fig. 3a)70.

Hydrogenation is a very e%ective technique for fabricating e#-
cient visible-wavelength-active semiconductor nanostructures in 
photoelectrochemical cells. Molecular hydrogen treatment is a well-
known and powerful process for reducing oxides to metals, or for 
inducing mixed valency in an oxide structure in gaseous phase at 
elevated temperatures or electrochemically at room temperature by 
intercalation of protons in aqueous acidic solutions, which produces 
shallow donor levels. "is process was recently applied to achieve a 
new concept called disorder engineering, in which disorders yield 
mid-gap states rather than shallow donor levels and hydrogen sta-
bilizes the disorders. Mao and co-workers71 reported high-pressure-
treated H2–TiO2, which is black in colour while the formal oxidation 
of Ti remains at +iv (Fig. 3b). "is is in contrast with typical mixed-
valency compounds, also strongly coloured but where the lower oxi-
dation state of the transition metal (for example, +iii for Ti, +ii for 
Fe and +v for W) is induced leading to the mixed-valency electron 
transfer responsible for the strong visible absorption. 

Black TiO2 nanocrystals also provide e%ective carrier-trapping 
sites for suppressing rapid recombination, and thus o%er a new 
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path towards photocatalysts that may o%er not only a substantially 
enhanced photocatalytic activity under solar radiation, but also the 
desired stability for practical implementation. "e concept of disor-
der engineering opens a new direction for altering optical absorption 
and carrier transport in semiconductor nanostructures. It is antici-
pated that combining disorder engineering with elemental doping 
could be used to overcome the lack of absorption in the visible range 
and may also reduce the limiting e%ects of bandgap energy and car-
rier recombination for many wide-bandgap materials that tradition-
ally have not been considered for solar-related applications. Indeed, 
inspired by Mao’s work, Zhang and collaborators reported H2–TiO2 
nanowire arrays72 and recently introduced H2–WO3, enabling the 
generation of oxygen even at neutral pH73. Previous operating con-
ditions, in contrast, required the use of highly concentrated acid.

"e past decade has seen the resurgence of α-Fe2O3 (hematite) — 
an abundant natural mineral — alongside the considerable e%orts 

put into fabricating and discovering novel structures by experi-
mental techniques such as high-throughput combinatorial chemis-
try74,75 (Fig. 3c) or by calculation methods76. At the beginning of the 
twenty-!rst century, the Lindquist group in Sweden demonstrated 
that hematite designed as vertically oriented nanorods, in which 
the rod diameter matched the minority carrier di%usion length, 
could provide a quantum e#ciency of up to 56% at a wavelength of 
350 nm (refs 77,78). Since then, owing to the relentless e%orts and 
ingenuity of many groups around the world61,75,79–81, the e#ciency 
of hematite-based nanostructures has increased exponentially to 
more than 3 mA cm–2. "is rapid development has even been com-
pared to that of silicon-based solar cells in the 1970s80. Hematite 
exhibits the most important properties for a solar water-splitting 
material — price, stability, e#ciency and non-toxicity — and there-
fore has signi!cant potential providing that industrial (and poten-
tially environmental82) issues are appropriately tackled2,83–85.

Charge carrier dynamics
A key challenge for APS systems is to utilize the electron–hole pairs 
generated by photon absorption to drive the multi-electron chem-
istry required for fuel synthesis. In general, and in particular for 
the key reaction of water oxidation, this multi-electron chemistry 
is both thermodynamically challenging and kinetically slow. It is 
widely recognized that there is a signi!cant mismatch between the 
nanosecond (or shorter) lifetimes of electron–hole pairs generated 
by photon absorption in a material and the timescales for the inter-
facial redox reactions required for water oxidation or proton/carbon 
dioxide reduction. As a consequence, electron–hole recombination 
is a major loss pathway that limits the quantum e#ciency of photo-
synthetic systems. In NPS reaction centres, a molecular redox relay 
is employed to separate spatially photogenerated electrons and holes 
(Fig. 1a), thereby reducing recombination losses and, for example, 
enabling the accumulation of multiple oxidizing equivalents on the 
oxygen-evolving catalyst required for water oxidation. It should 
be noted that achieving this spatial separation o'en requires a 
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semiconductor photoanode. a, Photoelectrochemical water-splitting cell 
employing a photoactive anodic electrode that induces a space-charge 
region at the semiconductor–solution interface. A photogenerated electron 
is separated from the interface and then consumed to generate hydrogen at 
the counter-electrode. A hole is generated at the interface and consumed 
for water oxidation reaction. b, Transient absorption data obtained for 
photogenerated holes in an α-Fe2O3 photoanode under a bias of −0.1 or 
+0.4 V relative to Ag/AgCl (ref. 91). Rapid decay under negative bias is 
due to electron–hole recombination. Under positive bias, the formation of a 
space-charge layer results in the generation of long-lived holes, which can 
oxidize water on a timescale of around 1 s.

Figure 5 | Vision of a sustainable hydrogen fuel community based on APS. 
Hydrogen is produced from an APS solar water-splitting power plant using 
seawater on floating ports, tankers and seashore plants. Electricity needed 
to operate such an infrastructure is provided by renewable energy sources 
such as photovoltaic, wind and tidal power.
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signi!cant energy loss, corresponding, for the NPS reaction centres, 
to up to half the energy of the initially generated chlorophyll excited 
state, as illustrated in Fig. 1a. For inorganic photovoltaic devices, a 
p–n junction is o'en employed to spatially separate electrons and 
holes, thereby reducing minority carrier recombination losses.

For APS systems, a range of techniques have the potential to 
reduce electron–hole recombination losses. "ese include nano-
structuring the photoactive materials to reduce the distance electron 
and holes must travel before reaching surface-reactive sites; the use 
of interfacial space regions to enable localization of single charge 
carriers at the material interface; the use of co-catalysts to acceler-
ate interfacial oxidation–reduction kinetics; and the use of hetero-
junction structures to achieve spatial separation of electrons and 
holes. "e preceding section discussed several examples in which 
these approaches have been shown to enhance the overall energy-
conversion e#ciency. Figure  4a illustrates a photoelectrochemical 
water-splitting cell that uses a photoactive electrode to induce a 
space charge region at the semiconductor–solution interface. A pho-
togenerated electron is separated from the interface, moved through 
the semiconductor and collected at the back contact electrode. A 
corresponding hole is accumulated at the interface and consumed 
for water oxidation. In this context, the role of dopants is an impor-
tant consideration. Water oxidation photoelectrodes are typically 
made from doped n-type semiconductors to avoid resistive losses 
associated with electron collection by the back contact. However, 
n-doping also has the e%ect of reducing the lifetime of the photogen-
erated holes — the minority carriers — due to faster electron–hole 
recombination. To date, there have been relatively few quantitative 
studies into the charge carrier dynamics in APS systems, how these 
dynamics are related to material design, and how they impact the 
water-splitting e#ciency.

Most kinetic studies of charge carrier dynamics in APS systems 
have been undertaken for molecular energy and electron-transfer 
relays such as the triad structure (Fig.  2a). Such systems, which 
have typically been studied as suspensions in dilute solution, show 
close parallels with the function of NPS reaction centres. Transient 
spectroscopic studies have provided a detailed understanding of the 
charge carrier dynamics in such systems, as well as the relationships 
between electron-transfer rate constants and the quantum yields, 
energetics and lifetimes of charge-separated states20. In contrast, 
there have been relatively few studies into heterogeneous systems 
such as photoanodes and nanoparticle suspensions, and systems 
incorporating catalytic centres86,87. For photoanodes, most studies 
have involved photoelectrochemical techniques such as impedance 
analyses, which are now leading to increasingly detailed models of 
photoelectrode function88,89. In heterogeneous systems, a particular 
challenge is that electron–hole recombination is a bimolecular pro-
cess; its dynamics o'en depend nonlinearly on the charge carrier 
density and so cannot be described with a single time constant. Such 
recombination dynamics have been most widely studied using tran-
sient optical spectroscopy techniques. Some studies have focused on 
correlating the ultrafast dynamics of electron–hole recombination 
with photoelectrode performance90, whereas others have addressed 
slower (nanosecond to millisecond) timescales, where charge 
trapping in intraband states o'en has a signi!cant impact on the 
observed dynamics91,92.

Titania is the heterogeneous photocatalytic system in which 
charge carrier dynamics have been studied in great detail, due in 
part to the widespread use of this material in APS systems and dye-
sensitized solar cells93,94, as well as for the photocatalytic decom-
position of pollutants95. More recently, attention has turned to 
lower-bandgap systems such as hematite. Several studies, such as 
that shown in Fig. 4b, have indicated that the rate constant for water 
oxidation by hematite holes is rather slow (around 1 s–1). Such slow 
kinetics are a signi!cant issue when considering the e#ciency of 
water oxidation88,91,96.

Perspectives
APS has the potential to provide signi!cant economic, environ-
mental and social bene!ts, providing that solar energy-conversion 
e#ciencies increase and production/operating costs decrease. 
Researchers have suggested that the maximum solar energy-
conversion e#ciency of the water-splitting reaction could be 
comparable to that achievable with a photovoltaic device97,98, thus 
indicating that theoretical e#ciencies for single-junction devices 
could approach 31% under 1 Sun (1 kW m–2) at AM1.5G illumi-
nation36,97. Over the past few years, research e%orts have resulted 
in the emergence of new generations of visible-light-active het-
ero-nanostructures that combine advances in nanoscience such 
as con!nements e%ects, innovative novel materials composition 
such as titanates, tantalates and niobates, and low-cost fabrication 
techniques such as hydrothermal and chemical vapour deposition. 
All of these developments represent excellent candidates for e#-
cient hydrogen generation by APS, and some operate without any 
additives and/or at reduced or zero bias. However, to comply with 
the challenging requirements of economically viable industrial 
production of hydrogen by solar water-splitting, many issues are 
still yet to be addressed, including long-term stability in water and 
under concentrated illumination, toxicity to individuals and the 
environment, manufacturing costs and standardization99. A fur-
ther challenge is translating laboratory-scale academic research 
into scalable, manufacturable technologies, including consid-
erations of packaging, large-area processing and outdoor testing. 
New generations of APS devices that employ either direct photo-
reactors or spatially separated photovoltaic cells and electrolysers 
may render solar hydrogen generation commercially viable, thus 
enabling a sustainable hydrogen economy. For example, the US 
department of Energy has said that the price of hydrogen must 
reach US$2–3  kg–1 (including production, delivery and dispens-
ing) before it can compete with gasoline for use in passenger vehi-
cles. Figure 5 illustrates the implementation of a sustainable solar 
water-splitting power plant for safe, clean and e#cient hydrogen 
production and utilization. "is vision involves the assistance of 
commercially available renewable energy sources such as wind, 
solar and tidal to assist in powering the plant and thus reducing 
operating costs. "e facility could be implemented in any seashore 
or o%-shore location where seawater can be pumped and !ltered, 
including platforms, tankers and +oating or !xed ports. "is sea-
water would be injected into APS modules for the generation of 
hydrogen, which can then be transported to fuelling stations with 
limited environmental issues relating to the implementation of 
large-area power stations82,100. A'er all, the most abundant, geo-
graphically balanced and freely available resources on this blue 
planet are sunlight and seawater.
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